首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
During the most recent decade, environmental DNA metabarcoding approaches have been both developed and improved to minimize the biological and technical biases in these protocols. However, challenges remain, notably those relating to primer design. In the current study, we comprehensively assessed the performance of ten COI and two 16S primer pairs for eDNA metabarcoding, including novel and previously published primers. We used a combined approach of in silico, in vivo‐mock community (33 arthropod taxa from 16 orders), and guano‐based analyses to identify primer sets that would maximize arthropod detection and taxonomic identification, successfully identify the predator (bat) species, and minimize the time and financial costs of the experiment. We focused on two insectivorous bat species that live together in mixed colonies: the greater horseshoe bat (Rhinolophus ferrumequinum) and Geoffroy's bat (Myotis emarginatus). We found that primer degeneracy is the main factor that influences arthropod detection in silico and mock community analyses, while amplicon length is critical for the detection of arthropods from degraded DNA samples. Our guano‐based results highlight the importance of detecting and identifying both predator and prey, as guano samples can be contaminated by other insectivorous species. Moreover, we demonstrate that amplifying bat DNA does not reduce the primers' capacity to detect arthropods. We therefore recommend the simultaneous identification of predator and prey. Finally, our results suggest that up to one‐third of prey occurrences may be unreliable and are probably not of primary interest in diet studies, which may decrease the relevance of combining several primer sets instead of using a single efficient one. In conclusion, this study provides a pragmatic framework for eDNA primer selection with respect to scientific and methodological constraints.  相似文献   

2.
The main objective of this work was to develop and validate a robust and reliable “from‐benchtop‐to‐desktop” metabarcoding workflow to investigate the diet of invertebrate‐eaters. We applied our workflow to faecal DNA samples of an invertebrate‐eating fish species. A fragment of the cytochrome c oxidase I (COI) gene was amplified by combining two minibarcoding primer sets to maximize the taxonomic coverage. Amplicons were sequenced by an Illumina MiSeq platform. We developed a filtering approach based on a series of nonarbitrary thresholds established from control samples and from molecular replicates to address the elimination of cross‐contamination, PCR/sequencing errors and mistagging artefacts. This resulted in a conservative and informative metabarcoding data set. We developed a taxonomic assignment procedure that combines different approaches and that allowed the identification of ~75% of invertebrate COI variants to the species level. Moreover, based on the diversity of the variants, we introduced a semiquantitative statistic in our diet study, the minimum number of individuals, which is based on the number of distinct variants in each sample. The metabarcoding approach described in this article may guide future diet studies that aim to produce robust data sets associated with a fine and accurate identification of prey items.  相似文献   

3.
Insectivorous bats are efficient predators of pest arthropods in agroecosystems. This pest control service has been estimated to be worth billions of dollars to agriculture globally. However, few studies have explicitly investigated the composition and abundance of dietary prey items consumed or assessed the ratio of pest and beneficial arthropods, making it difficult to evaluate the quality of the pest control service provided. In this study, we used metabarcoding to identify the prey items eaten by insectivorous bats over the cotton‐growing season in an intensive cropping region in northern New South Wales, Australia. We found that seven species of insectivorous bat (n = 58) consumed 728 prey species, 13 of which represented around 50% of total prey abundance consumed. Importantly, the identified prey items included major arthropod pests, comprising 65% of prey relative abundance and 13% of prey species recorded. Significant cotton pests such as Helicoverpa punctigera (Australian bollworm) and Achyra affinitalis (cotton webspinner) were detected in at least 76% of bat fecal samples, with Teleogryllus oceanicus (field crickets), Helicoverpa armigera (cotton bollworm), and Crocidosema plebejana (cotton tipworm) detected in 55% of bat fecal samples. Our results indicate that insectivorous bats are selective predators that exploit a narrow selection of preferred pest taxa and potentially play an important role in controlling lepidopteran pests on cotton farms. Our study provides crucial information for farmers to determine the service or disservice provided by insectivorous bats in relation to crops, for on‐farm decision making.  相似文献   

