首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interferon-inducible, double-stranded (ds)RNA-dependent protein kinase (PKR) plays a major role in antiviral defense mechanisms where it down-regulates translation via phosphorylation of eukaryotic translation initiation factor 2alpha. PKR is also involved in the activation of nuclear factor kappaB (NFkappaB) through activation of the IkappaB kinase complex. Activation of PKR can occur in the absence of dsRNA and in such case is controlled by intracellular regulators like the PKR-activating protein (PACT), the PKR inhibitor p58(IPK), or heat-shock proteins (Hsp). These regulators are activated by stress stimuli, supporting a role for PKR in response to stress; however the final outcome of PKR activation in stress situations is unclear. We present here evidence that expression and activation of PKR contributes to an increased cellular resistance to mercury cytotoxicity. In two cell lines constitutively expressing PKR (THP-1 and Molt-3), treatment with the PKR inhibitor 2-aminopurine increases their sensitivity to mercury. In contrast, Ramos cells, which do not constitutively express PKR, present an increased resistance to mercury when PKR expression is induced by polyIC or interferon-beta treatment. This protective effect is inhibited by 2-aminopurine. We also show that exposure of Ramos cells to mercury leads to the induction of Hsp70. Treatment of cells with Hsp70 or NFkappaB inhibitors suppresses the PKR-dependent protection. We propose a model where PKR, modulated by Hsp70, activates a NFkappaB-mediated protective pathway. Because the cytotoxicity of mercury is primarily due to the generation of reactive oxygen species, our results suggest a more general function of PKR in the mechanisms of cellular response to oxidative stress.  相似文献   

2.
Inactivation of HSP90 and HSP70 leads to loss of invasion in a variety of cancer cell types, presumably as a result of destabilization of, as yet, undefined clients of these molecular chaperones that influence this phenotype. The WASF3 gene has been shown to be up-regulated in high-grade tumors and its down-regulation leads to loss of invasion and metastasis. WASF3 phosphorylation by ABL kinase is essential for its ability to regulate invasion. Mass spectroscopy analysis now shows that HSP90 is present in the WASF3 immunocomplex from prostate cancer cells. Inactivation of HSP90 in these and other cell types does not affect WASF3 stability but prevents its phosphoactivation as a result of destabilization of ABL. HSP70 was also found in the WASF3 immunocomplex and inactivation of HSP70 results in destabilization of WASF3 through proteasome degradation. Knockdown of WASF3, HSP90, and HSP70 individually, all lead to loss of invasion but as knockdown of WASF3 in the presence of robust expression of HSP90/70 has the same effect, it seems that the influence these chaperone proteins have on invasion is mediated, at least in part, by their control over the critical invasion promoting capacity of the WASF3 protein. Overexpression of HSP70 in WASF3 null cells does not enhance invasion. These observations suggest that targeting HSP90/70 may have efficacy in reducing cancer cell invasion.  相似文献   

3.
The double-stranded (ds) RNA-dependent protein kinase (PKR) regulates protein synthesis by phosphorylating the alpha subunit of eukaryotic initiation factor-2. PKR is activated by viral induced dsRNA and thought to be involved in the host antiviral defense mechanism. PKR is also activated by various nonviral stresses such as growth factor deprivation, although the mechanism is unknown. By screening a mouse cDNA expression library, we have identified an ubiquitously expressed PKR-associated protein, RAX. RAX has a high sequence homology to human PACT, which activates PKR in the absence of dsRNA. Although RAX also can directly activate PKR in vitro, overexpression of RAX does not induce PKR activation or inhibit growth of interleukin-3 (IL-3)-dependent cells in the presence of IL-3. However, IL-3 deprivation as well as diverse cell stress treatments including arsenite, thapsigargin, and H2O2, which are known to inhibit protein synthesis, induce the rapid phosphorylation of RAX followed by RAX-PKR association and activation of PKR. Therefore, cellular RAX may be a stress-activated, physiologic activator of PKR that couples transmembrane stress signals and protein synthesis.  相似文献   

