首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing atmospheric reactive nitrogen (N) deposition due to human activities could change N cycling in terrestrial ecosystems. However, the differences between the fates of deposited and are still not fully understood. Here, we investigated the fates of deposited and , respectively, via the application of 15NH4NO3 and NH415NO3 in a temperate forest ecosystem. Results showed that at 410 days after tracer application, most was immobilized in litter layer (50 ± 2%), while a considerable amount of penetrated into 0–5 cm mineral soil (42 ± 2%), indicating that litter layer and 0–5 cm mineral soil were the major N sinks of and , respectively. Broad‐leaved trees assimilated more 15N under NH415NO3 treatment compared to under 15NH4NO3 treatment, indicating their preference for –N. At 410 days after tracer application, 16 ± 4% added 15N was found in aboveground biomass under treatment, which was twice more than that under treatment (6 ± 1%). At the same time, approximately 80% added 15N was recovered in soil and plants under both treatments, which suggested that this forest had high potential for retention of deposited N. These results provided evidence that there were great differences between the fates of deposited and , which could help us better understand the mechanisms and capability of forest ecosystems as a sink of reactive nitrogen.  相似文献   

2.
3.
Comparisons of to can provide insights into the evolutionary processes that lead to differentiation, or lack thereof, among the phenotypes of different groups (e.g., populations, species), and these comparisons have been performed on a variety of taxa, including humans. Here, I show that for neutrally evolving (i.e., by genetic drift, mutation, and gene flow alone) quantitative characters, the two commonly used estimators have somewhat different interpretations in terms of coalescence times, particularly when the number of groups that have been sampled is small. A similar situation occurs for estimators. Consequently, when observations come from only a small number of groups, which is not an unusual situation, it is important to match estimators appropriately when comparing to .  相似文献   

4.
Rising atmospheric CO2 concentrations are expected to increase nitrous oxide (N2O) emissions from soils via changes in microbial nitrogen (N) transformations. Several studies have shown that N2O emission increases under elevated atmospheric CO2 (eCO2), but the underlying processes are not yet fully understood. Here, we present results showing changes in soil N transformation dynamics from the Giessen Free Air CO2 Enrichment (GiFACE): a permanent grassland that has been exposed to eCO2, +20% relative to ambient concentrations (aCO2), for 15 years. We applied in the field an ammonium‐nitrate fertilizer solution, in which either ammonium () or nitrate () was labelled with 15N. The simultaneous gross N transformation rates were analysed with a 15N tracing model and a solver method. The results confirmed that after 15 years of eCO2 the N2O emissions under eCO2 were still more than twofold higher than under aCO2. The tracing model results indicated that plant uptake of did not differ between treatments, but uptake of was significantly reduced under eCO2. However, the and availability increased slightly under eCO2. The N2O isotopic signature indicated that under eCO2 the sources of the additional emissions, 8,407 μg N2O–N/m2 during the first 58 days after labelling, were associated with reduction (+2.0%), oxidation (+11.1%) and organic N oxidation (+86.9%). We presume that increased plant growth and root exudation under eCO2 provided an additional source of bioavailable supply of energy that triggered as a priming effect the stimulation of microbial soil organic matter (SOM) mineralization and fostered the activity of the bacterial nitrite reductase. The resulting increase in incomplete denitrification and therefore an increased N2O:N2 emission ratio, explains the doubling of N2O emissions. If this occurs over a wide area of grasslands in the future, this positive feedback reaction may significantly accelerate climate change.  相似文献   

5.
Various natural polymers with hydrophilic properties have been used to form hydrogels for the encapsulation and delivery of nutrients and drugs in food and pharmaceutical industries. Among them, chitosan (ChiHG)‐ and alginate (AlgHG)‐ based hydrogels have been extensively explored for delivery of several nutraceuticals in recent years. Release of natural canthaxanthin (CX) obtained from Dietzia maris NITD (accession number: HM151403) has been investigated with emphasis on biomedical applications. Significant changes (P < 0.05) in degree of swelling and moisture content (% dry basis) were found after encapsulation of bacterial canthaxanthin (BCX), but the gel content remained unchanged. BCX encapsulation efficiency was calculated to be 55.92% and 60.45% in ChiHG and AlgHG, respectively. A noticeable change in heat of fusion d melting point was recorded in ChiHG and AlgHG after BCX encapsulation. Swelling and BCX release from gel matrix was performed under two different pH (1.2 and 7.4). The results showed that swelling of hydrogel and BCX release was facilitated at higher pH (7.4) than acidic pH (1.2). With regard to the release kinetics data, it was found that BCX is released from bothand AlgHG in a diffusion transport method. In addition, antioxidant activity of BCX encapsulated hydrogels was found significantly higher (P < 0.001) in terms of DPPH, ABTS, nitrite, hydroxyl radical scavenging and reducing power assay. These results indicated that BCX can be successfully encapsulated into a polymeric hydrogel to obtain a dynamic biomaterial that may be used in drug delivery applications in future.  相似文献   