4.
Terrestrial arthropods comprise the most species‐rich communities on Earth, and grassland flowers provide resources for hundreds of thousands of arthropod species. Diverse grassland ecosystems worldwide are threatened by various types of environmental change, which has led to decline in arthropod diversity. At the same time, monitoring grassland arthropod diversity is time‐consuming and strictly dependent on declining taxonomic expertise. Environmental DNA (eDNA) metabarcoding of complex samples has demonstrated that information on species compositions can be efficiently and non‐invasively obtained. Here, we test the potential of wild flowers as a novel source of arthropod eDNA. We performed eDNA metabarcoding of flowers from several different plant species using two sets of generic primers, targeting the mitochondrial genes 16S rRNA and COI. Our results show that terrestrial arthropod species leave traces of DNA on the flowers that they interact with. We obtained eDNA from at least 135 arthropod species in 67 families and 14 orders, together representing diverse ecological groups including pollinators, parasitoids, gall inducers, predators, and phytophagous species. Arthropod communities clustered together according to plant species. Our data also indicate that this experiment was not exhaustive, and that an even higher arthropod richness could be obtained using this eDNA approach. Overall, our results demonstrate that it is possible to obtain information on diverse communities of insects and other terrestrial arthropods from eDNA metabarcoding of wild flowers. This novel source of eDNA represents a vast potential for addressing fundamental research questions in ecology, obtaining data on cryptic and unknown species of plant‐associated arthropods, as well as applied research on pest management or conservation of endangered species such as wild pollinators.  相似文献   

5.
The application of DNA barcoding to dietary studies allows prey taxa to be identified in the absence of morphological evidence and permits a greater resolution of prey identity than is possible through direct examination of faecal material. For insectivorous bats, which typically eat a great diversity of prey and which chew and digest their prey thoroughly, DNA-based approaches to diet analysis may provide the only means of assessing the range and diversity of prey within faeces. Here, we investigated the effectiveness of DNA barcoding in determining the diets of bat species that specialize in eating different taxa of arthropod prey. We designed and tested a novel taxon-specific primer set and examined the performance of short barcode sequences in resolving prey species. We recovered prey DNA from all faecal samples and subsequent cloning and sequencing of PCR products, followed by a comparison of sequences to a reference database, provided species-level identifications for 149/207 (72%) clones. We detected a phylogenetically broad range of prey while completely avoiding detection of nontarget groups. In total, 37 unique prey taxa were identified from 15 faecal samples. A comparison of DNA data with parallel morphological analyses revealed a close correlation between the two methods. However, the sensitivity and taxonomic resolution of the DNA method were far superior. The methodology developed here provides new opportunities for the study of bat diets and will be of great benefit to the conservation of these ecologically important predators.  相似文献   

6.
Optimal foraging theory predicts that predators are selective when faced with abundant prey, but become less picky when prey gets sparse. Insectivorous bats in temperate regions are faced with the challenge of building up fat reserves vital for hibernation during a period of decreasing arthropod abundances. According to optimal foraging theory, prehibernating bats should adopt a less selective feeding behaviour – yet empirical studies have revealed many apparently generalized species to be composed of specialist individuals. Targeting the diet of the bat Myotis daubentonii, we used a combination of molecular techniques to test for seasonal changes in prey selectivity and individual‐level variation in prey preferences. DNA metabarcoding was used to characterize both the prey contents of bat droppings and the insect community available as prey. To test for dietary differences among M. daubentonii individuals, we used ten microsatellite loci to assign droppings to individual bats. The comparison between consumed and available prey revealed a preference for certain prey items regardless of availability. Nonbiting midges (Chironomidae) remained the most highly consumed prey at all times, despite a significant increase in the availability of black flies (Simuliidae) towards the end of the season. The bats sampled showed no evidence of individual specialization in dietary preferences. Overall, our approach offers little support for optimal foraging theory. Thus, it shows how novel combinations of genetic markers can be used to test general theory, targeting patterns at both the level of prey communities and individual predators.  相似文献   

