首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This is the first study to describe the mitochondrial genome of the Himalayan Griffon, Gyps himalayensis, which is an Old World vulture belonging to the family Accipitridae and occurring along the Himalayas and the adjoining Tibetan Plateau. Its mitogenome is a closed circular molecule 17,381 bp in size containing 13 protein‐coding genes, 22 tRNA coding genes, two rRNA‐coding genes, a control region (CR), and an extra pseudo‐control region (CCR) that are conserved in most Accipitridae mitogenomes. The overall base composition of the G. himalayensis mitogenome is 24.55% A, 29.49% T, 31.59% C, and 14.37% G, which is typical for bird mitochondrial genomes. The alignment of the Accipitridae species control regions showed high levels of genetic variation and abundant AT content. At the 5′ end of the domain I region, a long continuous poly‐C sequence was found. Two tandem repeats were found in the pseudo‐control regions. Phylogenetic analysis with Bayesian inference and maximum likelihood based on 13 protein‐coding genes indicated that the relationships at the family level were (Falconidae + (Cathartidae + (Sagittariidae + (Accipitridae + Pandionidae))). In the Accipitridae clade, G. himalayensis is more closely related to Aegypius monachus than to Spilornis cheela. The complete mitogenome of G. himalayensis provides a potentially useful resource for further exploration of the taxonomic status and phylogenetic history of Gyps species.  相似文献   

2.
The characterization of a complete mitogenome is widely used in genomics studies for systematics and evolutionary research. However, the sequences and structural motifs contained within the mitogenome of Testudines taxa have rarely been examined. The present study decodes the first complete mitochondrial genome of the Indian Tent Turtle, Pangshura tentoria (16,657 bp) by using next‐generation sequencing. This denovo assembly encodes 37 genes: 13 protein‐coding genes (PCGs), 22 transfer RNA (tRNAs), two ribosomal RNA, and one control region (CR). Most of the genes were encoded on majority strand, except for one PCG (NADH dehydrogenase subunit 6) and eight tRNAs. Most of the PCGs were started with an ATG initiation codon, except for Cytochrome oxidase subunit 1 with “GTG” and NADH dehydrogenase subunit 5 with “ATA.” The termination codons, “TAA” and “AGA” were observed in two subunits of NADH dehydrogenase gene. The relative synonymous codon usage analysis revealed the maximum abundance of alanine, isoleucine, leucine, and threonine. The nonsynonymous/synonymous ratios were <1 in all PCGs, which indicates strong negative selection among all Geoemydid species. The study also found the typical cloverleaf secondary structure in most of the tRNA genes, except for serine with the lack of the conventional DHU arm. The comparative study of Geoemydid mitogenomes revealed the occurrence of tandem repeats was frequent in the 3′ end of CR. Further, two copies of a unique tandem repeat “TTCTCTTT” were identified in P. tentoria. The Bayesian and maximum‐likelihood phylogenetic trees using concatenation of 13 PCGs revealed the close relationships of P. tentoria with Batagur trivittata in the studied dataset. All the Geoemydid species showed distinct clustering with high bootstrap support congruent with previous evolutionary hypotheses. We suggest that the generations of more mitogenomes of Geoemydid species are required, to improve our understanding of their in‐depth phylogenetic and evolutionary relationships.  相似文献   

3.
Evolutionary analysis of Prodiamesinae has long been impeded by lack of information, and its phylogenetic relationship with Orthocladiinae remains questionable. Here, ten complete mitochondrial genomes (mitogenomes) of Orthocladiinae sensu lato were newly sequenced, including three Prodiamesinae species and seven Orthocladiinae species. Coupled with published mitogenomes, a total of 12 mitogenomes of Orthocladiinae sensu lato were selected for a comparative mitogenomic analysis and phylogenetic reconstruction. Mitogenomes of Orthocladiinae sensu lato are conserved in structure, and all genes arrange the same gene order as the ancestral insect mitogenome. Nucleotide composition is highly biased, and the control region displayed the highest A + T content. All protein-coding genes are under purifying selection, and the ATP8 evolves at the fastest rate. In addition, the mitogenomes of Orthocladiinae sensu lato are highly conserved, and they are practically useful for phylogenetic inference, suggesting a re-classification of Orthocladiinae by sinking Prodiamesinae as a subgroup of Orthocladiinae.  相似文献   

