首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The double-stranded RNA-dependent protein kinase (PKR) is one of the key mediators of interferon (IFN) action against certain viruses. PKR also plays an important role in signal transduction and immunomodulation. Understanding the regulation of PKR activity is important for the use of PKR as a tool to discover and develop novel therapeutics for viral infections, cancer and immune dysfunction. We found that phorbol 12-myristate 13-acetate (PMA), a potent activator of protein kinase C (PKC), decreased the level of autophosphorylated PKR in a dose- and time-dependent manner in IFN-treated mouse fibroblast cells. Polyinosinic-polycytidylic acid (poly I:C) treatment enhanced the activity of PKR induced by IFN, but did not overcome the PMA-induced reduction of PKR autophosphorylation. Western blot analysis with a monoclonal antibody to mouse PKR revealed that the decrease of PKR autophosphorylation in cells by PMA was a result of PKR protein degradation. Selective PKC inhibitors blocked the degradation of PKR stimulated by PMA, indicating that PKC activity was required for the effect. Furthermore, we also found that proteasome inhibitors prevented PMA-induced down regulation of PKR, indicating that an active proteasome is required. Our results identify a novel mechanism for the post-translational regulation of PKR.  相似文献   

2.
The interferon-inducible, double-stranded (ds)RNA-dependent protein kinase (PKR) plays a major role in antiviral defense mechanisms where it down-regulates translation via phosphorylation of eukaryotic translation initiation factor 2alpha. PKR is also involved in the activation of nuclear factor kappaB (NFkappaB) through activation of the IkappaB kinase complex. Activation of PKR can occur in the absence of dsRNA and in such case is controlled by intracellular regulators like the PKR-activating protein (PACT), the PKR inhibitor p58(IPK), or heat-shock proteins (Hsp). These regulators are activated by stress stimuli, supporting a role for PKR in response to stress; however the final outcome of PKR activation in stress situations is unclear. We present here evidence that expression and activation of PKR contributes to an increased cellular resistance to mercury cytotoxicity. In two cell lines constitutively expressing PKR (THP-1 and Molt-3), treatment with the PKR inhibitor 2-aminopurine increases their sensitivity to mercury. In contrast, Ramos cells, which do not constitutively express PKR, present an increased resistance to mercury when PKR expression is induced by polyIC or interferon-beta treatment. This protective effect is inhibited by 2-aminopurine. We also show that exposure of Ramos cells to mercury leads to the induction of Hsp70. Treatment of cells with Hsp70 or NFkappaB inhibitors suppresses the PKR-dependent protection. We propose a model where PKR, modulated by Hsp70, activates a NFkappaB-mediated protective pathway. Because the cytotoxicity of mercury is primarily due to the generation of reactive oxygen species, our results suggest a more general function of PKR in the mechanisms of cellular response to oxidative stress.  相似文献   

3.
Inactivation of HSP90 and HSP70 leads to loss of invasion in a variety of cancer cell types, presumably as a result of destabilization of, as yet, undefined clients of these molecular chaperones that influence this phenotype. The WASF3 gene has been shown to be up-regulated in high-grade tumors and its down-regulation leads to loss of invasion and metastasis. WASF3 phosphorylation by ABL kinase is essential for its ability to regulate invasion. Mass spectroscopy analysis now shows that HSP90 is present in the WASF3 immunocomplex from prostate cancer cells. Inactivation of HSP90 in these and other cell types does not affect WASF3 stability but prevents its phosphoactivation as a result of destabilization of ABL. HSP70 was also found in the WASF3 immunocomplex and inactivation of HSP70 results in destabilization of WASF3 through proteasome degradation. Knockdown of WASF3, HSP90, and HSP70 individually, all lead to loss of invasion but as knockdown of WASF3 in the presence of robust expression of HSP90/70 has the same effect, it seems that the influence these chaperone proteins have on invasion is mediated, at least in part, by their control over the critical invasion promoting capacity of the WASF3 protein. Overexpression of HSP70 in WASF3 null cells does not enhance invasion. These observations suggest that targeting HSP90/70 may have efficacy in reducing cancer cell invasion.  相似文献   

