首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— In piglets affected with congenital tremor type AII the CNS was not morphologically underdeveloped; spinal cord weight, total DNA content and fat-free dry matter differed little from control values. However the total lipid extractable from affected spinal cords was only about 63% of values established for normal newborn piglets. In particular, the cerebroside content (a myelin-specific lipid) was reduced to about 30% of the 'normal' value. This was parallelled by the results of an in vitro assay of cerebroside synthesis from [3H]galactose which indicated a metabolic impairment. The altered fatty acid profile of isolatcd cerebrosides further suggested a derangement of fatty acid synthesis. Unlike the spinal cords of normal newborn piglets, tissues from affected piglets contained significant amounts of cholesterol esters carrying the characteristic fatty acids associated with demyelination. This implied that the reduced quantities of possibly abnormal myelin were unstable. Abnormal swollen oligodendrocytes were commonly present in the spinal cords of affected piglets and this was consistcnt with the observed impairment of myelin formation.  相似文献   

2.
Although glia have been historically classified as the structurally supporting cells of the central nervous system, their role in tissue mechanics is still largely unstudied. The influence of myelin and glia on the mechanical properties of spinal cord tissue was examined by testing embryonic day 18 chick embryo spinal cords in uniaxial tension following disruption of the glial matrix using either ethidium bromide (EB) or an antibody against galactocerebroside (αGalC) in the presence of complement. Demyelination was confirmed by myelin basic protein immunoreactivity and quantified using osmium tetroxide staining. A substantial loss of astrocytes and oligodendrocytes concurrent with demyelination was observed following EB injection but not αGalC injection. No morphological changes were observed following injection of saline or IgG with complement as controls for EB and αGalC. Demyelinated spinal cords demonstrated significantly lower stiffness and ultimate tensile stress than myelinated spinal cords. No significant differences were observed in the tensile response between the two demyelinating protocols. The results demonstrate that the glial matrix provides significant mechanical support to the spinal cord, and suggests that myelin and cellular coupling of axons via the glial matrix in large part dictates the tensile response of the tissue.  相似文献   

3.
Abstract— Spinal cords of 5-8 week-old lambs affected with the delayed or spinal form of swayback were deficient in myelin lipid components such as cholesterol, cerebrosides and phospholipids and contained less water than cords obtained from clinically and histologically unaffected lambs. The rate of synthesis in vitro of cerebrosides containing hydroxy fatty acids was reduced but the fatty acid composition of this and of the "non-hydroxy cerebroside' fractions were quite normal. Isolated myelin was deficient in copper compared with healthy controls and there was a deficiency in one of its basic protein constituents. This suggested an inherent instability of myelin in affected lambs while the presence of some 4 per cent of cholesterol in the esterified form (none normally present) was indicative of degenerative changes. Five out of eight clinically unaffected lambs obtained from the same flocks proved to be sub-clinical cases when the spinal cord was examined histologically and showed some of the neurochemical abnormalities of the overt clinical disease. When affected lambs were kept at the laboratory until 16 weeks old and fed a copper sufficient diet some of the spinal lesions showed signs of regression and there were fewer neurochemical abnormalities. In particular, cholesterol esters could not be detected in the spinal cord lipids.  相似文献   

4.
Spinal cords from clinically affected newborn lambs, each with muscular spasms (‘shaking’) and a ‘hairy’ birth coat, were found to be deficient in DNA and to contain less myelin and various lipid components, suggesting retarded CNS development equivalent to about 124 days conceptual age. Cerebrosides were notably deficient in whole cord and isolated myelin and contained more saturated and less unsaturated fatty acids than normal. The rate of cerebroside synthesis assayed in vitro was enhanced and taken with the very low tissue concentrations this indicated faster cerebroside turnover and a less stable myelin in the spinal cords of lambs affected with Border Disease. Marked decreases in plasmalogen concentrations, the redistribution of phospholipid fractions, the presence of about 8 per cent cholesterol in the esterified form and the characteristic fatty acid composition of these esters strongly suggest that degeneration is concomitant with myelin immaturity. Hypocupraemia, low concentrations of copper in the cerebrum and increased concentrations in spinal cord myelin are additional features of the clinical disease. The latter result may be related to myelin immaturity.  相似文献   

