首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Generalist predators are capable of selective foraging, but are predicted to feed in close proportion to prey availability to maximize energetic intake especially when overall prey availability is low. By extension, they are also expected to feed in a more frequency‐dependent manner during winter compared to the more favourable foraging conditions during spring, summer and fall seasons. For 18 months, we observed the foraging patterns of forest‐dwelling wolf spiders from the genus Schizocosa (Araneae: Lycosidae) using PCR‐based gut‐content analysis and simultaneously monitored the activity densities of two common prey: springtails (Collembola) and flies (Diptera). Rates of prey detection within spider guts relative to rates of prey collected in traps were estimated using Roualdes’ cst model and compared using various linear contrasts to make inferences pertaining to seasonal prey selectivity. Results indicated spiders foraged selectively over the course of the study, contrary to predictions derived from optimal foraging theory. Even during winter, with overall low prey densities, the relative rates of predation compared to available prey differed significantly over time and by prey group. Moreover, these spiders appeared to diversify their diets; the least abundant prey group was consistently overrepresented in the diet within a given season. We suggest that foraging in generalist predators is not necessarily restricted to frequency dependency during winter. In fact, foraging motives other than energy maximization, such as a more nutrient‐focused strategy, may also be optimal for generalist predators during prey‐scarce winters.  相似文献   

3.
Molecular techniques have become an important tool to empirically assess feeding interactions. The increased usage of next‐generation sequencing approaches has stressed the need of fast DNA extraction that does not compromise DNA quality. Dietary samples here pose a particular challenge, as these demand high‐quality DNA extraction procedures for obtaining the minute quantities of short‐fragmented food DNA. Automatic high‐throughput procedures significantly decrease time and costs and allow for standardization of extracting total DNA. However, these approaches have not yet been evaluated for dietary samples. We tested the efficiency of an automatic DNA extraction platform and a traditional CTAB protocol, employing a variety of dietary samples including invertebrate whole‐body extracts as well as invertebrate and vertebrate gut content samples and feces. Extraction efficacy was quantified using the proportions of successful PCR amplifications of both total and prey DNA, and cost was estimated in terms of time and material expense. For extraction of total DNA, the automated platform performed better for both invertebrate and vertebrate samples. This was also true for prey detection in vertebrate samples. For the dietary analysis in invertebrates, there is still room for improvement when using the high‐throughput system for optimal DNA yields. Overall, the automated DNA extraction system turned out as a promising alternative to labor‐intensive, low‐throughput manual extraction methods such as CTAB. It is opening up the opportunity for an extensive use of this cost‐efficient and innovative methodology at low contamination risk also in trophic ecology.  相似文献   

4.
  1. Variation in predator diet is a critical aspect of food web stability, health, and population dynamics of predator/ prey communities. Quantifying diet, particularly among cryptic species, is extremely challenging, however, and differentiation between demographic subsets of populations is often overlooked.
  2. We used prey remains and data taken postmortem from otter Lutra lutra to determine the extent to which dietary variation in a top predator was associated with biotic, spatial, and temporal factors.
  3. Biotic data (e.g., sex, weight, and length) and stomach contents were taken from 610 otters found dead across England and Wales between 1994 and 2010. Prey remains were identified to species where possible, using published keys and reference materials. Multi‐model inference followed by model prediction was applied to test for and visualize the nature of associations.
  4. Evidence for widespread decline in the consumption of eels (Anguilla anguilla) reflected known eel population declines. An association between eel consumption and otter body condition suggested negative consequences for otter nutrition. Consumption of Cottus gobio and stickleback spp. increased, but was unlikely to compensate (there was no association with body condition). More otters with empty stomachs were found over time. Otter sex, body length, and age‐class were important biotic predictors of the prey species found, and season, region, and distance from the coast were important abiotic predictors.
  5. Our study is unique in its multivariate nature, broad spatial scale, and long‐term dataset. Inclusion of biotic data allowed us to reveal important differences in costs and benefits of different prey types, and differences between demographic subsets of the population, overlaid on spatial and temporal variation. Such complexities in otter diet are likely to be paralleled in other predators, and detailed characterization of diet should not be overlooked in efforts to conserve wild populations.
  相似文献   

