首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Unformulated conidia of Beauveria bassiana were stored at five different temperatures (0°, 10°, 20°, 30° and 40°C) at six different relative humidities (RH) (0, 33, 53, 75, 85 and 98%). Conidial viabilities and virulence against third instar larvae of Helicoverpa armigera were determined over a 24‐month period. Conidia survived longest at lower temperatures (0–20°C) and lower RH levels (0–53% RH). At higher temperatures (30–40°C) conidia did not survive. When the temperature was decreased from 30°C to 0°C, at nearly all RH levels the longevity of conidia increased. Conidia remained virulent for third instar larvae of H. armigera under favourable storage conditions for 24 months.  相似文献   

2.
Studies were conducted to determine the influence of temperature and relative humidity (RH) on germinability and viability of Mucor piriformis spores. Spores did not survive when stored at 35 °C and their survival rate decreased rapidly at 30 °C; however, spores remained viable for more than 1 year at 0 °C. RH also significantly affected spore viability. Spores held at 26 °C and 100% RH no longer germinated after 35 days, while those held at 75 or 90% RH germinated for 65 days. At 20 °C, RH had little effect on spore germinability. The effect of temperature and RH on percentage spore germination also varied. At all temperatures studied, spore viability decreased more rapidly with time at 100% RH than at 75 or 90% RH. The least favorable, temperature-humidity combination, 30 °C and 100% RH, decreased spore germination from 100% to less than 1% in 14 days.  相似文献   

3.
Metarhizium anisopliae was grown on six complex mycological media and on three types of rice at three moisture levels to determine the effect of growth substrate on conidial yield, viability, and virulence against mosquitoes immediately after spore maturation and after the storage of conidia at four different temperature-relative humidity (RH) combinations over a 1-year period. Conidial yields varied with the mycological media, but the viability and virulence of conidia against mosquitoes produced on all substrates were similar when spores were stored under the same conditions. The storage conditions were more critical to spore survival and virulence than the substrate upon which conidia were produced. The comparison of rice types for conidial production indicated that conidial yield, viability, and virulence to mosquitoes were more dependent upon the moisture level during growth and on the storage conditions that upon the rice used. The best storage conditions among those tested for the retention of both spore viability and virulence against mosquitoes were 19°C–97% RH and 4°C–0% RH.  相似文献   

4.
The aim of the present investigation was to determine the impact of relative humidity (RH) and temperature on conidial germination, nuclear position and effect of important fungicides on growth and conidial germination of Cercospora canescens. Germination of conidia was observed at RH range 92–100% at 5–35°C. Significant interaction between temperature and RH indicated that higher humidity and high temperature promoted quick germination both in the presence and absence of free moisture. Although in absence of free moisture at 92–95% RH higher temperatures 25–35°C promoted quick evaporation of moisture and no conidial germination. Number of germtube was increased significantly at the optimum temperature 25–30°C and higher humidity (98–100%). But higher temperature 25–35°C with lower RH did not support the conidial germination. This finding is very important for disease forecasting using meteorological data. The spray of Carbendazim as contact fungicide may not be useful since it is not effective against the conidia of C. canescens. Triadimefon did not inhibit the conidia germination but completely inhibited mycelium development at 50 μg/ml. Propriconazole inhibited both conidia germination and mycelial development. Therefore, Propiconazole may be taken as protective as well as curative spray. In non-systemic fungicide, Copper oxychloride gave anticipated result by inhibiting both conidial germination and mycelium development. Therefore, copper oxychloride can be used as protectant fungicides for Cercospora leaf spot caused by C. canescens.  相似文献   

5.
Y. F. Zhong    Y. W. Zhang    X. Y. Chen    Y. Luo    L.Y. Guo 《Journal of Phytopathology》2008,156(4):229-235
Survival of Monilinia fructicola on the surface of mummified fruit and in peduncles and shoots of stone fruit trees infected by M. fructicola in the previous season was studied from 2003 to 2006 in orchards in the agricultural region of Beijing. Viable conidia of M. fructicola were consistently detected on fruit mummies from mid‐March to the end of April. During flowering (in mid‐April), studies in five peach orchards showed that 33–87% of mummified fruit bore viable conidia. The germination rate of conidia on diseased fruit was about 64% in autumn. It decreased to 24% in mid‐winter when the fruit was completely mummified, and in the following year to 2–4% in early spring. Viable M. fructicola was consistently detected in peach and nectarine shoots collected in winter and spring. In general, viable M. fructicola in peduncles was detected from mummified fruit of 11–27% branches and from asymptomatic plant tissues of 3–20% branches. Sporulation of M. fructicola was observed on peduncles in seven of eight surveys, and the percentage of branches containing viable M. fructicola in peduncles in contact with mummified fruits ranged from 18% to 40%. This study demonstrates that the tree‐borne mummified fruit and the peduncles could be the parts of trees where M. fructicola can survive the winter in orchards in suburban Beijing.  相似文献   