7.
In diet metabarcoding analyses, insufficient taxonomic coverage of PCR primer sets generates false negatives that may dramatically distort biodiversity estimates. In this paper, we investigated the taxonomic coverage and complementarity of three cytochrome c oxidase subunit I gene (COI) primer sets based on in silico analyses and we conducted an in vivo evaluation using fecal and spider web samples from different invertivores, environments, and geographic locations. Our results underline the lack of predictability of both the coverage and complementarity of individual primer sets: (a) sharp discrepancies exist observed between in silico and in vivo analyses (to the detriment of in silico analyses); (b) both coverage and complementarity depend greatly on the predator and on the taxonomic level at which preys are considered; (c) primer sets’ complementarity is the greatest at fine taxonomic levels (molecular operational taxonomic units [MOTUs] and variants). We then formalized the “one‐locus‐several‐primer‐sets” (OLSP) strategy, that is, the use of several primer sets that target the same locus (here the first part of the COI gene) and the same group of taxa (here invertebrates). The proximal aim of the OLSP strategy is to minimize false negatives by increasing total coverage through multiple primer sets. We illustrate that the OLSP strategy is especially relevant from this perspective since distinct variants within the same MOTUs were not equally detected across all primer sets. Furthermore, the OLSP strategy produces largely overlapping and comparable sequences, which cannot be achieved when targeting different loci. This facilitates the use of haplotypic diversity information contained within metabarcoding datasets, for example, for phylogeography and finer analyses of prey–predator interactions.  相似文献   

8.
Ecological theory suggests that the coexistence of species is promoted by the partitioning of available resources, as in dietary niche partitioning where predators partition prey. Yet, the mechanisms underlying dietary niche partitioning are not always clear. We used fecal DNA metabarcoding to investigate the diets of seven nocturnal insectivorous bird and bat species. Low diet overlap (2%–22%) supported resource partitioning among all species. Differences in diet corresponded with species identity, prey detection method, and foraging behavior of predators. Insects with ultrasonic hearing capabilities were consumed significantly more often by birds than bats, consistent with an evolved avoidance of echolocating strategies. In turn, bats consumed a greater proportion of noneared insects such as spruce budworms. Overall, our results suggest that evolutionary interactions among bats and moths translate to dietary niche partitioning and coexistence among bats and nocturnal birds.  相似文献   

9.
DNA analysis of predator faeces using high‐throughput amplicon sequencing (HTS) enhances our understanding of predator–prey interactions. However, conclusions drawn from this technique are constrained by biases that occur in multiple steps of the HTS workflow. To better characterize insectivorous animal diets, we used DNA from a diverse set of arthropods to assess PCR biases of commonly used and novel primer pairs for the mitochondrial gene, cytochrome oxidase C subunit 1 (COI). We compared diversity recovered from HTS of bat guano samples using a commonly used primer pair “ZBJ” to results using the novel primer pair “ANML.” To parameterize our bioinformatics pipeline, we created an arthropod mock community consisting of single‐copy (cloned) COI sequences. To examine biases associated with both PCR and HTS, mock community members were combined in equimolar amounts both pre‐ and post‐PCR. We validated our system using guano from bats fed known diets and using composite samples of morphologically identified insects collected in pitfall traps. In PCR tests, the ANML primer pair amplified 58 of 59 arthropod taxa (98%), whereas ZBJ amplified 24–40 of 59 taxa (41%–68%). Furthermore, in an HTS comparison of field‐collected samples, the ANML primers detected nearly fourfold more arthropod taxa than the ZBJ primers. The additional arthropods detected include medically and economically relevant insect groups such as mosquitoes. Results revealed biases at both the PCR and sequencing levels, demonstrating the pitfalls associated with using HTS read numbers as proxies for abundance. The use of an arthropod mock community allowed for improved bioinformatics pipeline parameterization.  相似文献   

10.
The interaction between agricultural production and wildlife can shape, and even condition, the functioning of both systems. In this study, we i) explored the degree to which a widespread European bat, namely the common bent‐wing bat Miniopterus schreibersii, consumes crop‐damaging insects at a continental scale, and ii) tested whether its dietary niche is shaped by the extension and type of agricultural fields. We employed a dual‐primer DNA metabarcoding approach to characterize arthropod 16S and COI DNA sequences within bat faecal pellets collected across 16 Southern European localities, to first characterize the bat species’ dietary niche, second measure the incidence of agricultural pests across their ranges and third assess whether geographical dietary variation responds to climatic, landscape diversity, agriculture type and vegetation productivity factors. We detected 12 arthropod orders, among which lepidopterans were predominant. We identified >200 species, 44 of which are known to cause agricultural damage. Pest species were detected at all but one sampling site and in 94% of the analysed samples. Furthermore, the dietary diversity of M. schreibersii exhibited a negative linear relation with the area of intensive agricultural fields, thus suggesting crops restrict the dietary niche of bats to prey taxa associated with agricultural production within their foraging range. Overall, our results imply that M. schreibersii might be a valuable asset for biological pest suppression in a variety of agricultural productions and highlight the dynamic interplay between wildlife and agricultural systems.  相似文献   

