首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few studies have examined capture and extraction methods for environmental DNA (eDNA) to identify techniques optimal for detection and quantification. In this study, precipitation, centrifugation and filtration eDNA capture methods and six commercially available DNA extraction kits were evaluated for their ability to detect and quantify common carp (Cyprinus carpio) mitochondrial DNA using quantitative PCR in a series of laboratory experiments. Filtration methods yielded the most carp eDNA, and a glass fibre (GF) filter performed better than a similar pore size polycarbonate (PC) filter. Smaller pore sized filters had higher regression slopes of biomass to eDNA, indicating that they were potentially more sensitive to changes in biomass. Comparison of DNA extraction kits showed that the MP Biomedicals FastDNA SPIN Kit yielded the most carp eDNA and was the most sensitive for detection purposes, despite minor inhibition. The MoBio PowerSoil DNA Isolation Kit had the lowest coefficient of variation in extraction efficiency between lake and well water and had no detectable inhibition, making it most suitable for comparisons across aquatic environments. Of the methods tested, we recommend using a 1.5 μm GF filter, followed by extraction with the MP Biomedicals FastDNA SPIN Kit for detection. For quantification of eDNA, filtration through a 0.2–0.6 μm pore size PC filter, followed by extraction with MoBio PowerSoil DNA Isolation Kit was optimal. These results are broadly applicable for laboratory studies on carps and potentially other cyprinids. The recommendations can also be used to inform choice of methodology for field studies.  相似文献   

2.
Invasive species pose a major threat to aquatic ecosystems. Their impact can be particularly severe in tropical regions, like those in northern Australia, where >20 invasive fish species are recorded. In temperate regions, environmental DNA (eDNA) technology is gaining momentum as a tool to detect aquatic pests, but the technology's effectiveness has not been fully explored in tropical systems with their unique climatic challenges (i.e. high turbidity, temperatures and ultraviolet light). In this study, we modified conventional eDNA protocols for use in tropical environments using the invasive fish, Mozambique tilapia (Oreochromis mossambicus) as a detection model. We evaluated the effects of high water temperatures and fish density on the detection of tilapia eDNA, using filters with larger pores to facilitate filtration. Large‐pore filters (20 μm) were effective in filtering turbid waters and retaining sufficient eDNA, whilst achieving filtration times of 2–3 min per 2‐L sample. High water temperatures, often experienced in the tropics (23, 29, 35 °C), did not affect eDNA degradation rates, although high temperatures (35 °C) did significantly increase fish eDNA shedding rates. We established a minimum detection limit for tilapia (1 fish/0.4 megalitres/after 4 days) and found that low water flow (3.17 L/s) into ponds with high fish density (>16 fish/0.4 megalitres) did not affect eDNA detection. These results demonstrate that eDNA technology can be effectively used in tropical ecosystems to detect invasive fish species.  相似文献   

3.
Environmental DNA (eDNA) is rapidly growing in popularity as a tool for community assessments and species detection. While eDNA approaches are now widely applied, there is not yet agreement on best practices for sample collection and processing. Investigators looking to integrate eDNA approaches into their research programme are required to examine a growing collection of disparate studies to make an often uncertain decision about which protocols best fit their needs. To promote the application of eDNA approaches and to encourage the generation of high‐quality data, here we review the most common techniques for the collection, preservation and extraction of metazoan eDNA from water samples. Specifically, we focus on experimental studies that compare various methods and outline the numerous challenges associated with eDNA. While the diverse applications of eDNA do not lend themselves to a one‐size‐fits‐all recommendation, in most cases, capture/concentration of eDNA on cellulose nitrate filters (with pore size determined by water turbidity), followed by storage of filters in Longmire's buffer and extraction with a DNeasy Blood & Tissue Kit (or similar) has been shown to provide sufficient, high‐quality DNA. However, we also emphasize the importance of testing and optimizing protocols for the system of interest.  相似文献   

4.
A membrane filtration technique with commercially available membrane filters (Millipore Corp.) was effective for the removal of Reiter treponemes from liquids such as fluorescent-antibody conjugates, to which the organisms are added for adsorption. Reiter treponemes from an 8-day culture were not microscopically detectable in filtrates through membranes with a pore diameter of 0.45 μm, but treponemes were demonstrated in the filtrate by cultural methods. No organisms of the 8-day culture passed through a membrane filter having a pore size of 0.22 μm, as determined by microscopy and culture. Culture data indicated that a filter with a pore size of 0.1 μm was necessary to prevent passage of treponemes from 4-day cultures. It is recommended that a membrane filter with a pore size of 0.22 μm or smaller be used for the removal of Reiter treponemes from suspensions and that the age of the culture be considered in choosing filter pore size.  相似文献   