6.
Studies on the heat resistance of the conidia of Metarhizium anisopliae showed a clear correlation to the actual moisture conditions. The medium lethal temperature for 30 min of exposure in a suspension was 42°C, but 50.5°C at 100% RH, 57.5°C at 76% RH, and 68.8°C at 33% RH. The experiments on the effect of artificial sunlight indicated an extrapolated half-life of the conidia under field conditions of 1 hr, 40 min for 24 hr incubation at 25°C in the dark following exposure and about 2 hr, 45 min for 48 hr incubation.  相似文献   

7.
Control of Postharvest Diseases of Sweet Cherry with Ethanol and Hot Water   总被引:2,自引:0,他引:2  
Complete inhibition of the germination of spores of Penicillium expansum occurred after 10 s exposure to 40% ethanol or more at ambient temperature, while spores of Botrytis cinerea were completely inhibited by 30% ethanol or more. Mortality of the spores of P. expansum and B. cinerea in heated 10% ethanol was higher than in water at the same temperatures. Immersion of naturally inoculated fruit in 20, 30, 40, or 50% ethanol reduced the decay present after storage for 10 days at 20°C similarly and by approximately 60–85%. Immersion of fruit that had been inoculated with the spores of P. expansum and B. cinerea reduced decay by both pathogens after storage for 30 days at 0°C and 5 days at 20°C when 30% or higher concentrations of ethanol were used. The incidence of decay after immersion in water alone for 30 s at 24, 50, 55, or 60°C was 57.7, 44.7, 46.2, and 35.7%, respectively, while 10% ethanol at these temperatures the decay incidence to 52.2, 33.9, 32.8, or 14.7%, respectively. Water treatments at 50, 55, or 60°C alone were not effective against P. expansum, while their efficacies were significantly increased by the addition of 10% ethanol. The most effective treatment was immersion in 10% ethanol at 60°C. Ethanol treatments at 20, 30, 40, or 50% and water treatments at 55 or 60°C significantly reduced natural fungal populations on the surfaces of fruit in all of the experiments. Addition of 10% ethanol to water significantly increased the efficacy of water in reducing the fungal populations at elevated temperatures. None of these treatments caused surface injuries to the fruit or adversely affected stem colour.  相似文献   

8.
Success artificial pollination with viable pollen is crucial process in the production chain of date palms. This study evaluated the impact of pollen storage temperature and duration, pollination time following spathe cracking, and the hour of daytime on pollen viability, germinability, fruit set and yield of 'Deglet Nour' date palm cultivar. In in vitro tests, fresh pollen showed the maximum viability (96.3%) and germination (85%) but it decreased thereafter upon the storage temperature (28, 4 and ?30 °C) and duration (3, 6, 9 and 12 months). In this respect, pollen stored at ?30 °C retained highest viability and germinability followed by those stored at 4 and then at 28 °C. In filed experiments, fruit set was 85, 75, 65, and 45% with pollination using fresh pollen, or pollen stored at ?30, 4 and 28 °C, respectively. Fruit set was 95%, 75%, and less than 50%, for pollination performed on the same day of spathe cracking, 6 and 12 days later, respectively. The highest fruit set percentage and yield/bunch were obtained with pollination performed between 12.0 pm and 15.0 pm in contrast to 8.0–11.0 am or 16.0–17.0.  相似文献   

9.
In a moist chamber Pseudopeziza medicaginis ascospores infected alfalfa (Medi sativa L.) moderately to abundantly within 6–10 h at 10–20 °C and within a longer time-span outside this temperature range. Approximate limits of the range were 2.5 and 28 °C; no infection took place at 30 °C. At 14°C ascospores infected alfalfa abundantly at 98 %relative humidity (RH) and above, moderately at 97%, sparsely at 95 and 96%, but not at 94% and below. Ascospores were hydrophilic, germinating best at or near 100%, RH but did not germinate at or below 93 % RH. After infection was established, tiny leafspots became visible within 6–7 days at constant temperatures of 15–25°, 10 days of 10°C, 13 days of 5 °C, and 25 days of 2.5 °C. They failed to develop into normal size spots within 4 weeks at constant temperatures near 30 °C, or near 10 °C and lower. Temporary exposure of incipiently diseased plants 1–6 days to 30–38 °C adversely affected subsequent leafspot development at 20–24°C. Inhibition depended on temperature and on the extent of post-infection disease development.  相似文献   