4.
The double-stranded (ds) RNA-dependent protein kinase (PKR) regulates protein synthesis by phosphorylating the alpha subunit of eukaryotic initiation factor-2. PKR is activated by viral induced dsRNA and thought to be involved in the host antiviral defense mechanism. PKR is also activated by various nonviral stresses such as growth factor deprivation, although the mechanism is unknown. By screening a mouse cDNA expression library, we have identified an ubiquitously expressed PKR-associated protein, RAX. RAX has a high sequence homology to human PACT, which activates PKR in the absence of dsRNA. Although RAX also can directly activate PKR in vitro, overexpression of RAX does not induce PKR activation or inhibit growth of interleukin-3 (IL-3)-dependent cells in the presence of IL-3. However, IL-3 deprivation as well as diverse cell stress treatments including arsenite, thapsigargin, and H2O2, which are known to inhibit protein synthesis, induce the rapid phosphorylation of RAX followed by RAX-PKR association and activation of PKR. Therefore, cellular RAX may be a stress-activated, physiologic activator of PKR that couples transmembrane stress signals and protein synthesis.  相似文献   

5.
Many B and T lymphocytes display a significant heterogeneity with respect to the subcellular distribution of the cytoskeletal protein spectrin and protein kinase C (PKC), both of which often can be found in a large cytoplasmic aggregate in these cell types. In addition to spectrin and PKC, we recently have reported that HSP70 is also a component of this lymphocyte aggregate. Moreover, these three proteins can undergo dynamic and reversible changes in their localization causing “assembly” of the aggregate in response to various conditions associated with lymphocyte activation, indicating that this naturally occurring aggregate structure is sensitive to activation status. We show here that the same changes in HSP70/spectrin/PKC localization induced by PKC activation also can be caused, in vitro and in vivo, by a mild hyperthermia exposure, as occurs during a natural fever (39.5–40°C, 2–12 hr). This mild heat exposure also triggers the activation of PKC, a major heat shock response, and lymphocyte proliferation. The increase in PKC activity, HSP70-spectrin-PKC aggregate formation, and heat shock protein expression resulting from exposure to fever-like hyperthermia are all inhibited by calphostin C, a specific inhibitor of PKC. These data demonstrate that changes observed during lymphocyte activation could be induced by a mild hyperthermia exposure occurring during a normal febrile episode. J. Cell. Physiol. 172:44–54, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
7.
Heat shock protein (HSP) 70 plays a critical role in protecting the heart from various stressor-induced cell injuries; the mechanism remains to be further understood. The present study aims to elucidate the effect of a probiotics-derived protein, LGG-derived protein p75 (LGP), in alleviating the ischemia/reperfusion (I/R)-induced heart injury. We treated rats with the I/R with or without preadministration with LGP. The levels of HSP70 and carboxy terminus of HSP70-interacting protein (CHIP) in the heart tissue were assessed by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The effect of CHIP on suppression of HSP70 and the effect of LGP on suppression of CHIP were investigated with an I/R rat model and a cell culture model. The results showed that I/R-induced infarction in the heart could be alleviated by pretreatment with LGP. HSP70 was detected in na?ve rat heart tissue extracts. I/R treatment significantly suppressed the level of HSP70 and increased the levels of CHIP in the heart. A complex of CHIP/HSP70 was detected in heart tissue extracts. The addition of recombinant CHIP to culture inhibited HSP70 in heart cells. LGP was bound CHIP in heart cells and prevented the CHIP from binding HSP70. In summary, I/R can suppress HSP70 and increase CHIP in heart cells. CHIP can suppress HSP70 that can be prevented by pretreatment with LGP. The results imply that CHIP may be a potential target in the prevention of I/R-induced heart cell injury.  相似文献   

