首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a step towards the elucidation of the role played by nuclear polyphosphoinositides, we have investigated the effect of exogenous calcium free inositol (1,4,5)-trisphosphate on the in vitro phosphorylation of proteins in nuclei prepared from Swiss 3T3 cells treated with bombesin and insulin-like growth factor I. When present in combination with phosphatidylserine, inositol (1,4,5)-trisphosphate enhanced the phosphorylation of two nuclear proteins, Mr 21,000 and 31,000, as well as of exogenous histone H1, to the same extent as a combination of phosphatidylserine and diacylglycerol. Inositol (1,4,5)-trisphosphate alone had no effect. This stimulation could be abolished by the protein kinase C inhibitor sphingosine and by EGTA, while could be restored by a combination of phosphatidylserine and exogenous Ca+(+) ions. These results raise the possibility that inositol (1,4,5)-trisphosphate is capable of liberating Ca+(+) ions from a nuclear store thus stimulating protein kinase C activity.  相似文献   

2.
The TRPC3 channel, an intensively studied member of the widely expressed transient receptor potential (TRP) family, is a Ca(2+)-conducting channel activated in response to phospholipase C-coupled receptors. Despite scrutiny, the receptor-induced mechanism to activate TRPC3 channels remains unclear. Evidence indicates TRPC3 channels interact directly with intracellular inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) and that channel activation is mediated through coupling to InsP(3)Rs. TRPC3 channels were expressed in DT40 chicken B lymphocytes in which all three InsP(3)R genes were deleted (DT40InsP(3)R-k/o). Endogenous B-cell receptors (BCR) coupled through Syk kinase to phospholipase C-gamma (PLC-gamma) activated the expressed TRPC3 channels in both DT40w/t and DT40InsP(3)R-k/o cells. The diacylglycerol (DAG) analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) also activated TRPC3 channels independently of InsP(3)Rs. BCR-induced TRPC3 activation was blocked by the PLC enzymic inhibitor, U-73122, and also blocked by wortmannin-induced PLC substrate depletion. Neither U-73122 nor wortmannin modified either OAG-induced TRPC3 activation or store-operated channel activation in DT40 cells. Cotransfection of cells with both G protein-coupled M5 muscarinic receptors and TRPC3 channels resulted in successful M5 coupling to open TRPC3 channels mediated by PLC-beta. We conclude that TRPC3 channels are activated independently of InsP(3)Rs through DAG production resulting from receptor-mediated activation of either PLC-gamma or PLC-beta.  相似文献   

3.
The mechanism of receptor-induced activation of the ubiquitously expressed family of mammalian canonical transient receptor potential (TRPC) channels has been the focus of intense study. Primarily responding to phospholipase C (PLC)-coupled receptors, the channels are reported to receive modulatory input from diacylglycerol, endoplasmic reticulum inositol 1,4,5-trisphosphate receptors and Ca2+ stores. Analysis of TRPC5 channels transfected within DT40 B cells and deletion mutants thereof revealed efficient activation in response to PLC-beta or PLC-gamma activation, which was independent of inositol 1,4,5-trisphoshate receptors or the content of stores. In both HEK293 cells and DT40 cells, TRPC5 and TRPC3 channel responses to PLC activation were highly analogous, but only TRPC3 and not TRPC5 channels responded to the addition of the permeant diacylglycerol (DAG) analogue, 1-oleoyl-2-acetyl-sn-glycerol (OAG). However, OAG application or elevated endogenous DAG, resulting from either DAG lipase or DAG kinase inhibition, completely prevented TRPC5 or TRPC4 activation. This inhibitory action of DAG on TRPC5 and TRPC4 channels was clearly mediated by protein kinase C (PKC), in distinction to the stimulatory action of DAG on TRPC3, which is established to be PKC-independent. PKC activation totally blocked TRPC3 channel activation in response to OAG, and the activation was restored by PKC-blockade. PKC inhibition resulted in decreased TRPC3 channel deactivation. Store-operated Ca2+ entry in response to PLC-coupled receptor activation was substantially reduced by OAG or DAG-lipase inhibition in a PKC-dependent manner. However, store-operated Ca2+ entry in response to the pump blocker, thapsigargin, was unaffected by PKC. The results reveal that each TRPC subtype is strongly inhibited by DAG-induced PKC activation, reflecting a likely universal feedback control on TRPCs, and that DAG-mediated PKC-independent activation of TRPC channels is highly subtype-specific. The profound yet distinct control by PKC and DAG of the activation of TRPC channel subtypes is likely the basis of a spectrum of regulatory phenotypes of expressed TRPC channels.  相似文献   