6.
Interest has surged recently in removing siblings from population genetic data sets before conducting downstream analyses. However, even if the pedigree is inferred correctly, this has the potential to do more harm than good. We used computer simulations and empirical samples of coho salmon to evaluate strategies for adjusting samples to account for family structure. We compared performance in full samples and sibling‐reduced samples of estimators of allele frequency (), population differentiation () and effective population size (). Results: (i) unless simulated samples included large family groups together with a component of unrelated individuals, removing siblings generally reduced precision of and ; (ii) based on the linkage disequilibrium method was largely unbiased using full random samples but became increasingly upwardly biased under aggressive purging of siblings. Under nonrandom sampling (some families over‐represented), using full samples was downwardly biased; removing just the right ‘Goldilocks’ fraction of siblings could produce an unbiased estimate, but this sweet spot varied widely among scenarios; (iii) weighting individuals based on the inferred pedigree (to produce a best linear unbiased estimator, BLUE) maximized precision of when the inferred pedigree was correct but performed poorly when the pedigree was wrong; (iv) a variant of sibling removal that leaves intact small sibling groups appears to be more robust to errors in inferences about family structure. Our results illustrate the complex challenges posed by presence of family structure, suggest that no single optimal solution exists and argue for caution in adjusting population genetic data sets for the presence of putative siblings without fully understanding the consequences.  相似文献   

7.
8.
Generalized linear models (GLM) with a canonical logit link function are the primary modeling technique used to relate a binary outcome to predictor variables. However, noncanonical links can offer more flexibility, producing convenient analytical quantities (e.g., probit GLMs in toxicology) and desired measures of effect (e.g., relative risk from log GLMs). Many summary goodness‐of‐fit (GOF) statistics exist for logistic GLM. Their properties make the development of GOF statistics relatively straightforward, but it can be more difficult under noncanonical links. Although GOF tests for logistic GLM with continuous covariates (GLMCC) have been applied to GLMCCs with log links, we know of no GOF tests in the literature specifically developed for GLMCCs that can be applied regardless of link function chosen. We generalize the Tsiatis GOF statistic originally developed for logistic GLMCCs, (), so that it can be applied under any link function. Further, we show that the algebraically related Hosmer–Lemeshow () and Pigeon–Heyse (J2) statistics can be applied directly. In a simulation study, , , and J2 were used to evaluate the fit of probit, log–log, complementary log–log, and log models, all calculated with a common grouping method. The statistic consistently maintained Type I error rates, while those of and J2 were often lower than expected if terms with little influence were included. Generally, the statistics had similar power to detect an incorrect model. An exception occurred when a log GLMCC was incorrectly fit to data generated from a logistic GLMCC. In this case, had more power than or J2.  相似文献   

9.
Accurate estimates of heritability () are necessary to assess adaptive responses of populations and evolution of fitness‐related traits in changing environments. For plants, estimates generally rely on maternal progeny designs, assuming that offspring are either half‐sibs or unrelated. However, plant mating systems often depart from half‐sib assumptions, this can bias estimates. Here, we investigate how to accurately estimate in nonmodel species through the analysis of sibling designs with a moderate genotyping effort. We performed simulations to investigate how microsatellite marker information available for only a subset of offspring can improve estimates based on maternal progeny designs in the presence of nonrandom mating, inbreeding in the parental population or maternal effects. We compared the basic family method, considering or not adjustments based on average relatedness coefficients, and methods based on the animal model. The animal model was used with average relatedness information, or with hybrid relatedness information: associating one‐generation pedigree and family assumptions, or associating one‐generation pedigree and average relatedness coefficients. Our results highlighted that methods using marker‐based relatedness coefficients performed as well as pedigree‐based methods in the presence of nonrandom mating (i.e. unequal male reproductive contributions, selfing), offering promising prospects to investigate in situ heritabilities in natural populations. In the presence of maternal effects, only the use of pairwise relatednesses through pedigree information improved the accuracy of estimates. In that case, the amount of father‐related offspring in the sibling design is the most critical. Overall, we showed that the method using both one‐generation pedigree and average relatedness coefficients was the most robust to various ecological scenarios.  相似文献   