10.
Germination of Peronospora viciae sporangia washed off infected leaves varied from 20% to 60%. Sporangia shaken off in the dry state gave 11–19% germination. Most sporangia lost viability within 3 days after being shed, though a few survived at least 5 days. Infected leaves could produce sporangia up to 6 weeks after infection, and sporulating lesions carried viable sporangia for 3 weeks. Sporangia germinated over the range 1–24 °C, with an optimum between 4 and 8 °C. Light and no effct. The temperature limits for infection were the same as for germination, but with an optimum between 12 and 20 °C. A minimum leaf-wetness period of 4h was required, and was independent of temperature over the range 4–24 °C. Maximum infectivity occurred after 6h leaf wetness at temperatures between 8 and 20 °C. Infection occurred equally in continuous light or in darkness. After an incubation period of 6–10 days sporangia were produced on infected leaves at temperatures between 4 and 24 °C, with an optimum of 12–20 °C. Exposure to temperatures of 20–24 °C for 10 days reduced subsequent sporulation. Sporangia produced at suboptimal temperatures were larger, and at 20 °C. smaller, than those produce at 12–16 °C. Viability was also reduced. No sporangia were produced in continuous light, or at relative humidities below 91%. For maximum sporulaiton an r.h. of 100% was required, following a lower r.h. during incubation. Oospores wre commonly formed in sporulating lesions, and also where conditons limited or prevented sporulation. The results are discussed briefly in relaiton to disease development under field conditions.  相似文献   

11.
Studies on biology of Oligonychus mangiferus (Rahman and Sapra) at combination of eight constant temperatures and relative humidities (RHs) viz., 7.0°C with 85% RH, 10°C with 80% RH, 15.0°C with 75% RH, 23.0°C with 70% RH, 31.0°C with 65% RH, 34.0°C with 65% RH, 36.0°C with 60% RH and 40.0°C with 55% RH revealed that the optimal condition for the development of these mites are 15.0–31.0°C and 65–75% RH. The highest temperature and the lowest RH accelerated the rate of development and induced more reproduction of O. mangiferus. Its population also multiplied 30.81 times in a generation time of 27.36 days at 31.0°C and 65% RH, while the same population only increased 7.46 times in a generation time of 48.07 days at 15.0°C and 75% RH. Fecundity was highest at 31.0°C and 65% RH with 46.43 eggs per female. The highest intrinsic rate of natural increase was observed at 31.0°C as 0.125 per day.  相似文献   

12.
Viability of plum ovules at different temperatures   总被引:1,自引:0,他引:1  
The viability of ovules was studied in five plum cultivars under laboratory conditions at four constant temperatures: 5°C, 10°C, 15°C and 20°C and under field conditions over two years. During 10 days from the onset of full bloom, ovule viability in cvs ‘?a?anska Rana’, ‘?a?anska Najbolja’ and ‘?a?anska Lepotica’ was between 80–100 % at the temperatures of 5°C, 10°C and 15°C, in both years. In the same period, ovule viability in cvs ‘Wangenheims Frühzwetsche’ and ‘Po?ega?a’ was lower, but never below 50%. At the constant temperature of 20°C, all plum cultivars showed a decline in longevity of ovule viability, which was pronounced in cv. ‘?a?anska Rana’. During the 10 days from the onset of full bloom, ovule viability in all five plum cultivars under field conditions showed a high viability, which approximated to the ovule viability of the cultivars at the constant temperatures of 5°C, 10°C and 15°C, in both years. Determination of the longevity of ovule viability in the mentioned plum cultivars is of great importance due to its effect on the effective pollination period and fertilisation success. This paper deals in detail with the interrelations between the temperature effects on ovule viability, pollen tube growth and fertilisation, as well as on fruit setting.  相似文献   