4.
Conformational coupling with the inositol 1,4,5-trisphosphate (IP3) receptor has been suggested as a possible mechanism of activation of TRPC3 channels and a region in the C terminus of TRPC3 has been shown to interact with the IP3 receptor as well as calmodulin (calmodulin/IP3 receptor-binding (CIRB) region). Here we show that internal deletion of 20 amino acids corresponding to the highly conserved CIRB region results in the loss of diacylglycerol and agonist-mediated channel activation in HEK293 cells. By using confocal microscopy to examine the cellular localization of Topaz fluorescent protein fusion constructs, we demonstrate that this loss in activity is caused by faulty targeting of CIRB-deleted mutants to intracellular compartments. Wild type TRPC3 and mutants lacking a C-terminal predicted coiled coil region downstream of CIRB were targeted to the plasma membrane correctly in HEK293 cells and exhibited TRPC3-mediated calcium entry in response to agonist activation. Mutation of conserved YQ and MKR motifs to alanine within the CIRB region in TRPC3-Topaz, which would be expected to interfere with IP3 receptor and/or calmodulin binding, had no effect on channel function or targeting. Additionally, TRPC3 targets to the plasma membrane of DT40 cells lacking all three IP3 receptors and forms functional ion channels. These findings indicate that the previously identified CIRB region of TRPC3 is involved in its targeting to the plasma membrane by a mechanism that does not involve interaction with IP3 receptors.  相似文献   

5.
Binding of chemoattractants to receptors on human polymorphonuclear leukocytes (PMN) stimulates the phosphodiesteric cleavage of phosphatidylinositol 4,5-bisphosphate to produce inositol 1,4,5-trisphosphate and 1,2-diacylglycerols. To investigate the possible second messenger function of diacylglycerols in PMN activation, we tested the ability of a series of synthetic sn 1,2-diacylglycerols, known to stimulate protein kinase C in other systems, to promote superoxide anion release, oxygen consumption, lysosomal enzyme secretion, and chemotaxis. None of the diacylglycerols initiated the chemotactic migration of PMN. Several of the diacylglycerols however, were, active in stimulating superoxide anion release and lysozyme secretion, with dioctanoylglycerol (diC8) being the most potent. Unexpectedly, didecanoylglycerol (diC10) induced lysosomal enzyme secretion, but failed to stimulate superoxide production or oxygen consumption. All other biologically active diacylglycerols tested displayed similar EC50 for stimulating lysozyme secretion and superoxide production. The ability of the diacylglycerols to compete for phorbol dibutyrate (PDBu) binding in intact PMN suggested a mechanism for the divergent biological activity of diC10. Although the compounds that stimulated both superoxide production and lysosomal enzyme secretion competed for essentially all [3H]PDBu binding from its receptor, diC10, which only stimulated secretion, competed for 45% of the bound [3H]PDBu. Thus diacylglycerols can selectively activate certain functions of leukocyte chemoattractant receptor. The data suggest that a discrete pool of protein kinase C may mediate activation of the respiratory burst in PMN.  相似文献   

6.
Chlamydomonas reinhardtii cells shed their flagella in response to environmental stress. Under favorable conditions, flagella are quickly regrown. To learn more about the signals that trigger flagellar excision and regrowth we have investigated inositol phospholipid metabolites, molecules implicated in signal transduction in several other systems. After deflagellation by low pH or mastoparan, a potent activator of G proteins, there was a rapid increase in levels of inositol 1,4,5-trisphosphate measured by use of receptor-binding assays and HPLC. This increase was concomitant with a decrease in levels of phosphatidylinositol 4,5-bisphosphate and was followed by an increase in phosphatidic acid, results consistent with activation of phospholipase C and diacylglycerol kinase. Additional experiments suggest that this activated phospholipase C is not important for flagellar regrowth but plays a role in informing the excision apparatus of the environmental stress. Addition of neomycin (an inhibitor of phospholipase C) before exposure of cells to low pH or mastoparan prevented the increase in inositol 1,4,5-trisphosphate and also prevented deflagellation. Addition of neomycin after deflagellation blocked increases in inositol 1,4,5-trisphosphate that normally followed deflagellation, but did not block flagellar assembly. Furthermore, a flagellar excision-defective mutant, fa-1, did not shed its flagella in response to low pH or mastoparan, yet both of these agents activated phospholipase C in these cells. The results suggest that activation of phospholipase C, possibly via a G protein, is a proximal step in the signal transduction pathway inducing deflagellation in Chlamydomonas.  相似文献   