8.
Toll-like receptors (TLRs) play important roles in initiation of innate and adaptive immune responses. Emerging evidence suggests that TLR agonists can serve as potential adjuvant for vaccination. Heat shock proteins (HSPs), functionally serving as TLR4 agonists, have been proposed to act as Th1 adjuvant. We have identified a novel Hsp70 family member, termed Hsp70-like protein 1 (Hsp70L1), shown that Hsp70L1 is a potent T helper cell (Th1) polarizing adjuvant that contributes to antitumor immune responses. However, the underlying mechanism for how Hsp70L1 exerts its Th1 adjuvant activity remains to be elucidated. In this study, we found that Hsp70L1 binds directly to TLR4 on the surface of DCs, activates MAPK and NF-κB pathways, up-regulates I-a(b), CD40, CD80, and CD86 expression and promotes production of TNF-α, IL-1β, and IL-12p70. Hsp70L1 failed to induce such phenotypic maturation and cytokine production in TLR4-deficient DCs, indicating a role for TLR4 in mediating Hsp70L1-induced DC activation. Furthermore, more efficient induction of carcinoembryonic antigen (CEA)-specific Th1 immune response was observed in mice immunized by wild-type DCs pulsed with Hsp70L1-CEA(576-669) fusion protein as compared with TLR4-deficient DCs pulsed with same fusion protein. In addition, TLR4 antagonist impaired induction of CEA-specific human Th1 immune response in a co-culture system of peripheral blood lymphocytes (PBLs) from HLA-A2.1(+) healthy donors and autologous DCs pulsed with Hsp70L1-CEA(576-669) in vitro. Taken together, these results demonstrate that TLR4 is a key receptor mediating the interaction of Hsp70L1 with DCs and subsequently enhancing the induction of Th1 immune response by Hsp70L1/antigen fusion protein.  相似文献   

9.
The neuroprotective potential of heat shock protein 70 (HSP70)   总被引:19,自引:0,他引:19  
In response to many metabolic disturbances and injuries, including stroke, neurodegenerative disease, epilepsy and trauma, the cell mounts a stress response with induction of a variety of proteins, most notably the 70-kDa heat shock protein (HSP70). Whether stress proteins are neuroprotective has been hotly debated, as these proteins might be merely an epiphenomenon unrelated to cell survival. Only recently, with the availability of transgenic animals and gene transfer, has it become possible to overexpress the gene encoding HSP70 to test directly the hypothesis that stress proteins protect cells from injury. A few groups have now shown that overproduction of HSP70 leads to protection in several different models of nervous system injury. This review will cover these studies, along with the potential mechanisms by which HSP70 might mediate cellular protection.  相似文献   

10.
Previous studies have shown that the antiviral response induced by interferon in murine cells could be degraded after a heat shock. Here we have confirmed that a similar effect occurs also in interferon-treated human HeLa cells subjected to a heat shock. In addition, we have investigated the fate of the interferon-induced, double-stranded RNA-dependent protein kinase in heat-shocked cells. This protein kinase is a Mr 68,000 protein (p68 kinase) which, when autophosphorylated, catalyzes phosphorylation of the protein synthesis eukaryotic initiation factor-2, thus mediating inhibition of protein synthesis. After heat shock of interferon-treated HeLa cells, the double-stranded RNA-dependent autophosphorylation of p68 kinase in cytoplasmic extracts is greatly reduced whereas the phosphorylation of other cellular proteins is not affected. In vivo, autophosphorylation of p68 kinase is also reduced in heat-shocked cells whereas there is no apparent effect on the phosphorylation state of other proteins. In such cells, the interferon-mediated antiviral response becomes modified according to the virus challenge, i.e. these cells remain resistant to vesicular stomatitis virus but become partially sensitive to encephalomyocarditis virus (EMCV) infection. The reduction in the activity of p68 kinase is due to its reduced nonionic detergent solubility occurring during the heat shock period. The resultant reduced detergent extractibility of p68 kinase is dependent on the intensity of the thermal stress. In contrast to the effect after a heat shock, arsenite treatment of interferon-treated HeLa cells induces heat shock proteins, but neither modifies the antiviral response nor affects the extractibility of p68 kinase. These results indicate that the degradation of the anti-EMCV response and reduced p68 kinase activity occur in response to heat treatment independently of the induction of heat shock proteins. The role of p68 kinase in the mechanism of the antiviral response against EMCV and vesicular stomatitis virus is discussed.  相似文献   