10.
Few articles have been written on analyzing three‐way interactions between drugs. It may seem to be quite straightforward to extend a statistical method from two‐drugs to three‐drugs. However, there may exist more complex nonlinear response surface of the interaction index () with more complex local synergy and/or local antagonism interspersed in different regions of drug combinations in a three‐drug study, compared in a two‐drug study. In addition, it is not possible to obtain a four‐dimensional (4D) response surface plot for a three‐drug study. We propose an analysis procedure to construct the dose combination regions of interest (say, the synergistic areas with ). First, use the model robust regression method (MRR), a semiparametric method, to fit the entire response surface of the , which allows to fit a complex response surface with local synergy/antagonism. Second, we run a modified genetic algorithm (MGA), a stochastic optimization method, many times with different random seeds, to allow to collect as many feasible points as possible that satisfy the estimated values of . Last, all these feasible points are used to construct the approximate dose regions of interest in a 3D. A case study with three anti‐cancer drugs in an in vitro experiment is employed to illustrate how to find the dose regions of interest.  相似文献   

11.
Bioreactor scale‐up is a critical step in the production of therapeutic proteins such as monoclonal antibodies (MAbs). With the scale‐up criterion such as similar power input per volume or O2 volumetric mass transfer coefficient ( ), adequate oxygen supply and cell growth can be largely achieved. However, CO2 stripping in the growth phase is often inadequate. This could cascade down to increased base addition and osmolality, as well as residual lactate increase and compromised production and product quality. Here we describe a practical approach in bioreactor scale‐up and process transfer, where bioreactor information may be limited. We evaluated the sparger and (CO2 volumetric mass transfer coefficient) from a range of bioreactor scales (3–2,000 L) with different spargers. Results demonstrated that for oxygen is not an issue when scaling from small‐scale to large‐scale bioreactors at the same gas flow rate per reactor volume (vvm). Results also showed that sparging CO2 stripping, , is dominated by the gas throughput. As a result, a combination of a minimum constant vvm air or N2 flow with a similar specific power was used as the general scale‐up criterion. An equation was developed to determine the minimum vvm required for removing CO2 produced from cell respiration. We demonstrated the effectiveness of using such scale‐up criterion with five MAb projects exhibiting different cell growth and metabolic characteristics, scaled from 3 to 2,000 L bioreactors across four sites. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1146–1159, 2017  相似文献   

12.
Elemental sulfur exists primarily as an ring and serves as terminal electron acceptor for a variety of sulfur‐fermenting bacteria. Hyperthermophilic archaea from black smoker vents are an exciting research tool to advance our knowledge of sulfur respiration under extreme conditions. Here, we use a hybrid method approach to demonstrate that the proteinaceous cavities of the S‐layer nanotube of the hyperthermophilic archaeon Staphylothermus marinus act as a storage reservoir for cyclo‐octasulfur . Fully atomistic molecular dynamics (MD) simulations were performed and the method of multiconfigurational thermodynamic integration was employed to compute the absolute free energy for transferring a ring of elemental sulfur from an aqueous bath into the largest hydrophobic cavity of a fragment of archaeal tetrabrachion. Comparisons with earlier MD studies of the free energy of hydration as a function of water occupancy in the same cavity of archaeal tetrabrachion show that the sulfur ring is energetically favored over water.  相似文献   

13.
Reliable estimates of effective population size are of central importance in population genetics and evolutionary biology. For populations that fluctuate in size, harmonic mean population size is commonly used as a proxy for (multi‐) generational effective size. This assumes no effects of density dependence on the ratio between effective and actual population size, which limits its potential application. Here, we introduce density dependence on vital rates in a demographic model of variance effective size. We derive an expression for the ratio in a density‐regulated population in a fluctuating environment. We show by simulations that yearly genetic drift is accurately predicted by our model, and not proportional to as assumed by the harmonic mean model, where N is the total population size of mature individuals. We find a negative relationship between and N. For a given N, the ratio depends on variance in reproductive success and the degree of resource limitation acting on the population growth rate. Finally, our model indicate that environmental stochasticity may affect not only through fluctuations in N, but also for a given N at a given time. Our results show that estimates of effective population size must include effects of density dependence and environmental stochasticity.  相似文献   