4.
《Journal of Asia》2022,25(4):101977
Complete mitochondrial genomes (mitogenomes) have long been proved as reliable markers for phylogenetic reconstruction among diverse animal groups, especially benefited from recent rapid development of sequencing techniques. However, the mitogenomes of many important clades remain poorly represented, which restricted the understanding of macroscale evolutionary history of these groups. Here, we sequenced and characterized the complete mitogenome of Trachylophus sinensis, a type species of the Trachylophus genus, which also represents the first sequenced mitogenome in this genus. The complete circular mitogenome was 15,746 bp in length, containing 37 typical genes and one noncoding AT-rich control region. The nucleotide composition of the mitogenome was highly A + T biased, accounting for 70.07 % of the whole mitogenome with a slightly positive AT skewness (0.106). The 13 Protein coding genes (PCGs) used ATN as their start codons, except nad1 which used TTG. All tRNA genes were predicted with a characteristic cloverleaf secondary structure except trnS1(AGN), whose dihydrouridine (DHU) arm was replaced by a simple loop. Phylogenetic analyses recovered Cerambycinae as a monophyletic group with high node supports and the sister relationship between T. sinensis and Nadezhdiella cantori. However, we found that deeper nodes showed not strong support, which may be caused by limited taxa sampling in our study. More mitogenomes should be sequenced representing various taxonomic levels, especially closely related species, which will enhance our understanding of phylogenetic relationships among Cerambycinae.  相似文献   

5.
Group I introns are genetic insertion elements that invade host genomes in a wide range of organisms. In metazoans, however, group I introns are extremely rare, so far only identified within mitogenomes of hexacorals and some sponges. We sequenced the complete mitogenome of the cold-water scleractinian coral Lophelia pertusa, the dominating deep sea reef-building coral species in the North Atlantic Ocean. The mitogenome (16,150 bp) has the same gene content but organized in a unique gene order compared to that of other known scleractinian corals. A complex group I intron (6460 bp) inserted in the ND5 gene (position 717) was found to host seven essential mitochondrial protein genes and one ribosomal RNA gene. Phylogenetic analysis supports a vertical inheritance pattern of the ND5-717 intron among hexacoral mitogenomes with no examples of intron loss. Structural assessments of the Lophelia intron revealed an unusual organization that lacks the universally conserved ωG at the 3′ end, as well as a highly compact RNA core structure with overlapping ribozyme and protein coding capacities. Based on phylogenetic and structural analyses we reconstructed the evolutionary history of ND5-717, from its ancestral protist origin, through intron loss in some early metazoan lineages, and into a compulsory feature with functional implications in hexacorals.  相似文献   

6.
Mitochondrial genomes have been widely used for phylogenetic reconstruction and evolutionary analysis in various groups of Insecta. Gene rearrangements in the mitogenome can be informative characters for phylogenetic reconstruction and adaptive evolution. Trichoptera is one of the most important groups of aquatic insects. Prior to this study, complete mitogenomes from Trichoptera were restricted to eight families, resulting in a biased view of their mitogenome structure and evolution. Here, we assemble new mitogenomes for 66 species by high-throughput sequencing. The mitogenomes of 19 families and 47 genera are documented for the first time. Combined with 16 previously published mitogenomes of Trichoptera, we find 14 kinds of gene rearrangement patterns novel for Trichoptera, including rearrangement of protein-coding genes, tRNAs and control regions. Simultaneously, we provide evidence for the occurrence of tandem duplication and non-random loss events in the mitogenomes of three families. Phylogenetic analyses show that Hydroptilidae was recovered as a sister group to Annulipalpia. The increased nucleotide substitution rate and adaptive evolution may have affected the mitochondrial gene rearrangements in Trichoptera. Our study offers new insights into the mechanisms and patterns of mitogenome rearrangements in Insecta at large and into the usefulness of mitogenomic gene order as a phylogenetic marker within Trichoptera.  相似文献   