5.
The central nervous system of the shiverer mouse is known to be severely deficient in myelin. Animals heterozygous for this autosomal-recessive mutation were crossed, and the myelin proteins were examined in the brains and spinal cords of shiverers and unaffected littermates among the offspring. In the brains and spinal cords of nine of the 14 unaffected littermates examined, the quantities of the myelin basic and proteolipid proteins were lower than normal. Furthermore, in the brains of heterozygotes 33 to ~ 150 days old, the myelin basic and proteolipid proteins were reduced in amount, compared to wild-type controls; the myelin basic protein was also present in subnormal amounts in the spinal cords from heterozygous animals at the ages of 17 to 150 days. More severe reductions in the quantities of the myelin proteins were observed in central nervous system tissue from homozygous shiverer mice, and the quantity of the myelin proteolipid protein in the central nervous system of the shiverer mouse, expressed as a ratio to the control value at each age, underwent a developmental decline. In heterozygotes, as well as shiverers, the peripheral nerves were also deficient in the P1 and Pr proteins, which are the same as the basic proteins in rodent central nervous system myelin. The findings regarding heterozygotes suggest that the defective primary gene product in the shiverer mouse could be the myelin basic protein itself or a protein required for a rate-limiting step in the processing of the myelin basic protein.  相似文献   

6.
Myelin was purified from the spinal cords of normal mice and mice heterozygous for the shiverer mutation, and measurements were made of the major myelin proteins and lipids and the specific activities of three myelin-associated enzymes. The myelin purified from the spinal cords of the heterozygotes (shi/+) was deficient by 30-40% in yield and had an apparently unique composition. In particular, when compared with normal mouse spinal cord myelin, there were more high-molecular-weight protein, less myelin basic protein, a higher protein-to-lipid ratio, and higher specific activities of 2',3'-cyclic nucleotide-3'-phosphohydrolase (EC 3.1.4.37) and carbonic anhydrase (EC 4.2.1.1) in the myelin purified from the shi/+ animals. These abnormalities were reflected in the composition of shi/+ whole spinal cord, where the protein-to-lipid ratio was intermediate between the respective values for +/+ and shi/shi spinal cords. Whole brains from shi/+ mice showed deficiencies in galactocerebroside and galactocerebroside sulfate and an increase in total phospholipid, and the lipid composition in the brains of the shi/shi mice was similar to that reported for another dysmyelinating mutant, quaking. The findings provide the first values for the lipids in normal mouse spinal cord myelin and show that heterozygotes are affected by the shiverer mutation. The observations imply that there can be considerable deviation from the normal CNS myelin content and composition without apparent qualitative morphological abnormalities or loss of function and that the amount of myelin basic protein available during myelination may influence the incorporation of other constituents into the myelin membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Treatment of developing rats with 1-amino-cyclopentane carboxylic acid (cycloleucine) resulted in changes in brain and spinal cord phospholipid content and fatty acid composition. General findings were a decrease in ethanolamine phospholipid content, and relative increase in the saturated fatty acid content of ethanolamine phospholipid. In all the different cycloleucine experiments conducted, there was consistently less fatty aldehyde present in the methylated ethanolamine phospholipid fatty acid-fatty aldehyde fractions than in corresponding controls. In some experiments fatty aldehyde was almost completely absent, suggesting the presence of little plasmalogen. Changes in fatty acids of phosphatidyl choline, the other phospholipid examined in this manner, were generally minor. Administration of massive amounts of sodium propionate in addition to cycloleucine did not result in an appreciable odd-chain fatty acid increase in the CNS. Examination of the spinal cords by electron microscopy demonstrated considerable myelin splitting in one set of animals. No other ultrastructural changes were evident. The suitability of this drug to produce a neurological condition and pathological state similar to that seen in B12-deficient subacute combined degeneration is discussed.  相似文献   