5.
We examined the effects of the presence of plant allelochemicals in prey diet, prey availability and supplemental plant material on the growth of the generalist predator Podisus maculiventris (Hemiptera: Pentatomidae). We tested two different nymphal stages of this predator. Third to fourth instar nymphs and fifth instar nymphs were fed a diet of prey (Manduca sexta larvae, Lepidoptera: Sphingidae) without allelochemicals in their diet or prey fed maximal levels of allelochemicals (tomatine, rutin and chlorogenic acid) found in their host plant (Lycopersicon esculentum). The nymphs were fed prey ad libitum, once every three days, or once every five days. They were given either no supplemental plant material or a 2 cm slice of green bean pod (Phaseolus vulgaris). We also conducted another experiment with fifth instar nymphs using the same conditions, except that mean levels of allelochemicals found in the host plant were fed to prey instead of maximal levels and the prey were provided either once a day or once every five days. For all experiments, prey scarcity depressed developmental rate, weight gain and relative growth rate. Overall, there was no negative effect of allelochemicals in the diet of the prey on these variables when predators were supplied with an excess of prey, but allelochemicals in the prey diet negatively affected these predators when prey were scarce. The addition of plant material to the diet of third to fourth instar nymphs did not have any effect on developmental rate, final dry weight, or relative growth rate. However, for fifth instar nymphs, the addition of plant material negatively affected these variables. Thus, the addition of plant material to the diet of the nymphs did not alleviate the negative effects of prey scarcity or allelochemicals in prey diet.  相似文献   

6.
1. In order to understand the relative importance of prey quality and mobility in indirect interactions among alternative prey that are mediated by a shared natural enemy, the nutritional quality of two common prey for a generalist insect predator along with the predator's relative preference for these prey was determined. 2. Eggs of the corn earworm Helicoverpa zea (Lepidoptera: Noctuidae) were nutritionally superior to pea aphids Acyrthosiphum pisum (Homoptera: Aphididae) as prey for big‐eyed bugs Geocoris punctipes (Heteroptera: Geocoridae). Big‐eyed bugs survived four times as long when fed corn earworm eggs than when fed pea aphids. Furthermore, only big‐eyed bugs fed corn earworm eggs completed development and reached adulthood. 3. In two separate choice experiments, however, big‐eyed bugs consistently attacked the nutritionally inferior prey, pea aphids, more frequently than the nutritionally superior prey, corn earworm eggs. 4. Prey mobility, not prey nutritional quality, seems to be the most important criterion used by big‐eyed bugs to select prey. Big‐eyed bugs attacked mobile aphids preferentially when given a choice between mobile and immobilised aphids. 5. Prey behaviour also mediated indirect interactions between these two prey species. The presence of mobile pea aphids as alternative prey benefited corn earworms indirectly by reducing the consumption of corn earworm eggs by big‐eyed bugs. The presence of immobilised pea aphids, however, did not benefit corn earworms indirectly because the consumption of corn earworm eggs by big‐eyed bugs was not reduced when they were present. 6. These results suggest that the prey preferences of generalist insect predators mediate indirect interactions among prey species and ultimately affect the population dynamics of the predator and prey species. Understanding the prey preferences of generalist insect predators is essential to predict accurately the efficacy of these insects as biological control agents.  相似文献   

7.
One of the most difficult interactions to observe in nature is the relationship between a predator and its prey. When direct observations are impossible, we rely on morphological classification of prey remains, although this is particularly challenging among generalist predators whose faeces contain mixed and degraded prey fragments. In this investigation, we used a polymerase chain reaction and sequence-based technique to identify prey fragments in the guano of the generalist insectivore, the eastern red bat ( Lasiurus borealis ), and evaluate several hypotheses about prey selection and prey defences. The interaction between bats and insects is of significant evolutionary interest because of the adaptive nature of insect hearing against echolocation. However, measuring the successes of predator tactics or particular prey defences is limited because we cannot normally identify these digested prey fragments beyond order or family. Using a molecular approach, we recovered sequences from 89% of the fragments tested, and through comparison to a reference database of sequences, we were able to identify 127 different species of prey. Our results indicate that despite the robust jaws of L. borealis , most prey taxa were softer-bodied Lepidoptera. Surprisingly, more than 60% of the prey species were tympanate, with ears thought to afford protection against these echolocating bats. Moths of the family Arctiidae, which employ multiple defensive strategies, were not detected as a significant dietary component. Our results provide an unprecedented level of detail for the study of predator–prey relationships in bats and demonstrate the advantages which molecular tools can provide in investigations of complex ecological systems and food-web relationships.  相似文献   