4.
Many B and T lymphocytes display a significant heterogeneity with respect to the subcellular distribution of the cytoskeletal protein spectrin and protein kinase C (PKC), both of which often can be found in a large cytoplasmic aggregate in these cell types. In addition to spectrin and PKC, we recently have reported that HSP70 is also a component of this lymphocyte aggregate. Moreover, these three proteins can undergo dynamic and reversible changes in their localization causing “assembly” of the aggregate in response to various conditions associated with lymphocyte activation, indicating that this naturally occurring aggregate structure is sensitive to activation status. We show here that the same changes in HSP70/spectrin/PKC localization induced by PKC activation also can be caused, in vitro and in vivo, by a mild hyperthermia exposure, as occurs during a natural fever (39.5–40°C, 2–12 hr). This mild heat exposure also triggers the activation of PKC, a major heat shock response, and lymphocyte proliferation. The increase in PKC activity, HSP70-spectrin-PKC aggregate formation, and heat shock protein expression resulting from exposure to fever-like hyperthermia are all inhibited by calphostin C, a specific inhibitor of PKC. These data demonstrate that changes observed during lymphocyte activation could be induced by a mild hyperthermia exposure occurring during a normal febrile episode. J. Cell. Physiol. 172:44–54, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
6.
Heat shock protein (HSP) 70 plays a critical role in protecting the heart from various stressor-induced cell injuries; the mechanism remains to be further understood. The present study aims to elucidate the effect of a probiotics-derived protein, LGG-derived protein p75 (LGP), in alleviating the ischemia/reperfusion (I/R)-induced heart injury. We treated rats with the I/R with or without preadministration with LGP. The levels of HSP70 and carboxy terminus of HSP70-interacting protein (CHIP) in the heart tissue were assessed by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The effect of CHIP on suppression of HSP70 and the effect of LGP on suppression of CHIP were investigated with an I/R rat model and a cell culture model. The results showed that I/R-induced infarction in the heart could be alleviated by pretreatment with LGP. HSP70 was detected in na?ve rat heart tissue extracts. I/R treatment significantly suppressed the level of HSP70 and increased the levels of CHIP in the heart. A complex of CHIP/HSP70 was detected in heart tissue extracts. The addition of recombinant CHIP to culture inhibited HSP70 in heart cells. LGP was bound CHIP in heart cells and prevented the CHIP from binding HSP70. In summary, I/R can suppress HSP70 and increase CHIP in heart cells. CHIP can suppress HSP70 that can be prevented by pretreatment with LGP. The results imply that CHIP may be a potential target in the prevention of I/R-induced heart cell injury.  相似文献   

7.
The neuroprotective potential of heat shock protein 70 (HSP70)   总被引:19,自引:0,他引:19  
In response to many metabolic disturbances and injuries, including stroke, neurodegenerative disease, epilepsy and trauma, the cell mounts a stress response with induction of a variety of proteins, most notably the 70-kDa heat shock protein (HSP70). Whether stress proteins are neuroprotective has been hotly debated, as these proteins might be merely an epiphenomenon unrelated to cell survival. Only recently, with the availability of transgenic animals and gene transfer, has it become possible to overexpress the gene encoding HSP70 to test directly the hypothesis that stress proteins protect cells from injury. A few groups have now shown that overproduction of HSP70 leads to protection in several different models of nervous system injury. This review will cover these studies, along with the potential mechanisms by which HSP70 might mediate cellular protection.  相似文献   

8.
Previous studies have shown that the antiviral response induced by interferon in murine cells could be degraded after a heat shock. Here we have confirmed that a similar effect occurs also in interferon-treated human HeLa cells subjected to a heat shock. In addition, we have investigated the fate of the interferon-induced, double-stranded RNA-dependent protein kinase in heat-shocked cells. This protein kinase is a Mr 68,000 protein (p68 kinase) which, when autophosphorylated, catalyzes phosphorylation of the protein synthesis eukaryotic initiation factor-2, thus mediating inhibition of protein synthesis. After heat shock of interferon-treated HeLa cells, the double-stranded RNA-dependent autophosphorylation of p68 kinase in cytoplasmic extracts is greatly reduced whereas the phosphorylation of other cellular proteins is not affected. In vivo, autophosphorylation of p68 kinase is also reduced in heat-shocked cells whereas there is no apparent effect on the phosphorylation state of other proteins. In such cells, the interferon-mediated antiviral response becomes modified according to the virus challenge, i.e. these cells remain resistant to vesicular stomatitis virus but become partially sensitive to encephalomyocarditis virus (EMCV) infection. The reduction in the activity of p68 kinase is due to its reduced nonionic detergent solubility occurring during the heat shock period. The resultant reduced detergent extractibility of p68 kinase is dependent on the intensity of the thermal stress. In contrast to the effect after a heat shock, arsenite treatment of interferon-treated HeLa cells induces heat shock proteins, but neither modifies the antiviral response nor affects the extractibility of p68 kinase. These results indicate that the degradation of the anti-EMCV response and reduced p68 kinase activity occur in response to heat treatment independently of the induction of heat shock proteins. The role of p68 kinase in the mechanism of the antiviral response against EMCV and vesicular stomatitis virus is discussed.  相似文献   