8.
The pathologic role of the specific immune and inflammatory responses to viral infections of the CNS was investigated by using mice which are susceptible (SJL/J) and resistant (C57Bl6 and BALB/c) to the development of experimental autoimmune encephalomyelitis (EAE). Intracerebral inoculation of 10(4) PFU of Sindbis virus (SV) into 6- to 8-wk-old SJL/J mice resulted in a severe and sometimes fatal encephalomyelitis. A mild to severe hind leg paralysis was observed around days 6 to 7 postinfection (pi) which closely resembled EAE stages and persisted for up to 8 wk pi. Immunosuppression with cyclophosphamide on day 4 alleviated the severity of this disease. Significant perivascular and parenchymal infiltration was present in the brains and spinal cords of SV-infected SJL/J mice for up to 1 mo. This apparent immunopathologic reaction was found to be a characteristic of SJL/J mice, because infection of 6- to 8-wk-old BALB/c and C57Bl6 mice with SV did not cause paralytic disease. These mice also exhibited a significantly milder cellular infiltrate which was mostly resolved on day 12 to 14 pi. Titers of virus in the brain and spinal cords of mice were comparable with clearance by day 7 pi. SV-specific lymphoproliferation and serum antibody responses were also comparable in all mice. SV-infected SJL/J mice developed antibodies to myelin components as demonstrated in Western blots and responded to myelin basic protein by lymphoproliferation. Lymph node cells from these mice, after in vitro challenge with myelin basic protein, transferred a mild EAE-like disease to naive recipients and potentiated subclinical EAE into a severe disease.  相似文献   

9.
THE EFFECT OF HYPOCHOLESTEREMIC AGENTS ON MYELINOGENESIS   总被引:4,自引:1,他引:3  
Abstract— Three drugs known to inhibit biosynthesis of cholesterol, Clofibrate, 20, 25-diazacholesterol and AY-9944 were administered by stomach intubation to suckling rats. At weaning the rats were killed and subcellular fractions, including myelin, were prepared from the brains and spinal cords and analysed for sterol content. Central nervous tissue fractions from Clofibrate-treated rats showed some decrease in total sterols, but the sterol species were qualitatively normal. AY-9944 given to rats caused high amounts of 7-dehydro-cholesterol to accumulate in all brain and spinal cord fractions with the highest amounts (32–38 percent of total sterols) in myelin. In diazasterol-treated rats desmosterol reached 48 per cent of the sterols of myelin. A group of rats was allowed to survive after the final drug intake (21 days) and their brain and spinal cord sterol content followed up to 60 days. At 30 days the proportion of dehydrocholesterol or desmosterol comprised over half the total myelin sterol. By 60 days of age the 7-dehydrocholesterol had almost completely disappeared from all fractions while substantial amounts of desmosterol were retained in myelin. Myelination was retarded by treatment with AY-9944 and 20, 25-diazasterol, possibly by the limited amount of sterols available. The metabolism of the abnormal myelin constituents in drug-treated animals is discussed in relation to the molecular structure of the myelin membrane.  相似文献   

10.
In order to assess whether experimental allergic encephalomyelitis (EAE), a putative animal model for multiple sclerosis (MS), is an ongoing chronic disorder, we have studied the permeability of spinal cords of Lewis rats with EAE to 3H-uridine- or 3H-thymidine-labeled lymphoid cells obtained from thymuses of naive donors or from draining lymph nodes of donors injected with guinea pig spinal cord + complete Fruend's adjuvant (CFA), guinea pig myelin basic protein + CFA, or with CFA alone. During the acute clinical phase of EAE there is a high-level infiltration of 3H-thymidine- or 3H-uridine-labeled cells into the spinal cords. After clinical recovery from EAE up to 58 days post-inoculation, there is a low-level infiltration of 3H-thymidine-labeled cells into the spinal cords. A similar infiltration into the spinal cords by 3H-uridine-labeled cells was not detected. Donor cells from animals immunized with CFA alone showed similar levels of infiltration into the spinal cords of animals with EAE as donor cells from animals immunized with the encephalitogenic emulsion. Spinal cords from recipients immunized with CFA alone showed no increased permeability to labeled cells. Heat-killed labeled cells did not migrate into the spinal cords of animals with EAE. We conclude that a) EAE is a chronic disease and in this regard is a valid model for MS; and B) in the chronic phase of EAE, recently divided cells (3H-thymidine-labeled cells) show higher levels of migration into the target tissue than 3H-uridine-labeled cells.  相似文献   