5.
In studies on the biochemical compounds in phytoplankton, water samples generally are (pre-) filtered to retain the organisms for extraction. Such filters can be used for further investigations in microscopic or chromatographic (for example High-Performance-Liquid-Chromatography, HPLC) methods, while the filtrates can be used for nutrient or fluorometric measurements as well as for microscopic examinations. Which filter is chosen for a study often depends on its pore size, the costs and, in particular for HPLC measurements, on its chemical compatibility. In our study we compared the chlorophyll-a retention on the filters by HPLC as well as the fluorescence before and after filtration, and nutrient content of the filtrates. The filters we tested were of different material and with various pore sizes. Although Whatman GF/C and GF/F filters are preferred in phytoplankton studies, we found that the Nylon Membrane filter of 0.2 μm pore size provided the most consistent results in chlorophyll-a retention and the one of 0.45 μm pore size in nutrient investigations.  相似文献   

6.
Environmental DNA (eDNA) promises to ease noninvasive quantification of fish biomass or abundance, but its integration within conservation and fisheries management is currently limited by a lack of understanding of the influence of eDNA collection method and environmental conditions on eDNA concentrations in water samples. Water temperature is known to influence the metabolism of fish and consequently could strongly affect eDNA release rate. As water temperature varies in temperate regions (both seasonally and geographically), the unknown effect of water temperature on eDNA concentrations poses practical limitations on quantifying fish populations using eDNA from water samples. This study aimed to clarify how water temperature and the eDNA capture method alter the relationships between eDNA concentration and fish abundance/biomass. Water samples (1 L) were collected from 30 aquaria including triplicate of 0, 5, 10, 15 and 20 Brook Charr specimens at two different temperatures (7 °C and 14 °C). Water samples were filtered with five different types of filters. The eDNA concentration obtained by quantitative PCR (qPCR) varied significantly with fish abundance and biomass and types of filters (mixed‐design ANOVA,< 0.001). Results also show that fish released more eDNA in warm water than in cold water and that eDNA concentration better reflects fish abundance/biomass at high temperature. From a technical standpoint, higher levels of eDNA were captured with glass fibre (GF) filters than with mixed cellulose ester (MCE) filters and support the importance of adequate filters to quantify fish abundance based on the eDNA method. This study supports the importance of including water temperature in fish abundance/biomass prediction models based on eDNA.  相似文献   

7.
以实验室内的鲫(Carassius auratus)为研究对象,利用微滴式数字PCR(Droplet Digital PCR,ddPCR)定量技术,优化了鱼类环境DNA(Environmental DNA,eDNA)样本的捕获、提取和保存方法,并对免DNA提取的PCR直扩技术进行了探索.研究结果如下:(1)在同一孔径、...  相似文献   

8.
Environmental DNA (eDNA) analysis has recently been used as a new tool for estimating intraspecific diversity. However, whether known haplotypes contained in a sample can be detected correctly using eDNA‐based methods has been examined only by an aquarium experiment. Here, we tested whether the haplotypes of Ayu fish (Plecoglossus altivelis altivelis) detected in a capture survey could also be detected from an eDNA sample derived from the field that contained various haplotypes with low concentrations and foreign substances. A water sample and Ayu specimens collected from a river on the same day were analysed by eDNA analysis and Sanger sequencing, respectively. The 10 L water sample was divided into 20 filters for each of which 15 PCR replications were performed. After high‐throughput sequencing, denoising was performed using two of the most widely used denoising packages, unoise3 and dada2 . Of the 42 haplotypes obtained from the Sanger sequencing of 96 specimens, 38 (unoise3 ) and 41 (dada2 ) haplotypes were detected by eDNA analysis. When dada2 was used, except for one haplotype, haplotypes owned by at least two specimens were detected from all the filter replications. Accordingly, although it is important to note that eDNA‐based method has some limitations and some risk of false positive and false negative, this study showed that the eDNA analysis for evaluating intraspecific genetic diversity provides comparable results for large‐scale capture‐based conventional methods. Our results suggest that eDNA‐based methods could become a more efficient survey method for investigating intraspecific genetic diversity in the field.  相似文献   