8.
9.
Molecular methods allow noninvasive assessment of vertebrate predator–prey systems at high taxonomic resolution by examining dietary samples such as faeces and pellets. To facilitate the interpretation of field‐derived data, feeding trials, investigating the impacts of biological, methodological and environmental factors on prey DNA detection, have been conducted. The effect of meal size, however, has not yet been explicitly considered for vertebrate consumers. Moreover, different noninvasively obtained sample types remain to be compared in such experiments. Here, we present a feeding trial on abundant piscivorous birds, Great Cormorants (Phalacrocorax carbo), to assess meal size effects on postfeeding prey DNA detection success. Faeces and pellets were sampled twice a day after the feed of large (350–540 g), medium (190–345 g) and small (15–170 g) fish meals contributing either a large (>79%) or small (<38%) share to the daily consumption. Samples were examined for prey DNA and fish hard parts. Molecular analysis of faeces revealed that both large meal size and share had a significantly positive effect on prey DNA detection rate postfeeding. Furthermore, large meals were detectable for a significantly longer time span with a detection limit at ~76 hr and a 50% detection probability at ~32 hr postfeeding. In pellets, molecular methods reliably identified the meal consumed the previous day, which was not possible via morphological analysis or when examining individual faeces. The less reliable prey DNA detection of small meals or meal shares in faeces signifies the importance of large numbers of dietary samples to obtain reliable trophic data.  相似文献   

10.
Under natural conditions, generalist predatory insects have to cope with a variety of potential prey species that are not all equally suitable. Under these circumstances, learning may be adaptive if it allows adjustment to variations in resource quality and availability. Under laboratory conditions, we examined the learning ability and memory in the prey selection process of larvae of the predatory coccinellid Coleomegilla maculata ssp. lengi Timberlake (Coleoptera: Coccinellidae). Using choice tests, we studied prey rejection behaviour of C. maculata fourth instars towards prey of different quality and we also tested the influence of hunger and prior experience with other food types on the prey rejection behaviour of coccinellid larvae. Coleomegilla maculata larvae gradually changed their behaviour and rejected low‐quality hosts more frequently, whereas high‐quality hosts were nearly always accepted. After 48 h, the learned behaviour appeared to be partially forgotten. Hunger and experience with other food types prior to the test had little effect on the gradual change of behaviour but the quality of the food ingested influenced the initial level of prey rejection. Our results demonstrate that (1) C. maculata larvae can adjust their prey selection behaviour with experience to reject progressively less suitable prey, and (2) previous experience with other prey types can influence their initial preference.  相似文献   

11.
Intraguild predation (IGP) has been increasingly recognized as an important interaction in ecological systems over the past two decades, and remarkable insights have been gained into its nature and prevalence. We have developed a technique using molecular gut-content analysis to compare the rate of IGP between closely related species of coccinellid beetles (lady beetles or ladybirds), which had been previously known to prey upon one another. We first developed PCR primers for each of four lady beetle species: Harmonia axyridis, Coccinella septempunctata, Coleomegilla maculata and Propylea quatuordecimpunctata. We next determined the prey DNA detection success over time (DS(50) ) for each combination of interacting species following a meal. We found that DS(50) values varied greatly between predator-prey combinations, ranging from 5.2 to 19.3 h. As a result, general patterns of detection times based upon predator or prey species alone are not discernable. We used the DS(50) values to correct field data to demonstrate the importance of compensation for detection times that are specific to particular predator-prey combinations.  相似文献   

12.
13.
DNA-based gut content analysis has become an important tool for unravelling feeding interactions in invertebrate communities under natural conditions. It usually implies killing of the consumer and extracting the DNA from its food, using either the whole animal or its dissected gut. This post-mortem approach, however, is not suitable for investigating the diet of rare or protected species and also prohibits tracking individual dietary preferences as each consumer can provide trophic information only once. Moreover, removing large numbers of consumers from a habitat for analysis might critically change population densities and affect species interactions. Here, we present DNA-based analysis of invertebrate regurgitates, a novel approach to overcome these limitations. Conducting feeding experiments where adult Poecilus cupreus (Coleoptera: Carabidae) were fed with larvae of Amphimallon solstitiale (Coleoptera: Scarabaeidae), we show that detection success in regurgitates compared to samples prepared from whole beetles was similar or significantly enhanced for small/medium and large prey DNA fragments, respectively. Prey DNA detection success remained high in regurgitates stored in ethanol for 21 months at room temperature prior to DNA extraction. We conclude that in those invertebrates where regurgitates can be obtained, examination of food DNA in regurgitates offers many advantages over conventional post-mortem gut content analysis.  相似文献   