7.
Luteinizing hormone (LH) interacts with its plasma membrane receptor to activate the formation of cyclic AMP via the regulatory GTP binding protein (Gs). This is followed by a desensitization of that same hormonal response which is caused by an uncoupling of the LH receptor from Gs. The coupling between Gs and the adenylate cyclase catalytic unit remains intact. Treatment of Leydig and other cell types with phorbol esters mimics hormone-induced desensitization. However, differences between hormone- and phorbol ester-induced desensitization have been found. In testis Leydig cells phorbol esters, as well as uncoupling the LH receptor from Gs, also inactivates the subunit of the inhibitory GTP binding protein (Gi). These studies suggested that activation of protein kinase may be involved in the hormone-induced desensitization of adenylate cyclase. Paradoxically, it has also been found that two inhibitors of protein kinase C, sphingosine and psychosine also inhibited LH-induced cyclic AMP production. These effects were mainly found during the initial stimulatory period with LH. It is suggested that activation of adenylate cyclase may require a protein kinase C-mediated phosphorylation step which is followed by further phosphorylation resulting in uncoupling of the receptor from Gs. No direct stimulation of inositol 1,4,5-trisphosphate (Ins[1,4,5]P3), diacylglycerol and/or activation of protein kinase C by LH in Leydig cells has been demonstrated. An alternative mechanism of protein kinase C activation has been proposed for brain cells, i.e. that involving arachidonic acid activation of protein kinase C instead of diacylglycerol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Stimulation of muscarinic M3 and M2 receptors on gastrointestinal smooth muscle elicits contraction via activation of G proteins that are coupled to a diverse set of downstream signaling pathways and effector proteins. Many studies suggest a canonical excitation-contraction coupling pathway that includes activation of phospholipases, production of inositol 1,4,5-trisphosphate and diacylglycerol, release of calcium from the sarcoplasmic reticulum, activation of L-type calcium channels, and activation of nonselective cation channels. These events lead to elevated intracellular calcium concentration, which activates myosin light chain kinase to phosphorylate and activate myosin II thus causing contraction. In addition, muscarinic receptors are coupled to signaling pathways that modulate the effect of activator calcium. The Rho/Rho kinase pathway inhibits myosin light chain phosphatase, one of the key steps in sensitization of the contractile proteins to calcium. Phosphatidylinositol 3-kinases and Src family tyrosine kinases are also activated by muscarinic agonists. Src family tyrosine kinases regulate L-type calcium and nonselective cation channels. Src activation also leads to activation of ERK and p38 MAPKs. ERK MAPKs phosphorylate caldesmon, an actin filament binding protein. P38 MAPKs activate phospholipases and MAPKAP kinase 2/3, which phosphorylate HSP27. HSP27 may regulate cross-bridge function, actin filament formation, and actin filament attachment to the cell membrane. In addition to the well-known role of M3 muscarinic receptors to regulate myoplasmic calcium levels, the integrated effect of muscarinic activation probably also includes signaling pathways that modulate phospholipases, cyclic nucleotides, contractile protein function, and cytoskeletal protein function.  相似文献   