9.
Little consideration has been given to environmental DNA (eDNA) sampling strategies for rare species. The certainty of species detection relies on understanding false positive and false negative error rates. We used artificial ponds together with logistic regression models to assess the detection of African jewelfish eDNA at varying fish densities (0, 0.32, 1.75, and 5.25 fish/m3). Our objectives were to determine the most effective water stratum for eDNA detection, estimate true and false positive eDNA detection rates, and assess the number of water samples necessary to minimize the risk of false negatives. There were 28 eDNA detections in 324, 1-L, water samples collected from four experimental ponds. The best-approximating model indicated that the per-L-sample probability of eDNA detection was 4.86 times more likely for every 2.53 fish/m3 (1 SD) increase in fish density and 1.67 times less likely for every 1.02 C (1 SD) increase in water temperature. The best section of the water column to detect eDNA was the surface and to a lesser extent the bottom. Although no false positives were detected, the estimated likely number of false positives in samples from ponds that contained fish averaged 3.62. At high densities of African jewelfish, 3–5 L of water provided a >95% probability for the presence/absence of its eDNA. Conversely, at moderate and low densities, the number of water samples necessary to achieve a >95% probability of eDNA detection approximated 42–73 and >100 L, respectively. Potential biases associated with incomplete detection of eDNA could be alleviated via formal estimation of eDNA detection probabilities under an occupancy modeling framework; alternatively, the filtration of hundreds of liters of water may be required to achieve a high (e.g., 95%) level of certainty that African jewelfish eDNA will be detected at low densities (i.e., <0.32 fish/m3 or 1.75 g/m3).  相似文献   

10.
DNA extraction from environmental samples (environmental DNA; eDNA) for metabarcoding‐based biodiversity studies is gaining popularity as a noninvasive, time‐efficient, and cost‐effective monitoring tool. The potential benefits are promising for marine conservation, as the marine biome is frequently under‐surveyed due to its inaccessibility and the consequent high costs involved. With increasing numbers of eDNA‐related publications have come a wide array of capture and extraction methods. Without visual species confirmation, inconsistent use of laboratory protocols hinders comparability between studies because the efficiency of target DNA isolation may vary. We determined an optimal protocol (capture and extraction) for marine eDNA research based on total DNA yield measurements by comparing commonly employed methods of seawater filtering and DNA isolation. We compared metabarcoding results of both targeted (small taxonomic group with species‐level assignment) and universal (broad taxonomic group with genus/family‐level assignment) approaches obtained from replicates treated with the optimal and a low‐performance capture and extraction protocol to determine the impact of protocol choice and DNA yield on biodiversity detection. Filtration through cellulose‐nitrate membranes and extraction with Qiagen's DNeasy Blood & Tissue Kit outperformed other combinations of capture and extraction methods, showing a ninefold improvement in DNA yield over the poorest performing methods. Use of optimized protocols resulted in a significant increase in OTU and species richness for targeted metabarcoding assays. However, changing protocols made little difference to the OTU and taxon richness obtained using universal metabarcoding assays. Our results demonstrate an increased risk of false‐negative species detection for targeted eDNA approaches when protocols with poor DNA isolation efficacy are employed. Appropriate optimization is therefore essential for eDNA monitoring to remain a powerful, efficient, and relatively cheap method for biodiversity assessments. For seawater, we advocate filtration through cellulose‐nitrate membranes and extraction with Qiagen's DNeasy Blood & Tissue Kit or phenol‐chloroform‐isoamyl for successful implementation of eDNA multi‐marker metabarcoding surveys.  相似文献   

11.
This paper presents the first phase in the development and validation of a simple and reliable environmental (e)DNA method using conventional PCR to detect four species of non‐native freshwater fish: pumpkinseed Lepomis gibbosus, sunbleak Leucaspius delineatus, fathead minnow Pimephales promelas and topmouth gudgeon Pseudorasbora parva. The efficacy of the approach was demonstrated in indoor tank (44 l) trials in which all four species were detected within 24 h. Validation was through two field trials, in which L. gibbosus was detected 6–12 h after its introduction into outdoor experimental ponds and P. parva was successfully detected in disused fish rearing ponds where the species was known to exist. Thus, the filtration of small (30 ml) volumes of pond water was sufficient to capture fish eDNA and the approach emphasised the importance of taking multiple water samples of sufficient spatial coverage for detecting species of random or patchy distribution.  相似文献   