11.
Exposure of postimplantation rat embryos on days 9, 10, 11, and 12 of gestation to an in vitro heat shock of 43 degrees C for 30 min results in the induction of heat shock proteins (HSPs) in day 9 and 10 embryos, a severely attenuated response in day 11 embryos, and no detectable response in day 12 embryos. The heat shock response in day 9 embryos (presomite stage) is characterized by the synthesis of HSPs with molecular weights of 28-78 kDa. In heat shocked day 10 embryos, two additional HSPs are induced (34 and 82 kDa). In addition, two HSPs present on day 9 are absent on day 10. In day 11 heat shocked embryos, only three HSPs (31, 39, and 69 kDa) are induced, while in day 12 embryos no detectable HSPs are induced. Northern blot analysis of HSP 70 RNA levels indicates that the accumulation of this RNA, but not actin RNA, varies depending on developmental stage at the time of exposure to heat as well as the duration of the heat shock. Day 9 embryos exhibit the most pronounced accumulation of HSP 70 RNA while embryos on days 10-12 exhibit an increasingly attenuated accumulation of HSP 70 RNA, particularly after the more acute exposures (43 degrees C for 30 or 60 min). Thus, the ability to synthesize HSP 70 and to accumulate HSP 70 RNA changes dramatically as rat embryos develop from day 9 to day 12 (presomite to 31-35 somite stages).  相似文献   

12.
The effects of high temperature on accumulation of the 70‐kDa heat shock protein (HSP70) and nucleoside diphosphate kinase (NDK) as well as two other proteins that have roles in the biosynthesis of storage proteins were examined during grain development. An HSP70 homolog and a 17‐kDa NDK were co‐purified from wheat endosperm, their identity verified, and a cDNA for an HSP70 expressed in endosperm was isolated. Wheat plants ( Triticum aestivum , cvs Butte and Vulcan) were heat shocked at 40°C or exposed to maximum daily temperatures of 37 or 40°C during early or mid‐grain fill. Antibodies and cDNA probes for BiP, HSP70, NDK and PDI were used to examine the effect of high temperatures on the accumulation of protein and mRNA in the endosperm. HSP70 mRNA levels increased substantially when plants were exposed to heat shock or to a 1‐day gradual increase to 40°C. The effects of a 5‐day heat treatment on mRNA levels were more complicated and depended on the developmental stage of the grain. A treatment that began at 7 days post‐anthesis (DPA) decreased the level of mRNA for HSP70, BiP, PDI and NDK, whereas a treatment that began at 14 DPA slightly increased mRNA levels. The same treatments increased the accumulation of HSP70 but did not affect BiP, PDI, or NDK protein levels. This is the first detailed report on the effects of heat on mRNA and protein levels for HSP70 in a developing seed storage tissue.  相似文献   