11.
The jimpy mutation of the X-linked proteolipid protein (Plp) gene causes dysmyelination and premature death of the mice. The established phenotype is characterised by severe hypomyelination, increased numbers of dead oligodendrocytes and astrocytosis. The purpose of this study was to define the earliest cellular abnormalities in the cervical spinal cord. We find that on the first and third postnatal days the amount of myelin in jimpy spinal cord is approximately 20% of wild-type. However, the total glial cell density, the number of dead glial cells and the number and distribution of Plp-positive cells, as assessed by in situ hybridization, are similar to wild-type during the first week of life. Immunostaining of cryosections has identified that jimpy spinal cords express on schedule, a variety of antigens associated with mature oligodendrocytes. Dissociated oligodendrocytes, cultured for 18 hours to reflect their in vivo differentiation, express MBP and surface myelin-associated glycoprotein at the same frequency as wild-type. By comparison, the proportion of jimpy oligodendrocytes expressing surface myelin/oligodendrocyte glycoprotein is reduced by approximately 34%. In vivo, however, only a small minority of axons is surrounded by a collar of myelin-associated glycoprotein, suggesting that the majority of jimpy oligodendrocytes fail to make appropriate ensheathment of axons. Although the DM20 isoform is expressed in the embryonic CNS prior to myelin formation, the cellular abnormalities appear to correspond to the time at which the Plp isoform becomes predominant. The results suggest that the primary abnormality in jimpy is the inability of oligodendrocytes to properly associate with, and then ensheath, axons and that oligodendrocyte death compounds, rather than initiates, the established phenotype.  相似文献   

12.
The ATP-binding cassette transporter 2 (ABCA2) is an endolysosomal protein most highly expressed in the central and peripheral nervous system tissues and macrophages. Previous studies indicated its role in cholesterol/steroid (estramustine, estradiol, and progesterone) trafficking/sequestration, oxidative stress response, and Alzheimer's disease. Developmental studies have shown its expression during macrophage and oligodendrocyte differentiation, processes requiring membrane growth. To determine the in vivo function(s) of this transporter, we generated a knockout mouse from a gene-targeted disruption of the murine ABCA2 gene. Knockout males and females are viable and fertile. However, a non-Mendelian inheritance pattern was shown among male progeny of heterozygous crosses. Compared to wild-type and heterozygous littermates, knockout mice displayed a tremor without ataxia, hyperactivity, and reduced body weight; the latter two phenotypes were more marked in females than in males. This sexual disparity suggests a role for ABCA2 in hormone-dependent neurological and/or developmental pathways. Myelin sheath thickness in the spinal cords of knockout mice was greatly increased compared to that in wild-type mice, while a significant reduction in myelin membrane periodicity (compaction) was observed in both spinal cords and cerebra of knockout mice. Loss of ABCA2 function in vivo resulted in abnormal myelin compaction in spinal cord and cerebrum, an ultrastructural defect that we propose to be the cause of the phenotypic tremor.  相似文献   

13.
Oligodendrocytes are macroglial cells that synthesize and maintain myelin in the central nervous system. Oligodendrocytes in rodent brain are formed postnatally from glial progenitor cells. These progenitors cells are bipotential and differentiate in a later stage of development into type-2 astrocytes. Recent studies with cultured cells indicate that growth factors such as platelet-derived growth factor and ciliary neurotrophic factor are instrumental in the control of these events. This paper discusses various methods for the isolation of oligodendrocytes and for their maintenance in culture. We use cerebra or spinal cords from one-week old rat pups to prepare glial cultures that are enriched in oligodendrocytes (60-80% or greater than or equal to 90%, respectively). After one day in serum-containing medium the cells are kept in chemically-defined medium, supplemented with the hormones insulin, T3 and hydrocortisone. The activities of astrocyte-and oligodendrocyte-specific marker enzymes were measured to evaluate the influence of these hormones on the differentiation of the oligodendrocytes. Finally, glial energy metabolism and the utilization of ketone bodies and of fatty acids are discussed briefly.  相似文献   