13.
Aims: Producing granular cultures of obligate aphid pathogen Pandora nouryi for improved sporulation and storage. Methods and Results: Small millet–gel granules were made of the mixtures of 80–95% millet powder with 5–20% polymer gel (polyacrylamide, polyacrylate or acrylate‐acrylamide copolymer) and inoculated with mycelia at 30 mg biomass g?1 dry granules plus 87·5% water, followed by static incubation at 20°C for 4–12 days. The fungus grew well on 12 preparations but best on that including 10% copolymer. An 8‐day culture of this preparation discharged maximally 58·5 × 104 conidia mg?1 granule at 100% RH and was capable of ejecting conidia at the nonsaturated regimes of 86–97% RH. During storage at 6°C, granular cultures with >85% water content had twofold longevity (120 days) and half‐decline period (34–36 days) of those stored at room temperature. The steadily high water content preserved the cultures better than that decreasing at 6°C. However, conidia from 70‐day‐stored granules were less infective to Myzus persicae nymphs than those from fresh ones based on their LC50s. Conclusions: The millet–gel granules had higher sporulation capacity than reported Pandora cultures and a capability of spore discharge at nonsaturated humidity. Significance and Impact of the Study: The granular cultures are more useful for aphid control.  相似文献   

14.
A recording volumetric spore trap was operated continuously amidst overwintered grape leaves in a vineyard at Walenstadt, Switzerland from early May to mid-July 1988. Ascospores of Pseudopezicula tracheiphila were captured in the air beginning 11 May and 96 % of the total seasonal release occurred between 16 May and 2 June. Rain always preceded ascospore release. However, trap catches were associated with the simulataneous cessation of rainfall, decreased relative humidity (RH), increased temperature, and drying of foliage. Maximum ascospore release occurred in the second hour, following commencement of drying. Ascospores discharged dry onto glass coverslips survived with greater than 60 % viability after 1, 3, and 6 days exposure to 10, 15, 20, and 25°C at 70 % RH. Only at 30°C was viability reduced to slightly less than 50 % after 6 days.  相似文献   

15.
Development of powdery mildew Erysiphe (sect. Microsphaera) pulchra in dogwood (Cornus florida) was assessed over a 5‐year period (1996–2000). Variations in the timing of initial infection, disease severity, ascocarp formation, and primary inoculum density were evaluated. Ascocarps formed late in the growing season (September‐November) when relatively low temperatures (< 27°C) persisted for at least 2 weeks, but ascocarp abundance was not influenced by disease severity. Studies conducted in a controlled environment showed that low temperatures triggered ascocarp formation and neither day length nor host plant age affected ascocarp formation. Ascocarps formed within 12–14 days at 18°C/ 10°C (day/night) and 23°C/15°C, but required 25 days at 26°C/18°C; no ascocarps formed at 28°C/ 20°C. Because ascocarps are an important source of primary inoculum for dogwood powdery mildew, ascocarp survival was evaluated in a 2‐year study (1998–2000). 60–80% of mature, dark‐coloured ascocarps survived at ‐10°C and ‐20°C and maintained viable spores for 4 months, but only 4–12% of partially developed, light brown ascocarps survived at ‐10°C and ‐20°C in the first experiment and only 30–40% survived in the second experiment. Immature ascocarp initials (cream‐yellow in colour) withered and disintegrated at all temperatures (24°C/20°C, 4°C, ‐10°C, and ‐20°C). Because ascocarps need time to mature, the timing of ascocarp initiation affects ascocarp maturity and thus winter survival and primary inoculum density. The evaluation of spring inoculum dispersal to spore traps and trap plants in 1999 and 2000 showed that rainfall patterns in early spring influenced primary inoculum and thus the timing of initial infection.  相似文献   

16.
《Biological Control》2011,56(3):203-210
Quiescent conidia of Isaria fumosorosea were submitted to various wetting–drying cycles under different regimes of temperature and air humidity. Germination and viability of conidia collected on cultures freshly host-passed (P2) were not affected at 25 °C during five cycles at increasing wet phase duration (2–12 h per daily cycle) under any moisture conditions (13–86% RH). Infectivity levels remained stable, but mortality was slightly postponed. In vitro-cultured inocula (P5) were significantly affected after only one cycle at higher air humidity (75 and 86% RH) and temperature (35 and 40 °C). The persistence of I. fumosorosea conidia suspended in water soluble extracts of leaf surfaces (corn and cabbage) confirmed the better persistence of P2 conidia and the relatively higher detrimental effect of lower air humidity conditions when combined with moderate temperatures. Quiescent conidia deposited in situ on potted plants of cabbage showed a higher persistence on wet foliage and on foliage submitted to wetting–drying cycles, than on dry foliage. These results underline that constraints prevailing in targeted environments and ecological fitness of fungal isolates have to be taken into account for assessing microbial control strategies.  相似文献   