14.
Reconstructing the diets of pinnipeds by visually identifying prey remains recovered in faecal samples is challenging because of differences in digestion and passage rates of hard parts. Analysing the soft-matrix of faecal material using DNA-based techniques is an alternative means to identify prey species consumed, but published techniques are largely nonquantitative, which limits their usefulness for some applications. We further developed and validated a real-time PCR technique using species-specific mitochondrial DNA primers to quantify the proportion of prey in the diets of Steller sea lions (Eumetopias jubatus), a pinniped species thought to be facing significant diet related challenges in the North Pacific. We first demonstrated that the proportions of prey tissue DNA in mixtures of DNA isolated from four prey species could be estimated within a margin of ~ 12% of the percent in the mix. These prey species included herring Clupea palasii, eulachon Thaleichthyes pacificus, squid Loligo opalescens and rosethorn rockfish Sebastes helvomaculatus. We then applied real-time PCR to DNA extracted from faecal samples obtained from Steller sea lions in captivity that were fed 11 different combinations of herring, eulachon, squid and Pacific ocean perch rockfish (Sebastes alutus), ranging from 7% to 75% contributions per meal (by wet weight). The difference between the average percentage estimated by real-time PCR and the percentage of prey consumed was generally <12% for all diets fed. Our findings indicate that real-time PCR of faecal DNA can detect the approximate relative quantity of prey consumed for complex diets and prey species, including cephalopods and fish.  相似文献   

15.
Predicting the dynamics of animal populations with different life histories requires careful understanding of demographic responses to multifaceted aspects of global changes, such as climate and trophic interactions. Continent‐scale dampening of vole population cycles, keystone herbivores in many ecosystems, has been recently documented across Europe. However, its impact on guilds of vole‐eating predators remains unknown. To quantify this impact, we used a 27‐year study of an avian predator (tawny owl) and its main prey (field vole) collected in Kielder Forest (UK) where vole dynamics shifted from a high‐ to a low‐amplitude fluctuation regime in the mid‐1990s. We measured the functional responses of four demographic rates to changes in prey dynamics and winter climate, characterized by wintertime North Atlantic Oscillation (wNAO). First‐year and adult survival were positively affected by vole density in autumn but relatively insensitive to wNAO. The probability of breeding and number of fledglings were higher in years with high spring vole densities and negative wNAO (i.e. colder and drier winters). These functional responses were incorporated into a stochastic population model. The size of the predator population was projected under scenarios combining prey dynamics and winter climate to test whether climate buffers or alternatively magnifies the impact of changes in prey dynamics. We found the observed dampening vole cycles, characterized by low spring densities, drastically reduced the breeding probability of predators. Our results illustrate that (i) change in trophic interactions can override direct climate change effect; and (ii) the demographic resilience entailed by longevity and the occurrence of a floater stage may be insufficient to buffer hypothesized environmental changes. Ultimately, dampened prey cycles would drive our owl local population towards extinction, with winter climate regimes only altering persistence time. These results suggest that other vole‐eating predators are likely to be threatened by dampening vole cycles throughout Europe.  相似文献   

16.
1. Studies of the impact of predator diversity on biological pest control have shown idiosyncratic results. This is often assumed to be as a result of differences among systems in the importance of predator–predator interactions such as facilitation and intraguild predation. The frequency of such interactions may be altered by prey availability and structural complexity. A direct assessment of interactions among predators is needed for a better understanding of the mechanisms affecting prey abundance by complex predator communities. 2. In a field cage experiment, the effect of increased predator diversity (single species vs. three‐species assemblage) and the presence of weeds (providing structural complexity) on the biological control of cereal aphids were tested and the mechanisms involved were investigated using molecular gut content analysis. 3. The impact of the three‐predator species assemblages of aphid populations was found to be similar to those of the single‐predator species treatments, and the presence or absence of weeds did not alter the patterns observed. This suggests that both predator facilitation and intraguild predation were absent or weak in this system, or that these interactions had counteracting effects on prey suppression. Molecular gut content analysis of predators provided little evidence for the latter hypothesis: predator facilitation was not detected and intraguild predation occurred at a low frequency. 4. The present study suggests additive effects of predators and, therefore, that predator diversity per se neither strengthens nor weakens the biological control of aphids in this system.  相似文献   