11.
DNA metabarcoding is a promising approach for rapidly surveying biodiversity and is likely to become an important tool for measuring ecosystem responses to environmental change. Metabarcoding markers need sufficient taxonomic coverage to detect groups of interest, sufficient sequence divergence to resolve species, and will ideally indicate relative abundance of taxa present. We characterized zooplankton assemblages with three different metabarcoding markers (nuclear 18S rDNA, mitochondrial COI, and mitochondrial 16S rDNA) to compare their performance in terms of taxonomic coverage, taxonomic resolution, and correspondence between morphology‐ and DNA‐based identification. COI amplicons sequenced on separate runs showed that operational taxonomic units representing >0.1% of reads per sample were highly reproducible, although slightly more taxa were detected using a lower annealing temperature. Mitochondrial COI and nuclear 18S showed similar taxonomic coverage across zooplankton phyla. However, mitochondrial COI resolved up to threefold more taxa to species compared to 18S. All markers revealed similar patterns of beta‐diversity, although different taxa were identified as the greatest contributors to these patterns for 18S. For calanoid copepod families, all markers displayed a positive relationship between biomass and sequence reads, although the relationship was typically strongest for 18S. The use of COI for metabarcoding has been questioned due to lack of conserved primer‐binding sites. However, our results show the taxonomic coverage and resolution provided by degenerate COI primers, combined with a comparatively well‐developed reference sequence database, make them valuable metabarcoding markers for biodiversity assessment.  相似文献   

12.
13.
Insect metabarcoding has been mainly based on PCR amplification of short fragments within the “barcoding region” of the gene cytochrome oxidase I (COI). However, because of the variability of this gene, it has been difficult to design good universal PCR primers. Most primers used today are associated with gaps in the taxonomic coverage or amplification biases that make the results less reliable and impede the detection of species that are present in the sample. We identify new primers for insect metabarcoding using computational approaches (ecoprimers and degeprime ) applied to the most comprehensive reference databases of mitochondrial genomes of Hexapoda assembled to date. New primers are evaluated in silico against previously published primers in terms of taxonomic coverage and resolution of the corresponding amplicons. For the latter criterion, we propose a new index, exclusive taxonomic resolution, which is a more biologically meaningful measure than the standard index used today. Our results show that the best markers are found in the ribosomal RNA genes (12S and 16S); they resolve about 90% of the genetically distinct species in the reference database. Some markers in protein‐coding genes provide similar performance but only at much higher levels of primer degeneracy. Combining two of the best individual markers improves the effective taxonomic resolution with up to 10%. The resolution is strongly dependent on insect taxon: COI primers detect 40% of Hymenoptera, while 12S primers detect 12% of Collembola. Our results indicate that amplicon‐based metabarcoding of insect samples can be improved by choosing other primers than those commonly used today.  相似文献   

14.
Biomonitoring underpins the environmental assessment of freshwater ecosystems and guides management and conservation. Current methodology for surveys of (macro)invertebrates uses coarse taxonomic identification where species‐level resolution is difficult to obtain. Next‐generation sequencing of entire assemblages (metabarcoding) provides a new approach for species detection, but requires further validation. We used metabarcoding of invertebrate assemblages with two fragments of the cox1 “barcode” and partial nuclear ribosomal (SSU) genes, to assess the effects of a pesticide spill in the River Kennet (southern England). Operational taxonomic unit (OTU) recovery was tested under 72 parameters (read denoising, filtering, pair merging and clustering). Similar taxonomic profiles were obtained under a broad range of parameters. The SSU marker recovered Platyhelminthes and Nematoda, missed by cox1, while Rotifera were only amplified with cox1. A reference set was created from all available barcode entries for Arthropoda in the BOLD database and clustered into OTUs. The River Kennet metabarcoding produced matches to 207 of these reference OTUs, five times the number of species recognized with morphological monitoring. The increase was due to the following: greater taxonomic resolution (e.g., splitting a single morphotaxon “Chironomidae” into 55 named OTUs); splitting of Linnaean binomials into multiple molecular OTUs; and the use of a filtration‐flotation protocol for extraction of minute specimens (meiofauna). Community analyses revealed strong differences between “impacted” vs. “control” samples, detectable with each gene marker, for each major taxonomic group, and for meio‐ and macrofaunal samples separately. Thus, highly resolved taxonomic data can be extracted at a fraction of the time and cost of traditional nonmolecular methods, opening new avenues for freshwater invertebrate biodiversity monitoring and molecular ecology.  相似文献   