7.
Lu Bao  Yonghen Zhang  Xing Gu  Yuefang Gao  Youben Yu 《Genomics》2019,111(5):1043-1052
Zygaenidae comprises >1036 species, including many folivorous pests in agriculture. In the present study, the complete mitochondrial genome (mitogenome) of a major pest of tea trees, Eterusia aedea was determined. The 15,196-bp circular genome contained the common set of 37 mitochondrial genes (including 13 protein-coding genes, two rRNA genes, and 22 tRNA genes) and exhibited the similar genomic features to reported Zygaenidae mitogenome. Comparative analyses of Zygaenidae mitogenomes showed a typical evolutionary trend of lepidopteran mitogenomes. In addition, we also investigated the gene order of lepidopteran mitogenomes and proposed that the novel gene order trnA-trnR-trnN-trnE-trnS-trnF from Zygaenidae and Gelechiidae and most other gene rearrangements of this tRNA cluster evolved independently. Finally, the mitogenomic phylogeny of Lepidoptera was reconstructed based on multiple mitochondrial datasets. And all the phylogenetic results revealed the sister relationships of Cossoidea and Zygaenoidea with both BI and ML methods, which is the first stable mitogenomic evidence for this clade.  相似文献   

8.
Insect mitochondrial genomes (mitogenomes) are of great interest in exploring molecular evolution, phylogenetics and population genetics. Only two mitogenomes have been previously released in the insect group Aphididae, which consists of about 5,000 known species including some agricultural, forestry and horticultural pests. Here we report the complete 16,317 bp mitogenome of Cavariella salicicola and two nearly complete mitogenomes of Aphis glycines and Pterocomma pilosum. We also present a first comparative analysis of mitochondrial genomes of aphids. Results showed that aphid mitogenomes share conserved genomic organization, nucleotide and amino acid composition, and codon usage features. All 37 genes usually present in animal mitogenomes were sequenced and annotated. The analysis of gene evolutionary rate revealed the lowest and highest rates for COI and ATP8, respectively. A unique repeat region exclusively in aphid mitogenomes, which included variable numbers of tandem repeats in a lineage-specific manner, was highlighted for the first time. This region may have a function as another origin of replication. Phylogenetic reconstructions based on protein-coding genes and the stem-loop structures of control regions confirmed a sister relationship between Cavariella and pterocommatines. Current evidence suggest that pterocommatines could be formally transferred into Macrosiphini. Our paper also offers methodological instructions for obtaining other Aphididae mitochondrial genomes.  相似文献   

9.
10.
【目的】鉴定洛斯里被毛孢OWVT-1菌株的线粒体基因组,验证公布的USA-87-5菌株线粒体基因组中的错误,对洛斯里被毛孢正确的线粒体基因组序列进行注释并开展不同被毛孢物种间的比较线粒体基因组学分析。【方法】借助DNA高通量测序数据并通过必要的Sanger测序组装OWVT-1的线粒体基因组。通过PCR验证OWVT-1与公布的USA-87-5线粒体基因组序列差异的真实性。利用多种生物信息方法分析和注释洛斯里被毛孢的线粒体基因组。【结果】公布的洛斯里被毛孢USA-87-5菌株的线粒体基因组存在几处序列错误,包括3处长片段的插入缺失和多处短片段的插入缺失。实际上,洛斯里被毛孢USA-87-5与OWVT-1菌株的线粒体基因组序列完全相同。该菌的线粒体基因组全长62949 bp,在7个基因中共插入13个内含子,部分内含子和基因间区显现出序列退化的特征。洛斯里被毛孢、明尼苏达被毛孢、线虫被毛孢的线粒体基因组具有较强的共线性关系。除一些独立的ORF外,核心蛋白编码基因、rRNA基因和tRNA基因的排列顺序非常保守。基因间区的长短是影响3种被毛孢线粒体基因组大小最主要的因素。【结论】公布的洛斯里被毛孢USA-87-5菌株线粒体基因组中存在序列错误。本文新报道了OWVT-1菌株的线粒体基因组,并进行注释和比较线粒体基因组学分析。  相似文献   