9.
We have examined regulation by protein kinase C (Ca2+/phospholipid-dependent enzyme) of thrombin-induced inositol polyphosphate accumulation in human platelets. When platelets are exposed to thrombin for 10 s, the protein kinase C inhibitor staurosporine causes inositol phosphate elevations over control values of 2.7-fold (inositol 1,4,5-trisphosphate (Ins(1,4,5)P3], 1.9-fold (inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4], and 1.2-fold (inositol 1,3,4-trisphosphate). In the same period, phosphatidic acid and diacylglycerol are unaffected. The myosin light chain kinase inhibitor ML-7 has no effect on inositol phosphate accumulations. Staurosporine does not inhibit Ins(1,4,5)P3 3-kinase and 5-phosphomonoesterase activities in saponin-permeabilized platelets incubated with exogenous Ins(1,4,5)P3 unless the platelets have been exposed to thrombin and protein kinase C is consequently activated. The protein kinase C agonist beta-phorbol 12,13-dibutyrate increases the Vmax of the 3-kinase 1.8-fold, with little effect on Km. Our results provide strong evidence for a role for protein kinase C in regulating inositol phosphate levels in thrombin-activated platelets. We propose that endogenously activated protein kinase C removes Ins(1,4,5)P3 by stimulating both 5-phosphomonoesterase and Ins(1,4,5)P3 3-kinase. Initial activation of phospholipase C does not appear to be affected by such protein kinase C. Inhibition of protein kinase C by staurosporine decreases 5-phosphomonoesterase activity. The resulting elevated Ins(1,4,5)P3, as substrate for Ins(1,4,5)P3 3-kinase, promotes production of Ins(1,3,4,5)P4, which also may accumulate through decreased 5-phosphomonoesterase activity and elevated Ca2+ levels. These factors apparently counteract the inhibitory effect on 3-kinase, yielding a net increase in Ins(1,3,4,5)P4.  相似文献   

10.
Phosphatidylinositol 4,5-bisphosphate has recently gained prominence as the central component of a receptor transduction process which generates inositol 1,4,5-trisphosphate and diacylglycerol in stimulated cells. Both of these products of phospholipid metabolism have intracellular second messenger functions with diacylglycerol formation leading to activation of protein kinase C and inositol 1,4,5-trisphosphate stimulating Ca2+ release from intracellular stores in the endoplasmic reticulum. There is mounting evidence that the phospholipase C which hydrolyses phosphatidylinositol 4,5-bisphosphate is coupled to activated receptors by a guanylnucleotide binding protein, analogous to Ns and Ni which couple stimulatory and inhibitory hormone receptors to adenylate cyclase. Most of the key elements of this signalling mechanism have been found in the nervous system and so too has an entirely novel and unexpected inositol phosphate ester, inositol 1,3,4,5-tetrakisphosphate, whose function is not yet known. Phosphatidylinositol 4,5-bisphosphate breakdown, detected as the accumulation of inositol phosphates in agonist-stimulated nervous tissue preparations, is a functional response that has been useful in assessing the relevance of receptors identified by radioligand binding assays, and which provides an essential link between receptor occupation and responses such as neurotransmitter release and modulation of neuronal excitability.  相似文献   

11.
Litosch I 《IUBMB life》2002,54(5):253-260
The receptor-regulated phospholipase C-beta (PLC-beta) signaling pathway is an important component in a network of signaling cascades that regulate cell function. PLC-beta signaling has been implicated in the regulation of cardiovascular function and neuronal plasticity. The Gq family of G proteins mediate receptor stimulation of PLC-beta activity at the plasma membrane. Mitogens stimulate the activity of a nuclear pool of PLC-beta. Stimulation of PLC-beta activity results in the rapid hydrolysis of phosphatidylinositol-4,5-bisphosphate, with production of inositol-1,4,5-trisphosphate and diacylglycerol, intracellular mediators that increase intracellular Ca2+ levels and activate protein kinase C activity, respectively. Diacylglycerol kinase converts diacylglycerol to phosphatidic acid, a newly emerging intracellular mediator of hormone action that targets a number of signaling proteins. Activation of the Gq linked PLC-beta signaling pathway can also generate additional signaling lipids, including phosphatidylinositol-3-phosphate and phosphatidylinositol-3,4,5-trisphosphate, which regulate the activity and/or localization of a number of proteins. Novel feedback mechanisms, directed at the level of Gq and PLC-beta, have been identified. PLC-beta and regulators of G protein signaling (RGS) function as GTPase-activating proteins on Gq to control the amplitude and duration of stimulation. Protein kinases phosphorylate and regulate the activation of specific PLC-beta isoforms. Phosphatidic acid regulates PLC-beta1 activity and stimulation of PLC-beta1 activity by G proteins. These feedback mechanisms coordinate receptor signaling and cell activation. Feedback mechanisms constitute possible targets for pharmacological intervention in the treatment of disease.  相似文献   