15.
Studies of insect assemblages are suited to the simultaneous DNA‐based identification of multiple taxa known as metabarcoding. To obtain accurate estimates of diversity, metabarcoding markers ideally possess appropriate taxonomic coverage to avoid PCR‐amplification bias, as well as sufficient sequence divergence to resolve species. We used in silico PCR to compare the taxonomic coverage and resolution of newly designed insect metabarcodes (targeting 16S) with that of existing markers [16S and cytochrome oxidase c subunit I (COI)] and then compared their efficiency in vitro. Existing metabarcoding primers amplified in silico <75% of insect species with complete mitochondrial genomes available, whereas new primers targeting 16S provided >90% coverage. Furthermore, metabarcodes targeting COI appeared to introduce taxonomic PCR‐amplification bias, typically amplifying a greater percentage of Lepidoptera and Diptera species, while failing to amplify certain orders in silico. To test whether bias predicted in silico was observed in vitro, we created an artificial DNA blend containing equal amounts of DNA from 14 species, representing 11 insect orders and one arachnid. We PCR‐amplified the blend using five primer sets, targeting either COI or 16S, with high‐throughput amplicon sequencing yielding more than 6 million reads. In vitro results typically corresponded to in silico PCR predictions, with newly designed 16S primers detecting 11 insect taxa present, thus providing equivalent or better taxonomic coverage than COI metabarcodes. Our results demonstrate that in silico PCR is a useful tool for predicting taxonomic bias in mixed template PCR and that researchers should be wary of potential bias when selecting metabarcoding markers.  相似文献   

16.
Different second‐generation sequencing technologies may have taxon‐specific biases when DNA metabarcoding prey in predator faeces. Our major objective was to examine differences in prey recovery from bat guano across two different sequencing workflows using the same faecal DNA extracts. We compared results between the Ion Torrent PGM and the Illumina MiSeq with similar library preparations and the same analysis pipeline. We focus on repeatability and provide an R Notebook in an effort towards transparency for future methodological improvements. Full documentation of each step enhances the accessibility of our analysis pipeline. We tagged DNA from insectivorous bat faecal samples, targeted the arthropod cytochrome c oxidase I minibarcode region and sequenced the product on both second‐generation sequencing platforms. We developed an analysis pipeline with a high operational taxonomic unit (OTU) clustering threshold (i.e., ≥98.5%) followed by copy number filtering to avoid merging rare but genetically similar prey into the same OTUs. With this workflow, we detected 297 unique prey taxa, of which 74% were identified at the species level. Of these, 104 (35%) prey OTUs were detected by both platforms, 176 (59%) OTUs were detected by the Illumina MiSeq system only, and 17 (6%) OTUs were detected using the Ion Torrent system only. Costs were similar between platforms but the Illumina MiSeq recovered six times more reads and four additional insect orders than did Ion Torrent. The considerations we outline are particularly important for long‐term ecological monitoring; a more standardized approach will facilitate comparisons between studies and allow faster recognition of changes within ecological communities.  相似文献   

17.
Understanding predator-prey dynamics is a fundamental task in the evaluation of the adaptive capacities of species. However, direct observations or morphological identification of fecal remains do not offer an effective way to study the dietary ecology of elusive species, such as nocturnal insectivorous bats. However, recent advances in molecular techniques have opened a new method for identifying prey species from fecal samples. In this study, we amplified species-specific mitochondrial COI fragments from fecal DNA extractions from 34 individual Daubenton’s bats (Myotis daubentonii) collected between 2008 and 2010 from southwestern Finland. Altogether, 128 different species of prey were identified based on a comprehensive local DNA reference library. In our study area, Daubenton’s bats feed most frequently on insects of the orders Diptera (found in the diet of 94% individuals), Trichoptera (69%) and Lepidoptera (63%). The most frequent dipteran family in the diet was Chironomidae, which was found in 31 of 34 individuals. Most common prey species were chironomids Microtendipes pedellus (found in 50% of bats), Glyptotendipes cauliginellus (44%), and Procladius ferrugineus (41%). For the first time, an accurate species level list of the diet of the insectivorous Daubenton’s bat (Myotis daubentonii) in Finland is presented. We report a generally applicable method for describing the arthropod diet of vertebrate predators. We compare public databases to a national database to highlight the importance of a local reference database.  相似文献   