11.
The suborder Charadrii (Aves: Charadriiformes), one of the most species-rich radiations within shorebirds, which contains good source for studies of ecology, behaviour and evolution. The resources of mitogenome have rapidly accumulated in recent years due to the advanced genomic sequencing, while suborder Charadrii’s mitogenome has not been well studied. The primary objective of this study was to determine the complete mitogenome sequence of Charadrius alexandrinus, and investigated the evolutionary relationship within Charadrii. The mitogenome of C. alexandrinus were generated by amplification of overlapping Polymerase Chain Reaction (PCR) fragments. In this study, we determined the complete mitogenome sequence of the Kentish Plover Charadrius alexandrinus, and comparative analysed 11 species to illustrate mitogenomes structure and investigated their evolutionary relationship within Charadrii. The Charadrii mitogenomes displayed moderate size variation, the mean size was 16,944 bp (SD?=?182, n?=?11), and most of the size variation due to mutations in the control region (CR). Nucleotide composition was consistently biased towards AT rich, and the A+T content also varies for each protein-coding genes. The variation in ATP8 and COIII was the highest and lowest respectively. The GC skew was always negative, with the ATP8 had higher value than other regions. The average uncorrected pairwise distances revealed heterogeneity of evolutionary rate for each gene, the COIII, COI and COII have slow evolutionary rate, whereas the gene of ATP8 has the relative fast rate. The highest value of Ks and Ka were ND1 and ATP8, and the ratios of Ka/Ks are lower than 0.27, indicating that they were under purifying selection. Phylogenomic analysis based on the complete mitochondrial genomes strongly supported the monophyly of the suborder Charadrii. This study improves our understanding of mitogenome structure and evolution, and providing further insights into phylogeny and taxonomy in Charadrii. In future, sequencing more mitogenomes from various taxonomic levels will significantly improve our understanding of phylogenetic relationships within Charadrii.  相似文献   

12.
[目的] Glarea lozoyensis是抗真菌药物卡泊芬净的产生菌,其突变菌株ATCC 74030的线粒体基因组已被报道。我们此前的研究发现诱变剂能引起该菌某些细胞核基因的突变,但诱变剂是否也能引起线粒体DNA序列的改变并不清楚。[方法] 组装野生型菌株ATCC 20868的线粒体基因组,并与发表的突变型菌株ATCC 74030的线粒体基因组进行比较。通过PCR验证野生和突变菌株线粒体基因组间表现差异之处,并利用正确的线粒体基因组序列进行新的分析。[结果] 我们成功组装出野生型菌株ATCC 20868的线粒体基因组,通过比较其与发表的ATCC 74030的线粒体基因组序列,发现存在6处单核苷酸变异位点和2处具有长度差异的区域。然而,随后的PCR验证和序列比较并没有发现2个菌株间存在这些差异。最初观察到的碱基差异是因为发表的ATCC 74030线粒体基因组存在序列错误。有趣的是,在Glarea lozoyensis的线粒体基因组中,我们发现存在3个具有内含子的tRNA基因和1个rnpB基因。同时,该菌线粒体基因组中存在多种重复序列,在其线粒体和细胞核基因组间也存在明显的DNA片段重复事件。[结论] 诱变剂没有引起G. lozoyensis线粒体DNA的任何改变;发表的ATCC 74030的线粒体基因组存在序列错误。我们报道G. lozoyensis正确的线粒体基因组序列,并且发现该菌线粒体和细胞核基因组间频繁的基因交流。  相似文献   

13.
【目的】明确球孢白僵菌种内线粒体基因组的分化程度。【方法】从GenBank下载已知的球孢白僵菌6个菌株线粒体基因组序列,详细分析基因组的组成结构,比较外显子区、内含子区和基因间区的碱基变异情况,分析菌株间的系统发育关系。【结果】球孢白僵菌不同菌株的线粒体基因组大小为28.8–32.3 kb,都有14个常见的核心蛋白编码基因、2个rRNA基因和25个tRNA基因,具有很强的共线性关系。但是,不同菌株含有的线粒体内含子数目存在差异(2–5个/菌株),在cox1、cox2和nad1基因中表现出内含子插入/缺失多态性,这是导致线粒体基因组大小变化的主要因素。对外显子、内含子和基因间区的碱基变异情况进行分析,发现内含子和基因间区相对变异较大,而外显子区相对变异较小。系统发育分析发现,这些球孢白僵菌菌株以很高的支持度聚在一起,具有相同内含子分布规律的菌株也具有较近的聚类关系。【结论】本研究首次报道球孢白僵菌因内含子数目不同、插入缺失突变和单核苷酸变异等在线粒体基因组上表现出较大程度的遗传分化,为认识真菌种内线粒体基因组分化提供了新的证据。  相似文献   