9.
Exposure of postimplantation rat embryos on days 9, 10, 11, and 12 of gestation to an in vitro heat shock of 43 degrees C for 30 min results in the induction of heat shock proteins (HSPs) in day 9 and 10 embryos, a severely attenuated response in day 11 embryos, and no detectable response in day 12 embryos. The heat shock response in day 9 embryos (presomite stage) is characterized by the synthesis of HSPs with molecular weights of 28-78 kDa. In heat shocked day 10 embryos, two additional HSPs are induced (34 and 82 kDa). In addition, two HSPs present on day 9 are absent on day 10. In day 11 heat shocked embryos, only three HSPs (31, 39, and 69 kDa) are induced, while in day 12 embryos no detectable HSPs are induced. Northern blot analysis of HSP 70 RNA levels indicates that the accumulation of this RNA, but not actin RNA, varies depending on developmental stage at the time of exposure to heat as well as the duration of the heat shock. Day 9 embryos exhibit the most pronounced accumulation of HSP 70 RNA while embryos on days 10-12 exhibit an increasingly attenuated accumulation of HSP 70 RNA, particularly after the more acute exposures (43 degrees C for 30 or 60 min). Thus, the ability to synthesize HSP 70 and to accumulate HSP 70 RNA changes dramatically as rat embryos develop from day 9 to day 12 (presomite to 31-35 somite stages).  相似文献   

10.
11.
AMP-activated protein kinase (AMPK) is a stress-activated protein kinase that is regulated by hypoxia and other cellular stresses that result in diminished cellular ATP levels. Here, we investigated whether AMPK signaling in endothelial cells has a role in regulating angiogenesis. Hypoxia induced the activating phosphorylation of AMPK in human umbilical vein endothelial cells (HUVECs), and AMPK activation was required for the maintenance of pro-angiogenic Akt signaling under these conditions. Suppression of AMPK signaling inhibited both HUVEC migration to VEGF and in vitro differentiation into tube-like structures in hypoxic, but not normoxic cultures. Dominant-negative AMPK also inhibited in vivo angiogenesis in Matrigel plugs that were implanted subcutaneously in mice. These data identify AMPK signaling as a new regulator of angiogenesis that is specifically required for endothelial cell migration and differentiation under conditions of hypoxia. As such, endothelial AMPK signaling may be a critical determinant of blood vessel recruitment to tissues that are subjected to ischemic stress.  相似文献   

12.
Rats exposed to high +Gz forces in a small animal centrifuge (SAC) exhibit loss of neuronal function (isoelectric EEG), termed G-induced loss of consciousness (G-LOC). This phenomenon is presumably due to a reduction in cerebral blood flow (CBF) or ischemia. Ischemia induces various metabolic and physiologic changes including expression of immediate early genes (IEGs) in the brain. Expression of IEGs have been suggested to be reliable markers for neuronal response to external stimuli or stress. In the present study expression of IEGs c-fos, c-jun and stress response gene HSP70 were measured in the brains of rats subjected to six 30 s exposures of +22.5Gz in a small animal centrifuge. The level of c-fos, HSP70 and beta-actin mRNA were measured by both Northern blot and RT-PCR. Expression of c-jun was measured only by RT-PCR. Expression of c-fos and c-jun was significantly stimulated at 0.5, 15, 30 and 60 min post-centrifugation. The level of HSP70 mRNA was significantly higher only at 60 and 180 min post-centrifugation. Measurement of metabolities showed a significant increase in lactate and a decrease in Cr-P level at 30 s and 15 min post-centrifugation, respectively. Lactate, but not Cr-P and ATP levels were restored to control levels by 60 min post-centrifugation. It is concluded that the transient expression of c-fos, c-jun and HSP70 mRNA is stimulated by repeated ischemic/reperfusion episodes induced by high acceleration stress.  相似文献   