18.
Arachnids are the most abundant land predators. Despite the importance of their functional roles as predators and the necessity to understand their diet for conservation, the trophic ecology of many arachnid species has not been sufficiently studied. In the case of the wandering spider, Phoneutria boliviensis F. O. Pickard‐Cambridge, 1897, only field and laboratory observational studies on their diet exist. By using a DNA metabarcoding approach, we compared the prey found in the gut content of males and females from three distant Colombian populations of P. boliviensis. By DNA metabarcoding of the cytochrome c oxidase subunit I (COI), we detected and identified 234 prey items (individual captured by the spider) belonging to 96 operational taxonomic units (OTUs), as prey for this wandering predator. Our results broaden the known diet of P. boliviensis with at least 75 prey taxa not previously registered in fieldwork or laboratory experimental trials. These results suggest that P. boliviensis feeds predominantly on invertebrates (Diptera, Lepidoptera, Coleoptera, and Orthoptera) and opportunistically on small squamates. Intersex and interpopulation differences were also observed. Assuming that prey preference does not vary between populations, these differences are likely associated with a higher local prey availability. Finally, we suggest that DNA metabarcoding can be used for evaluating subtle differences in the diet of distinct populations of P. boliviensis, particularly when predation records in the field cannot be established or quantified using direct observation.  相似文献   

19.
Metabarcoding diet analysis has become a valuable tool in animal ecology; however, co‐amplified predator sequences are not generally used for anything other than to validate predator identity. Exemplified by the common vampire bat, we demonstrate the use of metabarcoding to infer predator population structure alongside diet assessments. Growing populations of common vampire bats impact human, livestock and wildlife health in Latin America through transmission of pathogens, such as lethal rabies viruses. Techniques to determine large‐scale variation in vampire bat diet and bat population structure would empower locality‐ and species‐specific projections of disease transmission risks. However, previously used methods are not cost‐effective and efficient for large‐scale applications. Using bloodmeal and faecal samples from common vampire bats from coastal, Andean and Amazonian regions of Peru, we showcase metabarcoding as a scalable tool to assess vampire bat population structure and feeding preferences. Dietary metabarcoding was highly effective, detecting vertebrate prey in 93.2% of the samples. Bats predominantly preyed on domestic animals, but fed on tapirs at one Amazonian site. In addition, we identified arthropods in 9.3% of samples, likely reflecting consumption of ectoparasites. Using the same data, we document mitochondrial geographic population structure in the common vampire bat in Peru. Such simultaneous inference of vampire bat diet and population structure can enable new insights into the interplay between vampire bat ecology and disease transmission risks. Importantly, the methodology can be incorporated into metabarcoding diet studies of other animals to couple information on diet and population structure.  相似文献   

20.
Bats play an important role as predators of insect populations but are threatened by a variety of factors, including the loss of foraging habitat and insect declines. Knowledge on trophic interactions, foraging strategies, and hunting areas is key to understanding the ecology of bat species, to assess their impact on ecosystems and to optimize conservation strategies. We investigated seasonal trends in the diet of two nursery colonies of the serotine bat, Eptesicus serotinus, from an intensively farmed agricultural landscape in Germany. Using DNA-metabarcoding of food remains in bat droppings collected from May to July 2018, we identified 254 taxa of 13 arthropod orders to species or genus level, including numerous pest species. Our results indicate an equal use of Coleoptera, Diptera, and Lepidoptera, contradicting previous morphological dietary analyses that had shown beetles to be the most frequent prey. The dietary composition was seasonally highly variable and mainly determined by prey phenology. Dietary richness significantly increased throughout the sampling period, reflecting increasing insect activity with progressing season. Our findings demonstrate that E. serotinus is a generalist forager, linking different habitat types through trophic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号