14.
We estimated local and metapopulation effective sizes ( and meta‐) for three coexisting salmonid species (Salmo salar, Salvelinus fontinalis, Salvelinus alpinus) inhabiting a freshwater system comprising seven interconnected lakes. First, we hypothesized that might be inversely related to within‐species population divergence as reported in an earlier study (i.e., FST: S. salar> S. fontinalis> S. alpinus). Using the approximate Bayesian computation method implemented in ONeSAMP, we found significant differences in () between species, consistent with a hierarchy of adult population sizes (). Using another method based on a measure of linkage disequilibrium (LDNE: ), we found more finite values for S. salar than for the other two salmonids, in line with the results above that indicate that S. salar exhibits the lowest among the three species. Considering subpopulations as open to migration (i.e., removing putative immigrants) led to only marginal and non‐significant changes in , suggesting that migration may be at equilibrium between genetically similar sources. Second, we hypothesized that meta‐ might be significantly smaller than the sum of local s (null model) if gene flow is asymmetric, varies among subpopulations, and is driven by common landscape features such as waterfalls. One ‘bottom‐up’ or numerical approach that explicitly incorporates variable and asymmetric migration rates showed this very pattern, while a number of analytical models provided meta‐ estimates that were not significantly different from the null model or from each other. Our study of three species inhabiting a shared environment highlights the importance and utility of differentiating species‐specific and landscape effects, not only on dispersal but also in the demography of wild populations as assessed through local s and meta‐s and their relevance in ecology, evolution and conservation.  相似文献   

15.
The ratio between the effective and the census population size, , is an important measure of the long‐term viability and sustainability of a population. Understanding which demographic processes that affect most will improve our understanding of how genetic drift and the probability of fixation of alleles is affected by demography. This knowledge may also be of vital importance in management of endangered populations and species. Here, we use data from 13 natural populations of house sparrow (Passer domesticus) in Norway to calculate the demographic parameters that determine . Using the global variance‐based Sobol’ method for the sensitivity analyses, we found that was most sensitive to demographic variance, especially among older individuals. Furthermore, the individual reproductive values (that determine the demographic variance) were most sensitive to variation in fecundity. Our results draw attention to the applicability of sensitivity analyses in population management and conservation. For population management aiming to reduce the loss of genetic variation, a sensitivity analysis may indicate the demographic parameters towards which resources should be focused. The result of such an analysis may depend on the life history and mating system of the population or species under consideration, because the vital rates and sex–age classes that is most sensitive to may change accordingly.  相似文献   

16.
Lin Wang  Lin Li  Emil Alexov 《Proteins》2015,83(12):2186-2197
We developed a Poisson‐Boltzmann based approach to calculate the values of protein ionizable residues (Glu, Asp, His, Lys and Arg), nucleotides of RNA and single stranded DNA. Two novel features were utilized: the dielectric properties of the macromolecules and water phase were modeled via the smooth Gaussian‐based dielectric function in DelPhi and the corresponding electrostatic energies were calculated without defining the molecular surface. We tested the algorithm by calculating values for more than 300 residues from 32 proteins from the PPD dataset and achieved an overall RMSD of 0.77. Particularly, the RMSD of 0.55 was achieved for surface residues, while the RMSD of 1.1 for buried residues. The approach was also found capable of capturing the large shifts of various single point mutations in staphylococcal nuclease (SNase) from ‐cooperative dataset, resulting in an overall RMSD of 1.6 for this set of pKa's. Investigations showed that predictions for most of buried mutant residues of SNase could be improved by using higher dielectric constant values. Furthermore, an option to generate different hydrogen positions also improves predictions for buried carboxyl residues. Finally, the calculations on two RNAs demonstrated the capability of this approach for other types of biomolecules. Proteins 2015; 83:2186–2197. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
The effect of a mutation on protein stability is traditionally measured by genetic construction, expression, purification, and physical analysis using low‐throughput methods. This process is tedious and limits the number of mutants able to be examined in a single study. In contrast, functional fitness effects can be measured in a high‐throughput manner by various deep mutational scanning tools. Using protein GB 1, we have recently demonstrated the feasibility of estimating the mutational stability effect ( G) of single‐substitution based on the functional fitness profile of all double‐substitutions. The principle is to identify genetic backgrounds that have an exhausted stability margin. The functional effect of an additional substitution on these genetic backgrounds can then be used to compute the mutational G based on the biophysical relationship between functional fitness and thermodynamic stability. However, to identify such genetic backgrounds, the approach described in our previous study required a benchmark dataset, which is a set of known mutational G. In this study, a benchmark‐independent approach is developed. The genetic backgrounds of interest are identified using k‐means clustering with the integration of structural information. We further demonstrated that a reasonable approximation of G can also be obtained without taking structural information into account. In summary, this study describes a novel method for computing G from double‐substitution functional fitness profiles alone, without relying on any known mutational G as a benchmark.  相似文献   