14.
Yang, J.‐S., Nagasawa, H., Fujiwara, Y., Tsuchida, S. & Yang, W.‐J. The complete mitogenome of the hydrothermal vent crab Gandalfus yunohana (Crustacea: Decapoda: Brachyura): a link between the Bythograeoidea and Xanthoidea. —Zoologica Scripta, 39, 621–630. Metazoan mitochondrial genomes (mitogenomes) are often used for all‐level phylogenetic analyses and evolution modelling. Although mitochondrial fragments facilitate studying the occurrence and dispersal of hydrothermal‐vent species, few complete mitogenomes have been determined for comprehensive analyses. We determined the complete nucleotide sequence of the bythograeid crab Gandalfus yunohana. The G. yunohana mitogenome is 15 567 bp in length and with an AT content of 69.9%. A putative control region of 625 bp was identified due to its position (between rrnS and trnI) and AT richness (72.8%), which exhibits high similarity with that of the Australian giant crab Pseudocarcinus gigas. The mitochondrial gene order is identical to the typical brachyuran mode. Codon usage, nucleotide composition and bias are well conserved as the Brachyura. Phylogenetic analyses from protein‐coding genes indicated its closest relationship with P. gigas. All the results support the close evolution distance between the Bythograeoidea and Xanthoidea, which might imply the possible origin that the only superfamily of vent crabs underwent. The G. yunohana mitogenome exhibits highly conserved characteristics with those of other decapods, especially its close relative brachyurans. A recent origin rather than the relic fauna was suggested. The present study will supply considerable data of use for both genomics and evolutionary research on hydrothermal vent ecosystems.  相似文献   

15.
Nassariids (Family Nassariidae) are a group of marine snails that are distributed worldwide, with their maximum species diversity in tropical regions, particularly the Indo‐Pacific. However, the traditional taxonomy of Nassariidae defined by shell or radula characters is usually inconsistent with little phylogenetic signal. In the present study, the complete mitochondrial (mt) genomes of nine Nassarius species were sequenced and compared with other eight nassariid species previously reported. All nassariid mt genomes showed the same gene order as in most caenogastropods and shared a very similar pattern with respect to genome size, nucleotide composition and AT contents. A deletion of three nucleotides in nad6 gene was detected in Nassarius jacksonianus and Nassarius acuticostus, and this feature also provided implications for nassariid phylogeny. The genetic distance analysis and reconstructed phylogeny revealed a distant relationship between N. jacksonianus or N. acuticostus and other members in Nassarius. The mitogenomic phylogeny recovered the evolutionary relationships within Nassarius with high statistical support. In addition, a chronogram was reconstructed under an uncorrelated relaxed molecular clock, which dated the divergence among main lineages of Nassarius during ~31 MYA.  相似文献   

16.
The complete mitogenome can provide valuable genetic information to reconstruct relationships between species. In this study, we sequenced a stone loach, Homatula laxiclathra (Teleostei: Nemacheilidae), which is found in the northern region of the Qinling Mountains in China. The size of the H. laxiclathra mitogenome is 16,570 bp, which contains 37 typical mitochondrial genes including 13 protein‐coding genes, 22 transfer RNAs, two ribosomal RNAs, and a control region (D‐loop) with a total AT content of 55.8%. This is similar to other Nemacheilidae sequences published in GenBank. Furthermore, a mito‐phylogenomic analysis of 46 Nemacheilidae species places H. laxiclathra in a robust monophyletic Homatula cluster with other Homatula species. Our results contribute toward a better understanding of a true phylogeny of these species based on large‐scale taxonomic samplings as well as to help grasp the evolution of fish mitogenomes.  相似文献   

17.
To further understand the trends in the evolution of mitochondrial genomes (mitogenomes or mtDNAs) in the Ulvophyceae, the mitogenomes of two separate thalli of Ulva pertusa were sequenced. Two U. pertusa mitogenomes (Up1 and Up2) were 69,333 bp and 64,602 bp in length. These mitogenomes shared two ribosomal RNAs (rRNAs), 28 transfer RNAs (tRNAs), 29 protein‐coding genes, and 12 open reading frames. The 4.7 kb difference in size was attributed to variation in intron content and tandem repeat regions. A total of six introns were present in the smaller U. pertusa mtDNA (Up2), while the larger mtDNA (Up1) had eight. The larger mtDNA had two additional group II introns in two genes (cox1 and cox2) and tandem duplication mutations in noncoding regions. Our results showed the first case of intraspecific variation in chlorophytan mitogenomes and provided further genomic data for the undersampled Ulvophyceae.  相似文献   