13.
为研究西伯利亚鲟(Acipenser baerii)对急性热应激的抗逆机理, 将体质量为(155.4719.50) g的鱼从17.5 ℃迅速转至27.5 ℃水中, 在1h和3h取样测定HSP70 mRNA表达变化、血清皮质醇和非特异性免疫指标。结果显示: 急性热应激时鳃、脾和脑的HSP70 mRNA表达量升高, 具有组织特异性, 热应激1h时鳃的表达量升高最快(P0.05), 3h时保持1h时的表达水平; 脾和脑热应激1h时表达量变化不显著, 在1h至3h时升高较快, 并且脑组织的表达量升高最快(P0.05)。热应激1h时血清皮质醇(Cortisol)含量迅速升高(P0.05), 之后快速回落。脾脏巨噬细胞呼吸暴发在热应激1h时显著升高(P0.05), 3h时降低。血清补体C3在1h时略有升高, 3h时显著性降低(P0.05)。血清溶菌酶活性(LZM activity)先升高后降低差异不显著。血清超氧化物歧化酶(SOD)活力随热应激时间延长逐渐降低, 3h时显著降低(P0.05)。血清丙二醛(MDA)含量随热应激时间延长逐渐降低, 差异不显著。以上结果表明: 1h的短暂急性应激增强了西伯利亚鲟的非特异性免疫, 3h的应激使免疫力和抗氧化能力显著下降; 在热应激过程中, HSP70表达升高, 其中鳃组织最快, 起到应激保护作用, 提高了机体热耐受力。    相似文献   

14.
15.
AMP-activated protein kinase (AMPK) is a stress-activated protein kinase that is regulated by hypoxia and other cellular stresses that result in diminished cellular ATP levels. Here, we investigated whether AMPK signaling in endothelial cells has a role in regulating angiogenesis. Hypoxia induced the activating phosphorylation of AMPK in human umbilical vein endothelial cells (HUVECs), and AMPK activation was required for the maintenance of pro-angiogenic Akt signaling under these conditions. Suppression of AMPK signaling inhibited both HUVEC migration to VEGF and in vitro differentiation into tube-like structures in hypoxic, but not normoxic cultures. Dominant-negative AMPK also inhibited in vivo angiogenesis in Matrigel plugs that were implanted subcutaneously in mice. These data identify AMPK signaling as a new regulator of angiogenesis that is specifically required for endothelial cell migration and differentiation under conditions of hypoxia. As such, endothelial AMPK signaling may be a critical determinant of blood vessel recruitment to tissues that are subjected to ischemic stress.  相似文献   

16.
Heat shock protein 20 (HSP20) has cardioprotective qualities, which are triggered by PKA phosphorylation. PKD1 is also a binding partner for HSP20, and this prompted us to investigate whether the chaperone was a substrate for PKD1. We delineate the PKD1 binding sites on HSP20 and show for the first time HSP20 is a substrate for PKD1. Phosphorylation of HSP20 by PKD1 is diminished by pharmacological or siRNA reduction of PKD1 activity and is enhanced following PKD1 activation. Our results suggest that both PKA and PKD1 can both phosphorylate HSP20 on serine 16 but that PKA is the most dominant. © 2016 The Authors. Cell Biochemistry and Function published by John Wiley & Sons, Ltd.  相似文献   

17.
Rats exposed to high +Gz forces in a small animal centrifuge (SAC) exhibit loss of neuronal function (isoelectric EEG), termed G-induced loss of consciousness (G-LOC). This phenomenon is presumably due to a reduction in cerebral blood flow (CBF) or ischemia. Ischemia induces various metabolic and physiologic changes including expression of immediate early genes (IEGs) in the brain. Expression of IEGs have been suggested to be reliable markers for neuronal response to external stimuli or stress. In the present study expression of IEGs c-fos, c-jun and stress response gene HSP70 were measured in the brains of rats subjected to six 30 s exposures of +22.5Gz in a small animal centrifuge. The level of c-fos, HSP70 and beta-actin mRNA were measured by both Northern blot and RT-PCR. Expression of c-jun was measured only by RT-PCR. Expression of c-fos and c-jun was significantly stimulated at 0.5, 15, 30 and 60 min post-centrifugation. The level of HSP70 mRNA was significantly higher only at 60 and 180 min post-centrifugation. Measurement of metabolities showed a significant increase in lactate and a decrease in Cr-P level at 30 s and 15 min post-centrifugation, respectively. Lactate, but not Cr-P and ATP levels were restored to control levels by 60 min post-centrifugation. It is concluded that the transient expression of c-fos, c-jun and HSP70 mRNA is stimulated by repeated ischemic/reperfusion episodes induced by high acceleration stress.  相似文献   