12.
TRPC3, 6 and 7 channels constitute a subgroup of non-selective, calcium-permeable cation channels within the TRP superfamily that are activated by products of phospholipase C-mediated breakdown of phosphatidylinositol-4,5-bisphosphate (PIP(2)). A number of ion channels, including other members of the TRP superfamily, are regulated directly by PIP(2). However, there is little information on the regulation of the TRPC channel subfamily by PIP(2). Pretreatment of TRPC7-expressing cells with a drug that blocks the synthesis of polyphosphoinositides inhibited the ability of the synthetic diacylglycerol, oleyl-acetyl glycerol, to activate TRPC7. In excised patches, TRPC7 channels were robustly activated by application of PIP(2) or ATP, but not by inositol 1,4,5-trisphosphate. Similar results were obtained with TRPC6 and TRPC3, although the effects of PIP(2) were somewhat less and with TRPC3 there was no significant effect of ATP. In the cell-attached configuration, TRPC7 channels could be activated by the synthetic diacylglycerol analog, oleyl-acetyl glycerol. However, this lipid mediator did not activate TRPC7 channels in excised patches. In addition, channel activation by PIP(2) in excised patches was significantly greater than that observed with oleyl-acetyl glycerol in the cell-attached configuration. These findings reveal complex regulation of TRPC channels by lipid mediators. The results also reveal for the first time direct activation by PIP(2) of members of the TRPC ion channel subfamily.  相似文献   

13.
TRPC proteins are the mammalian homologues of the Drosophila transient receptor potential channel and are involved in calcium entry after agonist stimulation of non-excitable cells. Seven mammalian TRPCs have been cloned, and their mechanisms of activation and regulation are still the subject of intense research. TRPC proteins interact with the inositol 1,4,5-trisphosphate receptor, and the conformational coupling plays a critical role in the activation of calcium entry. Some evidence also supports an exocytotic mechanism as part of the activation of calcium entry. To investigate the possible involvement of exocytosis in TRPC6 activation, we evaluated the location of TRPC6 at the plasma membrane by biotinylation labeling of cell surface proteins and by indirect immunofluorescence marking of TRPC6 in stably transfected HEK 293 cells. We showed that when the muscarinic receptor was stimulated or the thapsigargin-induced intracellular calcium pool was depleted the level of TRPC6 at the plasma membrane increased. The carbachol concentration at which TRPC6 externalization occurred was lower than the concentration required to activate TRPC6. Externalization occurred within the first 30 s of stimulation, and TRPC6 remained at the plasma membrane as long as the stimulus was present. These results indicate that an exocytotic mechanism is involved in the activation of TRPC6.  相似文献   

14.
Platelets respond through discrete receptors to a number of physiological stimuli and foreign surfaces with a sequence of measurable responses: shape change, aggregation, secretion and arachidonate liberation. Three secretory responses are distinguished: release of substances from 1) dense granules (ADP, serotonin), 2) alpha-granules (coagulation factors, platelet-specific proteins, adhesive proteins) and 3) lysosomes (acid hydrolases). The liberated arachidonate is converted to prostaglandins and thromboxanes which, together with secreted ADP and close cell contact, will cause further platelet activation through "positive feedback" (autocrine stimulation). Some agonists are "weak" (ADP, vasopressin, platelet-activating factor) and depend on positive feedback to promote the full sequence of responses, while other agonists are "strong" (thrombin, collagen) and stimulate the entire response sequence without positive feedback. Most agonists appear to stimulate platelet responses via G-protein-dependent activation of phospholipase C, resulting in diesteratic hydrolysis of phosphatidylinositol-4,5-bisphosphate yielding inositol-1,4,5-trisphosphate and diacylglycerol. These are signal molecules which mobilize cytoplasmic Ca2+ and stimulate protein kinase C, respectively. Cytoplasmic Ca2+ will in turn activate protein phosphorylations which eventually lead to execution of the various responses while activation of protein kinase C appears to be linked to regulation of intracellular pH through Na+/H+ exchanger and to termination of the Ca(2+)-mediated signal processing. Other agonists (prostaglandins I2 and D2) counteract platelet stimulation through classical activation of adenylate cyclase.  相似文献   