12.
Environmental DNA (eDNA) analysis has recently been applied to the study of aquatic macroorganisms. In most studies, sample water was filtered and the extracted DNA from the residues on the filter used for the following molecular analysis to detect species of interest. This quick, new biomonitoring method has received broad attention, but some unknowns remain, such as the eDNA yield in relation to water quality. Previous studies suggest that eDNA is composed of various forms, such as the free-floating naked form and in organelles and cells. Therefore, the eDNA yield in the filtration and extraction steps might change depending on the composition of eDNA. Especially the filtration efficiency of free-floating DNA would be affected by the electrical effect of water pH. In this study, not only the free-floating naked DNA, but also all DNA fragments released from the organisms and contained in the water were defined as eDNA, including cells and organelles. We examined (1) the effect of water pH on the eDNA yield at filtration and (2) the effect of proteinase K treatment on the extraction efficiency of DNA from filter samples, with consideration of the variety of the eDNA forms in water. In a laboratory experiment using the purified DNA of common carp (Cyprinus carpio carpio) spiked into ultrapure water, the water pH and DNA yield showed a negative relationship within the pH range of 5–9, that is, the DNA yield was higher in acidic conditions, plausibly because of pH-dependent adsorption onto the glass fiber filter at the filtration step. In case the field water contained eDNA derived from the inhabiting common carp and the purified DNA of ayu (Plecoglossus altivelis altivelis) spiked in the sample as an internal standard, adjustment of the pH to 5 prior to filtration did not increase the eDNA yield of common carp, and the spiked ayu DNA was not detected at all. During the DNA extraction step, a standard protocol including proteinase K treatment marked higher DNA yield than that without proteinase K treatment. Overall, the present results indicate successful collection of eDNA using filters without any special attention to the pH of the sample water, and a conventional protocol with proteinase K treatment is appropriate for eDNA recovery.  相似文献   

13.
Environmental DNA (eDNA) analysis has successfully detected organisms in various aquatic environments. However, there is little basic information on eDNA, including the eDNA shedding and degradation processes. This study focused on water temperature and fish biomass and showed that eDNA shedding, degradation, and size distribution varied depending on water temperature and fish biomass. The tank experiments consisted of four temperature levels and three fish biomass levels. The total eDNA and size‐fractioned eDNA from Japanese Jack Mackerels (Trachurus japonicus) were quantified before and after removing the fish. The results showed that the eDNA shedding rate increased at higher water temperature and larger fish biomass, and the eDNA decay rate also increased at higher temperature and fish biomass. In addition, the small‐sized eDNA fractions were proportionally larger at higher temperatures, and these proportions varied among fish biomass. After removing the fish from the tanks, the percentage of eDNA temporally decreased when the eDNA size fraction was >10 µm, while the smaller size fractions increased. These results have the potential to make the use of eDNA analysis more widespread in the future.  相似文献   

14.
Membrane filtration of food suspensions.   总被引:10,自引:9,他引:1       下载免费PDF全文
Factors affecting the membrane filtration of food suspensions were studied for 58 foods and 13 membrane filters. Lot number within a brand, pore size (0.45 or 0.8 micrometer), and time elapsed before filtration had little effect on filterability. Brand of membrane filter, flow direction, pressure differential, age (microbiological quality) of the food, duration of the blending process, temperature, and concentration of food in the suspension had significant and often predictable effects. Preparation of suspensions by Stomacher (relative to rotary blender) addition of surfactant (particularly at elevated temperature) and prior incubation with proteases sometimes had dramatic effects of filterability. In contrast to popular opinion, foods can be membrane filtered in quantities pertinent to the maximums used in conventional plating procedures. Removal of growth inhibitors and food debris is possible by using membrane filters. Lowering of the limits of detection of microorganisms by concentration on membrane filters can be considered feasible for many foods. The data are particularly relevant to the use of hydrophobic grid-membrane filters (which are capable of enumerating up to 9 X 10(4) organisms per filter) in instrumented methods of food microbiological analysis.  相似文献   

15.
The minimum size of a reproducible unit of staphylococcal L-forms was determined by filtration and electron microscopic methods. Ultrathin sections of an induced strain of Staphylococcal L-forms (STA-EMT-1) in liquid medium revealed several types of structures, all of which were bound by a single membrane and most of which possessed ribosome-like granules. Many of the small granules were less than 0.3 μm and were attached to the membrane of the large bodies. Using a serial filtration method, it was observed that viable L-forms were still detected in 0.22 μm filtrate, but the viable cell count of L-forms decreased in number with the decrease in pore size of membrane filters. A fractionation technique, using L-forms filtered through a membrane filter with a 0.45 μm pore size, revealed that there were three classes of small bodies but only the first class with ribosome-like granules over approximately 0.2 μm in diameter seems to be able to reproduce.  相似文献   