14.
This study investigated electrophysiological and histological changes as well as alterations of myelin relevant proteins of descending motor tracts in rat pups. Motor‐evoked potentials (MEPs) represent descending conducting responses following stimulation of the motor cortex to responses being elicited from the lower extremities. MEP responses were recorded biweekly from postnatal (PN) week 1 to week 9 (adult). MEP latencies in PN week 1 rats averaged 23.7 ms and became shorter during early maturation, stabilizing at 6.6 ms at PN week 4. During maturation, the conduction velocity (CV) increased from 2.8 ± 0.2 at PN week 1 to 35.2 ± 3.1 mm/ms at PN week 8. Histology of the spinal cord and sciatic nerves revealed progressive axonal myelination. Expression of the oligodendrocyte precursor markers PDGFRα and NG2 were downregulated in spinal cords, and myelin‐relevant proteins such as GalC, CNP, and MBP increased during maturation. Oligodendrocyte‐lineage markers Olig2 and MOG, expressed in myelinated oligodendrocytes, peaked at PN week 3 and were downregulated thereafter. A similar expression pattern was observed in neurofilament M/H subunits that were extensively phosphorylated in adult spinal cords but not in neonatal spinal cords, suggesting an increase in axon diameter and myelin formation. Ultrastructural morphology in the ventrolateral funiculus (VLF) showed axon myelination of the VLF axons (99.3%) at PN week 2, while 44.6% were sheathed at PN week 1. Increased axon diameter and myelin thickness in the VLF and sciatic nerves were highly correlated to the CV (rs > 0.95). This suggests that MEPs could be a predicator of morphological maturity of myelinated axons in descending motor tracts. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 713–722, 2013  相似文献   

15.
DNA levels were measured in the spinal cords of Lewis rats during the development of and recovery from experimental allergic encephalomyelitis (EAE). Spinal cord DNA was first increased 11 days after immunizing the rats with guinea pig myelin and rose to levels four times that of the Freund's adjuvant controls at day 14, then subsided after day 22. Spinal cord DNA was still 150% of control levels 60 days after immunization. These DNA changes were compared with fluctuations in spinal cord acid proteinase in the same animals. Acid proteinase activity in EAE spinal cord increased later than the rise in DNA and attained a level of 170% of control at days 15-17, then subsided. Spinal cord DNA was higher in rats immunized with whole myelin than in those administered equivalent amounts of purified myelin basic protein. Furthermore DNA was higher in spinal cords of rats immunized with a larger dose of myelin (1.0 mg) than with a lower amount (0.5 mg). Various protease inhibitors including pepstatin, nitrophenyl p-guanidino benzoate, polylysine, and dipropionyl rhein, previously shown to protect Lewis rats against EAE, suppressed the increase of DNA in the spinal cord. Measurement of DNA increases in the spinal cord of EAE animals provides a convenient reproducible measurement of the severity of inflammation in the CNS and provides an objective criterion for assessment of the efficacy of various agents screened as possible therapeutic treatment for multiple sclerosis.  相似文献   

16.
Mice lacking the axon guidance molecule EphA4 have been shown to exhibit extensive axonal regeneration and functional recovery following spinal cord injury. To assess mechanisms by which EphA4 may modify the response to neural injury a microarray was performed on spinal cord tissue from mice with spinal cord injury and sham injured controls. RNA was purified from spinal cords of adult EphA4 knockout and wild-type mice four days following lumbar spinal cord hemisection or laminectomy only and was hybridised to Affymetrix All-Exon Array 1.0 GeneChips?. While subsequent analyses indicated that several pathways were altered in EphA4 knockout mice, of particular interest was the attenuated expression of a number of inflammatory genes, including Arginase 1, expression of which was lower in injured EphA4 knockout compared to wild-type mice. Immunohistological analyses of different cellular components of the immune response were then performed in injured EphA4 knockout and wildtype spinal cords. While numbers of infiltrating CD3+ T cells were low in the hemisection model, a robust CD11b+ macrophage/microglial response was observed post-injury. There was no difference in the overall number or spread of macrophages/activated microglia in injured EphA4 knockout compared to wild-type spinal cords at 2, 4 or 14 days post-injury, however a lower proportion of Arginase-1 immunoreactive macrophages/activated microglia was observed in EphA4 knockout spinal cords at 4 days post-injury. Subtle alterations in the neuroinflammatory response in injured EphA4 knockout spinal cords may contribute to the regeneration and recovery observed in these mice following injury.  相似文献   