17.
Predator–prey interactions are critical in understanding how communities function. However, we need to describe intraspecific variation in diet to accurately depict those interactions. Harbor seals (Phoca vitulina) are an abundant marine predator that prey on species of conservation concern. We estimated intrapopulation feeding diversity (variation in feeding habits between individuals of the same species) of harbor seals in the Salish Sea. Estimates of feeding diversity were examined relative to sex, month, and location using a novel approach that combined molecular techniques, repeated cross‐sectional sampling of scat, and a specialization metric (within‐individual consistency in diet measured by the Proportional Similarity Index ()). Based on 1,083 scat samples collected from five haul‐out sites during four nonsequential years, we quantified diet using metabarcoding techniques and determined the sex of the scat depositor using a molecular assay. Results suggest that intrapopulation feeding diversity was present. Specialization was high over short periods (24–48 hr,  = 0.392, 95% CI = 0.013, R = 100,000) and variable in time and space. Females showed more specialization than males, particularly during summer and fall. Additionally, demersal and benthic prey species were correlated with more specialized diets. The latter finding suggests that this type of prey likely requires specific foraging strategies and that there are trade‐offs between pelagic and benthic foraging styles for harbor seals. This differential feeding on prey species, as well as between sexes of harbor seals, indicates that predator–prey interactions in harbor seals are complex and that each sex may have a different impact on species of conservation concern. As such, describing intrapopulation feeding diversity may unravel hitherto unknown complex predator–prey interactions in the community.  相似文献   

18.
19.
As one of the most abundant predators of insects in terrestrial ecosystems, spiders have long received much attention from agricultural scientists and ecologists. Do spiders have a certain controlling effect on the main insect pests of concern in farmland ecosystems? Answering this question requires us to fully understand the prey spectrum of spiders. Next‐generation sequencing (NGS) has been successfully employed to analyze spider prey spectra. However, the high sequencing costs make it difficult to analyze the prey spectrum of various spider species with large samples in a given farmland ecosystem. We performed a comparative analysis of the prey spectra of Ovia alboannulata (Araneae, Lycosidae) using NGS with individual and mixed DNA samples to demonstrate which treatment was better for determining the spider prey spectra in the field. We collected spider individuals from tea plantations, and two treatments were then carried out: (1) The DNA was extracted from the spiders individually and then sequenced separately (DESISS) and (2) the DNA was extracted from the spiders individually and then mixed and sequenced (DESIMS). The results showed that the number of prey families obtained by the DESISS treatment was approximately twice that obtained by the DESIMS treatment. Therefore, the DESIMS treatment greatly underestimated the prey composition of the spiders, although its sequencing costs were obviously lower. However, the relative abundance of prey sequences detected in the two treatments was slightly different only at the family level. Therefore, we concluded that if our purpose were to obtain the most accurate prey spectrum of the spiders, the DESISS treatment would be the best choice. However, if our purpose were to obtain only the relative abundance of prey sequences of the spiders, the DESIMS treatment would also be an option. The present study provides an important reference for choosing applicable methods to analyze the prey spectra and food web compositions of animal in ecosystems.  相似文献   

20.
Diet studies are fundamental for understanding trophic connections in marine ecosystems. In the southeastern US, the common bottlenose dolphin Tursiops truncatus is the predominant marine mammal in coastal waters, but its role as a top predator has received little attention. Diet studies of piscivorous predators, like bottlenose dolphins, start with assessing prey otoliths recovered from stomachs or feces, but digestive erosion hampers species identification and underestimates fish weight (FW). To compensate, FW is often estimated from the least affected otoliths and scaled to other otoliths, which also introduces bias. The sulcus, an otolith surface feature, has a species‐specific shape of its ostium and caudal extents, which is within the otolith edge for some species. We explored whether the sulcus could improve species identification and estimation of prey size using a case study of four sciaenid species targeted by fisheries and bottlenose dolphins in North Carolina. Methods were assessed first on otoliths from a reference collection (n = 421) and applied to prey otoliths (n = 5,308) recovered from 120 stomachs of dead stranded dolphins. We demonstrated in reference‐collection otoliths that cauda to sulcus length (CL:SL) could discriminate between spotted seatrout (Cynoscion nebulosus) and weakfish (Cynoscion regalis) (classification accuracy = 0.98). This method confirmed for the first time predation of spotted seatrout by bottlenose dolphins in North Carolina. Using predictive models developed from reference‐collection otoliths, we provided evidence that digestion affects otolith length more than sulcus or cauda length, making the latter better predictors. Lastly, we explored scenarios of calculating total consumed biomass across degrees of digestion. A suggested approach was for the least digested otoliths to be scaled to other otoliths iteratively from within the same stomach, month, or season as samples allow. Using the otolith sulcus helped overcome challenges of species identification and fish size estimation, indicating their potential use in other diet studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号