18.
We characterized the complete mitogenome of Pipistrellus coromandra (Indian pipistrelle) for comparative analysis of mitogenomes and for resolving the phylogenetic relationship of four tribes in the subfamily Vespertilioninae. The mitogenome size of P. coromandra was 17,153?bp, with a control region and a typical set of 37 mitochondrial genes. The nucleotide composition of the P. coromandra mitogenome showed an AT bias with a nucleotide composition of 33.5% A, 30.7% T, 13.3% G, and 22.5% C. The mitochondrial protein-coding genes in P. coromandra use the standard start codon (ATN), two stop codons (TAA and AGA), and two incomplete stop codons (TA- and T--). The intertribal relationship of four tribes was highly resolved from the phylogenetic analysis of mitogenome sequences.  相似文献   

19.
Members of the Nanorana genus (family Dicroglossidae) are often referred to as excellent model species with which to study amphibian adaptations to extreme environments and also as excellent keystone taxa for providing insights into the evolution of the Dicroglossidae. However, a complete mitochondrial genome is currently only available for Nanorana pleskei. Thus, we analyzed the complete mitochondrial genomes of Nanorana parkeri and Nanorana ventripunctata to investigate their evolutionary relationships within Nanorana and their phylogenetic position in the family Dicroglossidae. Our results showed that the genomes of N. parkeri (17,837 bp) and N. ventripunctata (18,373 bp) encode 13 protein‐coding genes (PCGs), two ribosomal RNA genes, 23 transfer RNA (tRNA) genes, and a noncoding control region. Overall sequences and genome structure of the two species showed high degree of similarity with N. pleskei, although the motif structures and repeat sequences of the putative control region showed clear differences among these three Nanorana species. In addition, a tandem repeat of the tRNA‐Met gene was found located between the tRNA‐Gln and ND2 genes. On both the 5′ and 3′‐sides, the control region possessed distinct repeat regions; however, the CSB‐2 motif was not found in N. pleskei. Based on the nucleotide sequences of 13 PCGs, our phylogenetic analyses, using Bayesian inference and maximum‐likelihood methods, illustrate the taxonomic status of Nanorana with robust support showing that N. ventripunctata and N. pleskei are more closely related than they are to N. parkeri. In conclusion, our analyses provide a more robust and reliable perspective on the evolutionary history of Dicroglossidae than earlier analyses, which used only a single species (N. pleskei).  相似文献   

20.

Ophiocordycipitaceae is a diverse fungal family comprising multiple ecologically, economically, medicinally, and culturally important fungal species; however, only four species of the family have available mitochondrial genomes (mitogenomes). In this study, the complete mitogenome of the nematode endoparasitic fungus Hirsutella vermicola in Ophiocordycipitaceae was sequenced, and a comparative mitogenomic analysis of Ophiocordycipitaceae was performed. We found that the 53,793-bp circular mitogenome of H. vermicola, except for standard fungal mitochondrial genes, harbors seven introns acquired possibly through lateral transfer from other fungi and three free-standing open reading frames (ORFs) coding for hypothetical proteins. Phylogenetic analysis based on concatenated mitochondrial protein sequences confirmed its placement in Ophiocordycipitaceae. Comparison on five mitogenomes of Ophiocordycipitaceae revealed great variation on their sizes, from 35.2 kb in Tolypocladium ophioglossoides to 157.5 kb in Ophiocordyceps sinensis, mainly due to variable numbers of introns (from 7 to 54) as well as variable lengths of intergenic regions. The five mitogenomes, however, are highly syntenic to each other in terms of gene order, the presence of an intronic ORF encoding ribosomal protein S3 within rnl, and the nad2/nad3 joining pattern. Our study is the first report of the mitogenome of H. vermicola and has facilitated the understanding of mitogenome evolution of Ophiocordycipitaceae.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号