16.
Published results of studies based on samples size fractionated by sequential filtration (e.g. 0.2–3 μm) indicate that many ciliate, dinoflagellate and rhizarian phylotypes are found among marine picoeukaryotes. This is somewhat surprising as these protists are typically known as being large organisms (often >10 μm) and no picoplanktonic species have so far been identified. Here, the abundances of ciliate and dinoflagellate phylotypes in published molecular studies of picoeukaryotes are shown to correlate negatively with the pore size chosen for the end filter in the sequential filtrations (i.e. the filter used to collect the microbial biomass). This suggests that extracellular DNA adhering to small particles may be the source of ciliate and dinoflagellate phylotypes in picoplanktonic size fractions. This hypothesis was confirmed using real-time qPCR, which revealed significantly less dinoflagellate 18S rDNA in a 0.8–3-μm size fraction compared to 0.2–3 μm. On average, the abundance of putative extracellular phylotypes decreased by 84–89 % when a 0.8-?μm end filter was used rather than a 0.2-μm end filter. A 0.8-μm filter is, however, not sufficient to retain all picoeukaryotic cells. Thus, selection of filter pore size involves a trade-off between avoiding artefacts generated by extracellular DNA and sampling the entire picoeukaryotic community. In contrast to ciliate and dinoflagellate phylotypes, rhizarian phylotypes in the picoplankton size range do not display a pattern consistent with an extracellular origin. This is likely due to the documented existence of picoplanktonic swarmer cells within this group.  相似文献   

17.
Bacteria growing on MF-Millipore filters (thickness, 150 micro m) passed through the underlying membrane by their infiltration activity. Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli passed through a 0.45- micro m pore size filter within 48-96 h. Pseudomonas aeruginosa, Serratia marcescens, and Listeria monocytogenes passed through a 0.3- micro m pore size filter. P. aeruginosa passed through a 0.22- micro m pore size filter. The membranes which allowed passing-through of bacteria showed normal bubble point values in the integrity test. Studies with isogenic S. marcescens mutants indicated that flagellum-dependent motility or surface-active exolipid were important in the passing-through. P. aeruginosa PAO1 C strain defective in twitching motility was unable to pass through the 0.22- micro m filter. Scanning electron microscopy showed bacteria passing-through the 0.22- micro m filter. Millipore membrane filters having well-defined reticulate structures will be useful in the study of infiltration activity of microbes.  相似文献   

18.
Environmental DNA (eDNA) analyses are powerful for describing marine biodiversity but must be optimized for their effective use in routine monitoring. To maximize eDNA detection probabilities of sparsely distributed populations, water samples are usually concentrated from larger volumes and filtered using fine-pore membranes, often a significant cost–time bottleneck in the workflow. This study aimed to streamline eDNA sampling by investigating plankton net versus bucket sampling, direct versus sequential filtration including self-preserving filters. Biodiversity was assessed using metabarcoding of the small ribosomal subunit (18S rRNA) and mitochondrial cytochrome c oxidase I (COI) genes. Multispecies detection probabilities were estimated for each workflow using a probabilistic occupancy modelling approach. Significant workflow-related differences in biodiversity metrics were reported. Highest amplicon sequence variant (ASV) richness was attained by the bucket sampling combined with self-preserving filters, comprising a large portion of microplankton. Less diversity but more metazoan taxa were captured in the net samples combined with 5 μm pore size filters. Prefiltered 1.2 μm samples yielded few or no unique ASVs. The highest average (~32%) metazoan detection probabilities in the 5 μm pore size net samples confirmed the effectiveness of preconcentration plankton for biodiversity screening. These results contribute to streamlining eDNA sampling protocols for uptake and implementation in marine biodiversity research and surveillance.  相似文献   

19.
Increasingly high cell density, high product titer cell cultures containing mammalian cells are being used for the production of recombinant proteins. These high productivity cultures are placing a larger burden on traditional downstream clarification and purification operations due to higher product and impurity levels. Controlled flocculation and precipitation of mammalian cell culture suspensions by acidification or using polymeric flocculants have been employed to enhance clarification throughput and downstream filtration operations. While flocculation is quite effective in agglomerating cell debris and process related impurities such as (host cell) proteins and DNA, the resulting suspension is generally not easily separable solely using conventional depth filtration techniques. As a result, centrifugation is often used for clarification of cells and cell debris before filtration, which can limit process configurations and flexibility due to the investment and fixed nature of a centrifuge. To address this challenge, novel depth filter designs were designed which results in improved primary and secondary direct depth filtration of flocculated high cell density mammalian cell cultures systems feeds, thereby providing single‐use clarification solution. A framework is presented here for optimizing the particle size distribution of the mammalian cell culture systems with the pore size distribution of the gradient depth filter using various pre‐treatment conditions resulting in increased depth filter media utilization and improved clarification capacity. Feed conditions were optimized either by acidification or by polymer flocculation which resulted in the increased average feed particle‐size and improvements in throughput with improved depth filters for several mammalian systems. Biotechnol. Bioeng. 2013; 110: 1964–1972. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号