15.
Balb/MK keratinocytes require epidermal growth factor for proliferation and terminally differentiate in response to elevated extracellular Ca2+ concentrations. The molecular pathways controlling cell differentiation in this system have yet to be established. We show that a dramatic and sustained activation of phosphoinositide metabolism is produced upon addition of Ca2+ to Balb/MK cultures. The pattern of inositol trisphosphate isomers released in response to Ca2+ challenge appeared to be atypical. Inositol 1,3,4-trisphosphate release was observed by 30s and was produced earlier than any alteration in inositol 1,4,5-trisphosphate levels. Concomitant with the liberation of inositol phosphates, an increased production of diacylglycerol was observed. Despite a 3-fold increase in diacylglycerol levels detected even at 12 h after Ca2+ addition, no evidence of functional activation or down-regulation of protein kinase C was found. This was established by measuring p80 phosphorylation, epidermal growth factor binding, and protein kinase C levels by immunoblotting. Analysis of the diacylglycerol generated following Ca2+ addition to Balb/MK cells revealed that a significant proportion of that lipid was an alkyl ether glyceride molecular species. Therefore, it is possible that this diacylglycerol molecular species may play a role in the Ca2+-induced differentiation program of Balb/MK cells through mechanisms other than stimulation of classical protein kinase C.  相似文献   

16.
Inositol 1,4,5-trisphosphate induces aggregation and the release of [3H]5-hydroxytryptamine from human platelets rendered permeable with saponin. This action of inositol 1,4,5-trisphosphate is associated with a significant formation of thromboxane B2, activation of phospholipase C, and phosphorylation of 20,000- and 40,000-dalton proteins, which are the substrates for myosin light chain kinase and protein kinase C, respectively. All of these responses are blocked by the cyclooxygenase inhibitors indomethacin and aspirin and the dual cyclooxygenase and lipoxygenase inhibitor 3-amino-1-[m-(trifluoromethyl)phenyl]-2-pyrazoline (BW 755C). These data indicate that platelet activation by inositol 1,4,5-trisphosphate is initiated by the mobilization of Ca2+, which leads to phospholipase A2 activation. The thromboxanes and endoperoxides that are subsequently generated then induce activation via cell surface receptors.  相似文献   

17.
Second messengers derived from inositol lipids   总被引:2,自引:0,他引:2  
Many hormones, growth factors, and neurotransmitters stimulate their target cells by promoting the hydrolysis of plasma-membrane phosphoinositides to form the two second messengers, diacylglycerol and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. In such cells, ligand-receptor interaction stimulates specific phospholipases that are activated by guanyl nucleotide regulatory G proteins or tyrosine phosphorylation. In many cells, the initial rise in cytoplasmic calcium due to Ins(1,4,5)P3-induced mobilization of calcium from agonistsensitive stores is followed by a sustained phase of cytoplasmic calcium elevation that maintains the target-cell response, and is dependent on influx of extracellular calcium. Numerous inositol phosphates are formed during metabolism of the calcium-mobilizing messenger, inositol 1,4,5-trisphosphate [Ins(1,4,5)P3)], to lower and higher phosphorylated derivatives. The cloning of several phospholipase-C isozymes, as well as the Ins(1,4,5)P3-5 kinase and the Ins(1,4,5)P3 receptor, have clarified several aspects of the diversity and complexity of the phosphoinositide-calcium signaling system. In addition to their well-established roles in hormonal activation of cellular responses such as secretion and contraction, phospholipids and their hydrolysis products have been increasingly implicated in the actions of growth factors and oncogenes on cellular growth and proliferation.  相似文献   