18.
Borna disease virus (BDV) is a highly neurotropic RNA virus that causes neurological disorders in many vertebrate species. Although BDV readily establishes lasting persistence, persistently infected cells maintain an apparently normal cell phenotype in terms of morphology, viability, and proliferation. In this study, to understand the regulation of stress responses in BDV infection, we investigated the expression of heat shock proteins (HSPs) in glial cells persistently infected with BDV. Interestingly, we found that BDV persistence did not upregulate HSP70 expression even in cells treated with heat stress. Furthermore, BDV-infected glial cells exhibited rapid rounding and detachment from the culture plate under various stressful conditions. Immunofluorescence analysis demonstrated that heat stress rapidly disrupts the cell cytoskeleton only in persistently infected cells, suggesting a lack of thermotolerance. Intriguingly, we found that although persistently infected glial cells expressed HSP70 mRNA after heat stress, its expression rapidly disappeared during the recovery period. These observations indicated that persistent BDV infection may affect the stability of HSP70 mRNA. Finally, we found that the double-stranded RNA-dependent protein kinase (PKR) is expressed at a constant level in persistently infected cells with or without heat shock. Considering the interrelationship between HSP70 and PKR production, our data suggest that BDV infection disturbs the cellular stress responses to abolish antiviral activities and maintain persistence.  相似文献   

19.
Summary. The purpose of this study was to delineate the effects of hyperthermia and physical exercise on the heat shock protein 70 (HSP70) response in circulating peripheral blood mononuclear cells (PBMCs). Six healthy, young (age: 24 ± 3 yrs), moderately trained males (VO2max: 48.9 ± 2.7 ml · kg · min−1) undertook two experimental trials in a randomised fashion in which the core temperature (T c) was increased and then maintained at 39 °C during a 90 min bout by either active (AH) or passive (PH) means. AH involved subjects cycling at 90% of their lactate threshold in attire designed to impede heat loss mechanisms. In the PH trial, subjects were immersed up to the neck in a hot bath (40.2 ± 0.4 °C), once the critical T c was achieved, intermittent cycling and water immersions were prescribed for the AH and PH conditions, respectively, to maintain the T c at 39 °C. HSP70 was measured intracellularly pre, post and 4 h after trials, from circulating PBMCs using an ELISA technique. T c reached 39 °C quicker in PH than during AH trials (PH: 21 ± 4 min vs. AH: 39 ± 6 min; P < 0.01), thereafter T c was maintained around 39 °C (PH: 39.1 ± 0.2 °C; AH: 38.8 ± 0.3 °C; P > 0.05). AH induced a marked leukocytosis in all sub-sets (P < 0.05). PH generated significant monocytosis and granulocytosis (P < 0.05), without changes in lymphocyte counts (P > 0.05). There were no significant increases in intracellular HSP70 at 0 h (AH: Δ − 21.1 ± 44.8; PH: Δ + 12.5 ± 32.4 ng/mg TP/103/μl PBMCs; P > 0.05) and 4 h (AH: Δ − 30.0 ± 40.1; PH: Δ + 36.3 ± 70.4 ng/mg TP/103/μl PBMCs; P > 0.05) post active and passive heating. Peak HSP70 expressed as a fold-change from rest was also not increased by AH (1.1 ± 0.9; P > 0.05) or PH (3.2 ± 4.8; P > 0.05). There were no significant differences between the AH and PH trials at any time-point, and the HSP70 response appeared to be individual specific. These results did not allow us to delineate the effects of hyperthermia and other exercise associated stressors on the heat shock response and therefore further work is warranted. Authors’ address: Ric Lovell, Department of Sport, Health and Exercise Science, University of Hull, Hull HU6 7RX, U.K.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号