17.
18.
The effects on myelin of autolysis in situ after death and after purification were studied in normal brains and spinal cords and in those made edematous as a result of chronic triethyl tin (TET) feeding. Myelin prepared from normal and edematous brains and spinal cords autolyzed for 12 h at 4°C contained only slightly less basic protein than that prepared from freshly killed animals. The amounts of a light lipid-protein fraction (dissociated myelin) usually obtained during purification of myelin from edematous CNS were about the same in tissue from freshly killed rats and those autolyzed for 12 h at 4°C. Autolysis for 12 h at room temperature resulted in formation of large amounts of dissociated myelin and loss of basic protein, but more dissociation and basic protein loss occurred in CNS from edematous brains and spinal cords than from the normal. Purified myelin prepared from freshly-killed normal and TET-fed rats was incubated at 37°C in media of several ionic strengths. In Krebs-Ringer bicarbonate (physiological extracellular fluid) extensive dissociation of myelin occurred with much less in 0.04 M-Tris buffer, pH 7.2, and only small amounts were formed in 0.01 M-Tris. In all cases myelin from edematous CNS formed more dissociated fraction than did the normal myelin. Basic protein loss was also proportional to the ionic strength of the media, but there was no difference in loss between normal and TET-myelin. Two different factors, proteolysis and physical extraction of basic protein by salt solutions, may be contributing to myelin dissociation and loss of basic protein.  相似文献   

19.
We examined chronological changes of myelin proteins of the brainstem and spinal cord of the twitcher mouse (15, 20, and 30 days old), a murine model of human globoid cell leukodystrophy caused by a genetic deficiency of galactosylceramidase I activity. The yield of myelin was normal until postnatal day 20, whereas galactosylsphingosine (psychosine) accumulated with age in myelin. The protein profiles of myelin and the activity of 2',3'-cyclic nucleotide 3'-phosphodiesterase in the myelin remained normal throughout the experimental period. Fatty acylation of proteolipid protein (PLP) was examined in a cell-free system by incubation of myelin with [3H]palmitic acid, CoA, and ATP, and was normal at postnatal day 15, but decreased after postnatal day 20. Decreased fatty acylation of PLP was also observed in the twitcher mouse at postnatal day 20 when the isolated myelin was incubated with [14C]palmitoyl-CoA in the absence of ATP and CoA, or the slices of brainstem and spinal cord were incubated with [3H]palmitic acid. The activity of fatty acid:CoA ligase was reduced in myelin. These data suggest that decreased acylation of PLP in twitcher mouse myelin is probably due to reduced activities for both activation and transfer of fatty acid into PLP and that metabolic disturbance is present in myelin because acylation of PLP has been shown to occur in myelin membrane. Although psychosine (200 microM) inhibited only 17% of the acylation in vitro, it may be responsible for the reduced acylation of PLP in vivo.  相似文献   

20.
Segler-Stahl  K.  Demediuk  P.  Castillo  R.  Watts  C.  Moscatelli  E. A. 《Neurochemical research》1985,10(4):563-569
Experimental spinal cord trauma was produced in 3-month-old SS-1 minature pigs by dropping a 25 g weight from a height of 20 cm upon the exposed spinal cord. The histological lesion consisted of edema and hemorrhage. Phospholipid concentration and composition, cholesterol concentration and phospholipid fatty acid composition were determined in whole spinal cord 3 hours after injury, and in spinal cord myelin 5 hours after injury. Three hours after injury phospholipid and cholesterol concentration were decreased by about 14% in the whole spinal cord. Trauma had no effect on the phospholipid composition of whole spinal cord and myelin. Fatty acid composition of myelin also did not change after injury, and changed very slightly in the whole spinal cord. It is concluded that edema following spinal cord trauma is much more extensive than previously assumed. Furthermore, peroxidation of membrane lipid fatty acids does not appear to be a significant factor in spinal cord pathology 3 hours after injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号