18.
Erythropoietin (Epo) stimulates a significant increase in the intracellular calcium concentration ([Ca(2+)](i)) through activation of the murine transient receptor potential channel TRPC2, but TRPC2 is a pseudogene in humans. TRPC3 expression increases on normal human erythroid progenitors during differentiation. Here, we determined that erythropoietin regulates calcium influx through TRPC3. Epo stimulation of HEK 293T cells transfected with Epo receptor and TRPC3 resulted in a dose-dependent increase in [Ca(2+)](i), which required extracellular calcium influx. Treatment with the phospholipase C (PLC) inhibitor U-73122 or down-regulation of PLCgamma1 by RNA interference inhibited the Epo-stimulated increase in [Ca(2+)](i) in TRPC3-transfected HEK 293T cells and in primary human erythroid precursors, demonstrating a requirement for PLC. TRPC3 associated with PLCgamma, and substitution of predicted PLCgamma Src homology 2 binding sites (Y226F, Y555F, Y648F, and Y674F) on TRPC3 reduced the interaction of TRPC3 with PLCgamma and inhibited the rise in [Ca(2+)](i). Substitution of Tyr(226) alone with phenylalanine significantly reduced the Epo-stimulated increase in [Ca(2+)](i) but not the association of PLCgamma with TRPC3. PLC activation results in production of inositol 1,4,5-trisphosphate (IP(3)). To determine whether IP(3) is involved in Epo activation of TRPC3, TRPC3 mutants were prepared with substitution or deletion of COOH-terminal IP(3) receptor (IP(3)R) binding domains. In cells expressing TRPC3 with mutant IP(3)R binding sites and Epo receptor, interaction of IP(3)R with TRPC3 was abolished, and Epo-modulated increase in [Ca(2+)](i) was reduced. Our data demonstrate that Epo modulates TRPC3 activation through a PLCgamma-mediated process that requires interaction of PLCgamma and IP(3)R with TRPC3. They also show that TRPC3 Tyr(226) is critical in Epo-dependent activation of TRPC3. These data demonstrate a redundancy of TRPC channel activation mechanisms by widely different agonists.  相似文献   

19.
Transient receptor potential (TRP) channels form a large family of plasma membrane cation channels. Mammalian members of the "short" TRP family (TRP channel (TRPC) 1-7 are Ca(2+)-permeant, non-selective cation channels that are widely expressed in various cell types, including neurons. TRPC activity is linked through unknown mechanisms to G-protein-coupled receptors or receptor tyrosine kinases that activate phospholipase C. To investigate the properties and function of TRPC4 in neuronally derived cells, we transiently expressed mouse TRPC4 and histamine H(1) receptor in mouse adrenal chromaffin cells and PC12 cells. Histamine, but not thapsigargin, stimulated Mn(2+) influx in transfected cells. In the whole-cell patch clamp mode, histamine triggered a transient current in TRPC4-expressing cells. No current was evoked by perfusion with inositol 1,4,5-trisphosphate. When exocytosis was monitored with the capacitance detection technique, the magnitude of the membrane capacitance increase (Delta C(m)) on application of histamine in H(1) receptor/TRPC4-expressing chromaffin cells was comparable with that triggered by a train of depolarizing pulses. Our results indicate that TRPC4 channels behave as receptor, but not store-operated, channels in neuronally derived cells. TRPC4 channels can provide sufficient Ca(2+) influx to trigger a robust secretory response in voltage-clamped neurosecretory cells. Similar mechanisms may modulate exocytosis in other neuronal systems.  相似文献   

20.
Stimulation of antigen receptors on WEHI-231 B lymphoma cells with anti-receptor antibodies (anti-immunoglobulin M [IgM]) causes irreversible growth arrest. This may be a model for antigen-induced tolerance to self components in the immune system. Antigen receptor stimulation also causes inositol phospholipid hydrolysis, producing diacylglycerol, which activates protein kinase C, and inositol 1,4,5-trisphosphate, which causes release of calcium from intracellular stores. To better understand the nature of the antigen receptor-induced growth arrest of WEHI-231 cells, we have examined the basis for it. WEHI-231 cells in various phases of the cell cycle were isolated by centrifugal elutriation, and their response was evaluated following treatment with either anti-IgM or pharmacologic agents that raise intracellular free calcium levels and activate protein kinase C. Treatment with anti-IgM or the pharmacologic agents did not lengthen the cell cycle. Instead, growth inhibition was solely the result of arrest in the G1 phase. The efficiency of G1 arrest increased with the length of time during which the cells received signaling before reaching the G1 phase arrest point. Maximum efficiency of arrest was achieved after approximately one cell cycle of receptor signaling. These results imply that anti-IgM causes G1 arrest of WEHI-231 cells by slowly affecting components required for S phase progression, rather than by rapidly inhibiting such components or by rapidly activating a suicide mechanism. Antigen receptor stimulation was twice as effective as stimulation via the mimicking reagents phorbol dibutyrate and ionomycin. Thus, although the phosphoinositide second messengers diacylglycerol and calcium probably play roles in mediating the effects of anti-IgM on WEHI-231 cells, other second messengers may also be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号