13.
Borna disease virus (BDV) is a highly neurotropic RNA virus that causes neurological disorders in many vertebrate species. Although BDV readily establishes lasting persistence, persistently infected cells maintain an apparently normal cell phenotype in terms of morphology, viability, and proliferation. In this study, to understand the regulation of stress responses in BDV infection, we investigated the expression of heat shock proteins (HSPs) in glial cells persistently infected with BDV. Interestingly, we found that BDV persistence did not upregulate HSP70 expression even in cells treated with heat stress. Furthermore, BDV-infected glial cells exhibited rapid rounding and detachment from the culture plate under various stressful conditions. Immunofluorescence analysis demonstrated that heat stress rapidly disrupts the cell cytoskeleton only in persistently infected cells, suggesting a lack of thermotolerance. Intriguingly, we found that although persistently infected glial cells expressed HSP70 mRNA after heat stress, its expression rapidly disappeared during the recovery period. These observations indicated that persistent BDV infection may affect the stability of HSP70 mRNA. Finally, we found that the double-stranded RNA-dependent protein kinase (PKR) is expressed at a constant level in persistently infected cells with or without heat shock. Considering the interrelationship between HSP70 and PKR production, our data suggest that BDV infection disturbs the cellular stress responses to abolish antiviral activities and maintain persistence.  相似文献   

14.
15.
Myt1 was originally identified as an inhibitory kinase for Cdc2 (Cdk1), the master engine of mitosis, and has been thought to function, together with Wee1, as a negative regulator of mitotic entry. In this study, we report an unexpected finding that Myt1 is essential for Golgi and endoplasmic reticulum (ER) assembly during telophase in mammalian cells. Our analyses reveal that both cyclin B1 and cyclin B2 serve as targets of Myt1 for proper Golgi and ER assembly to occur. Thus, our results show that Myt1-mediated suppression of Cdc2 activity is not indispensable for the regulation of a broad range of mitotic events but is specifically required for the control of intracellular membrane dynamics during mitosis.  相似文献   

16.
Activation of the interferon-inducible, double-stranded RNA-dependent protein kinase was monitored in monolayer cultures of control and interferon-treated HeLa cells infected with encephalomyocarditis virus. The extent of phosphorylation in the intact cell of the alpha-subunit of eucaryotic protein synthesis initiation factor eIF2 by the kinase was determined for the first time in this type of system, using a two-dimensional immunoblot technique. Virus protein synthesis and the kinetics of activation of the ppp(A2'p)nA (n greater than or equal to 2) system were analyzed in parallel. Enhanced phosphorylation of eIF2-alpha was obvious at 9 h and increased by 12 h postinfection. ppp(A2'p)nA and ppp(A2'p)nA-mediated rRNA cleavage were observed from 6 h. No viral protein synthesis was detected in cells in which a general inhibition of protein synthesis developed with time. It can be concluded that both the kinase and ppp(A2'p)nA system are active in interferon-treated, encephalomyocarditis virus-infected HeLa cells.  相似文献   

17.
Activity-regulated, cytoskeleton-associated protein (Arc) was first identified as an immediate-early gene regulated by synaptic activity. We have studied its functional role in vivo using a gene-targeting approach. We found that Arc is encoded by a single exon, and Arc mRNA is ubiquitously expressed in early mouse embryos. Homozygous Arc mutants are severely growth-retarded, fail to gastrulate and subsequently die before day 8.5 of embryogenesis. Further analysis revealed severe disorganization of visceral endoderm formation, and total separation and ectopic location of embryonic and extraembryonic structure. These findings demonstrate that Arc function is essential for early embryo development and patterning in mice, and support the hypothesis that signaling from visceral endoderm is essential for normal patterning of the extraembryonic and embryonic structure.  相似文献   

18.
A single hyperthermic exposure can render cells transiently resistant to subsequent high temperature stresses. Treatment of rat embryonic fibroblasts with cycloheximide for 6 h after a 20-min interval at 45 degrees C inhibits protein synthesis, including heat shock protein (hsp) synthesis, and results in an accumulation of hsp 70 mRNA, but has no effect on subsequent survival responses to 45 degrees C hyperthermia. hsp 70 mRNA levels decreased within 1 h after removal of cycloheximide but then appeared to stabilize during the next 2 h (3 h after drug removal and 9 h after heat shock). hsp 70 mRNA accumulation could be further increased by a second heat shock at 45 degrees C for 20 min 6 h after the first hyperthermic exposure in cycloheximide-treated cells. Both normal protein and hsp synthesis appeared increased during the 6-h interval after hyperthermia in cultures which received two exposures to 45 degrees C for 20 min compared with those which received only one treatment. No increased hsp synthesis was observed in cultures treated with cycloheximide, even though hsp 70 mRNA levels appeared elevated. These data indicate that, although heat shock induces the accumulation of hsp 70 mRNA in both normal and thermotolerant cells, neither general protein synthesis nor hsp synthesis is required during the interval between two hyperthermic stresses for Rat-1 cells to express either thermotolerance (survival resistance) or resistance to heat shock-induced inhibition of protein synthesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号