18.
The survival of large carnivores is increasingly precarious due to extensive human development that causes the habitat loss and fragmentation. Habitat selection is influenced by anthropogenic as well as environmental factors, and understanding these relationships is important for conservation management. We assessed the environmental and anthropogenic variables that influence site use of clouded leopard Neofelis nebulosa in Bhutan, estimated their population density, and used the results to predict the species’ site use across Bhutan. We used a large camera‐trap dataset from the national tiger survey to estimate for clouded leopards, for the first time in Bhutan, (1) population density using spatially explicit capture–recapture models and (2) site‐use probability using occupancy models accounting for spatial autocorrelation. Population density was estimated at (0.10 SD) and (0.12 SE) per 100 km2. Clouded leopard site use was positively associated with forest cover and distance to river while negatively associated with elevation. Mean site‐use probability (from the Bayesian spatial model) was (0.076 SD). When spatial autocorrelation was ignored, the probability of site use was overestimated, (0.066 SD). Predictive mapping allowed us to identify important conservation areas and priority habitats to sustain the future of these elusive, ambassador felids and associated guilds. Multiple sites in the south, many of them outside of protected areas, were identified as habitats suitable for this species, adding evidence to conservation planning for clouded leopards in continental South Asia.  相似文献   

19.
Biomarkers are subject to censoring whenever some measurements are not quantifiable given a laboratory detection limit. Methods for handling censoring have received less attention in genetic epidemiology, and censored data are still often replaced with a fixed value. We compared different strategies for handling a left‐censored continuous biomarker in a family‐based study, where the biomarker is tested for association with a genetic variant, , adjusting for a covariate, X. Allowing different correlations between X and , we compared simple substitution of censored observations with the detection limit followed by a linear mixed effect model (LMM), Bayesian model with noninformative priors, Tobit model with robust standard errors, the multiple imputation (MI) with and without in the imputation followed by a LMM. Our comparison was based on real and simulated data in which 20% and 40% censoring were artificially induced. The complete data were also analyzed with a LMM. In the MICROS study, the Bayesian model gave results closer to those obtained with the complete data. In the simulations, simple substitution was always the most biased method, the Tobit approach gave the least biased estimates at all censoring levels and correlation values, the Bayesian model and both MI approaches gave slightly biased estimates but smaller root mean square errors. On the basis of these results the Bayesian approach is highly recommended for candidate gene studies; however, the computationally simpler Tobit and the MI without are both good options for genome‐wide studies.  相似文献   

20.
The tetracycline family antibiotics are widely used as human and veterinary treatments. The drugs are effective as antibiotics and also show antimicrobial and non‐microbial action. However, the antioxidant properties of tetracyclines have not been characterized in aprotic media. To better understand their biological functions, the in vitro superoxide anion radical () scavenging activities of tetracycline, chlortetracycline, oxytetracycline, doxycycline and methacycline were characterized, along with a very efficient scavenger, tiron, in dimethyl sulphoxide (DMSO), using ultra‐weak chemiluminescence (CL). We found that tetracycline, chlortetracycline and doxycycline efficiently inhibited CL from the ‐generating system at concentration levels of 0.02–1.0 mmol/L. Methacycline and oxytetracycline were the scavengers at concentration levels of 0.01–0.1 mmol/L, whereas when their concentration was lowered the drugs were capable of generating , leading to CL enhancement. For all the data obtained in this study, the scavenging activity for the compounds tested decreased in the following order: tetracycline > doxycycline > chlortetracycline > tiron methacycline > oxytetracycline. These results indicate that the tetracycline drugs directly alter redox chemistry in aprotic media. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号