17.
Pandora nouryi discharged large numbers of primary conidia between 8 and 25°C from cadavers on the surface of water-agar. At 8°C conidial discharge lasted for 120 h, but most conidia were produced within 48 h when temperature was >15°C. Saturated humidity alone was not enough to allow for sporulation to occur freely and where RH?<?95%, no conidia were discharged. Light did not affect the pattern of conidial production nor the total number of conidia. Germination percentages of conidia on the surface of water-agar were 40 and 66% at 8 and 30°C, respectively, and were significantly lower than that at 15–25°C where germination was >95%. Conidia on leaves germinated well when RH?>?74%, while no germination occurred when RH?<?100% on cover slips. All eight insecticides tested entirely inhibited conidial germination at recommended doses (R), in particular, both the organophosphorus pesticides Lorsben (chlorpyrifos) and the organochlorine pesticides Thiodan (endosulfan) completely inhibited conidial germination even at 0.2R dose.  相似文献   

18.
The impact of growth temperature was evaluated for the fungal plant pathogen Mycoleptodiscus terrestris over a range of temperatures (20–36°C). The effect of temperature on biomass accumulation, colony forming units (cfu), and microsclerotia production was determined. Culture temperatures of 24–30°C produced significantly higher biomass accumulations and 20–24°C resulted in a significantly higher cfu. The growth of M. terrestris was greatly reduced at temperatures above 30°C and was absent at 36°C. The highest microsclerotia concentrations were produced over a wide range of temperatures (20–30°C). These data suggest that a growth temperature of 24°C would optimize the parameters evaluated in this study. In addition to growth parameters, we also evaluated the desiccation tolerance and storage stability of air-dried microsclerotial preparations from these cultures during storage at 4°C. During 5 months storage, there was no significant difference in viability for air-dried microsclerotial preparations from cultures grown at 20–30°C (>72% hyphal germination) or in conidia production (sporogenic germination) for air-dried preparations from cultures grown at 20–32°C. When the effect of temperature on germination by air-dried microsclerotial preparations was evaluated, data showed that temperatures of 22–30°C were optimal for hyphal and sporogenic germination. Air-dried microsclerotial preparations did not germinate hyphally at 36°C or sporogenically at 20, 32, 34, or 36°C. These data show that temperature does impact the growth and germination of M. terrestris and suggest that water temperature may be a critical environmental consideration for the application of air-dried M. terrestris preparations for use in controlling hydrilla.  相似文献   

19.
Germination and vigour of accelerated aged (AA) and naturally stored onion seeds were examined. Accelerated ageing was conducted at 40 °C and 100 % relative humidity (RH). Non aged seeds were stored for 34 months at 3 or 15 °C and 40, 60 or 90 % RH. To restore seed viability, stored and aged seeds were matriconditioned with Micro-Cel E. A distinct loss of germination was observed after 5 days of accelerated ageing. Naturally stored seeds maintained high viability for 34 months, when stored at 3 °C and 40, 60 and 90 % RH or at 15 °C and 40 %. An increase of RH to 60 and 90 % at 15 °C caused loss of germination and vigour. Matriconditioning improved germination and increased endogenic ethylene release and in vivo ACC oxidase activity of both aged and stored seeds.  相似文献   

20.
This study compared different temperatures and dormancy‐reversion procedures for preservation of Phakopsora pachyrhizi uredospores. The storage temperatures tested were room temperature, 5°C, ?20°C and ?80°C. Dehydrated and non‐dehydrated uredospores were used, and evaluations for germination (%) and infectivity (no. of lesions/cm2) were made with fresh harvested spores and after 15, 29, 76, 154 and 231 days of storage. The dormancy‐reversion procedures evaluated were thermal shock (40°C/5 min) followed or not by hydration (moist chamber/24 h). Uredospores stored at room temperature were viable only up to a month of storage, regardless of their hydration condition. Survival of uredospores increased with storage at lower temperatures. Dehydration of uredospores prior to storage increased their viability, mainly for uredospores stored at 5°C, ?20°C and ?80°C. At 5°C and ?20°C, dehydrated uredospores showed increases in viability of at least 47 and 127 days, respectively, compared to non‐dehydrated spores. Uredospore germination and infectivity after storage for 231 days (7.7 months), could only be observed at ?80°C, for both hydration conditions. At this storage temperature, dehydrated and non‐dehydrated uredospores exhibited 56 and 28% of germination at the end of the experiment, respectively. Storage at ?80°C also maintained uredospore infectivity, based upon levels of infection frequency, for both hydration conditions. Among the dormancy‐reversion treatments applied to spores stored at ?80°C, those involving hydration allowed recoveries of 85 to 92% of the initial germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号