首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geranylgeranyl reductase catalyses the reduction of geranylgeranyl pyrophosphate to phytyl pyrophosphate required for synthesis of chlorophylls, phylloquinone and tocopherols. The gene chlP (ORF sll1091) encoding the enzyme has been inactivated in the cyanobacterium Synechocystis sp. PCC 6803. The resulting ΔchlP mutant accumulates exclusively geranylgeranylated chlorophyll a instead of its phytylated analogue as well as low amounts of α-tocotrienol instead of α-tocopherol. Whereas the contents of chlorophyll and total carotenoids are decreased, abundance of phycobilisomes is increased in ΔchlP cells. The mutant assembles functional photosystems I and II as judged from 77 K fluorescence and electron transport measurements. However, the mutant is unable to grow photoautotrophically due to instability and rapid degradation of the photosystems in the absence of added glucose. We suggest that instability of the photosystems in ΔchlP is directly related to accumulation of geranylgeranylated chlorophyll a. Increased rigidity of the chlorophyll isoprenoid tail moiety due to three additional CC bonds is the likely cause of photooxidative stress and reduced stability of photosynthetic pigment-protein complexes assembled with geranylgeranylated chlorophyll a in the ΔchlP mutant.  相似文献   

2.
The effects of non-nearest base sequences, beyond the nucleotides flanking a DNA lesion on either side, on nucleotide excision repair (NER) in extracts from human cells were investigated. We constructed two duplexes containing the same minor groove-aligned 10S (+)-trans-anti-B[a]P-N2-dG (G?) DNA adduct, derived from the environmental carcinogen benzo[a]pyrene (B[a]P): 5′-C-C-A-T-C-G?-C-T-A-C-C-3′ (CG?C-I), and 5′-C-A-C3-A4-C5-G?-C-A-C-A-C-3′ (CG?C-II). We used polyacrylamide gel electrophoresis to compare the extent of DNA bending, and molecular dynamics simulations to analyze the structural characteristics of these two DNA duplexes. The NER efficiencies are 1.6(± 0.2)-fold greater in the case of the CG?C-II than the CG?C-I sequence context in 135-mer duplexes. Gel electrophoresis and self-ligation circularization experiments revealed that the CG?C-II duplex is more bent than the CG?C-I duplex, while molecular dynamics simulations showed that the unique -C3-A4-C5- segment in the CG?C-II duplex plays a key role. The presence of a minor groove-positioned guanine amino group, the Watson-Crick partner to C3, acts as a wedge; facilitated by a highly deformable local -C3-A4- base step, this amino group allows the B[a]P ring system to produce a more enlarged minor groove in CG?C-II than in CG?C-I, as well as a local untwisting and enlarged and flexible Roll only in the CG?C-II sequence. These structural properties fit well with our earlier findings that in the case of the family of minor groove 10S (+)-trans-anti-B[a]P-N2-dG lesions, flexible bends and enlarged minor groove widths constitute NER recognition signals, and extend our understanding of sequence context effects on NER to the neighbors that are distant to the lesion.  相似文献   

3.
The C3-vinyl group of a chlorophyll derivative, methyl pyropheophorbide-a, was converted into the formyl group by a novel one-pot reaction with thiophenol at room temperature. The mild reaction can provide insight into development of ‘green’ catalysts displacing OsO4 or O3, and into elucidation of unknown biosynthetic processes of chlorophyll-d.  相似文献   

4.
The reaction of 3β-hydroxy-21-hydroxymethylidenepregn-5-en-3β-ol-20-one (1) with phenylhydrazine (2a) affords two regioisomers, 17β-(1-phenyl-3-pyrazolyl)androst-3-en-3β-ol (5a) and 17β-(1-phenyl-5-pyrazolyl)androst-5-en-3β-ol (6a). The direction of the ring-closure reactions of 1 with p-substituted phenylhydrazines (2b-e) depends strongly on the electronic features of the substituents. Oppenauer oxidation of 3β-hydroxy-17β-exo-heterocyclic steroids 5a-e and 6a-e yielded the corresponding Δ4-3-ketosteroids 9a-e and 10a-e. The inhibitory effects (IC50) of these compounds on rat testicular C17,20-lyase were investigated by means of an in vitro radioligand incubation technique.  相似文献   

5.
The mutant lacking the enzyme BciA (renamed CT1063), which catalyzed reduction of the 8-vinyl group of a porphyrinoid-type 3,8-divinyl-(proto)chlorophyllide-a [DV-(P)Chlide-a] in the green sulfur bacterium Chlorobaculum (Cba.) tepidum, was reconstructed on the basis of the previous study reported by Chew and Bryant [J. Biol. Chem. 2007, 282, 2967–2975]. Cba. tepidum biosynthesizes the following three different types of chlorophylls (Chls) through their common precursory DV-(P)Chlide-a as its photosynthetically active pigments: bacteriochlorophyll(BChl)-c and Chl-a with the partially reduced 17,18-trans-dihydroporphyrin and BChl-a with the further reduced 7,8-trans-17,18-trans-tetrahydroporphyrin. The structures of Chls thus produced were characterized in detail by various spectroscopic techniques. In the mutant, both BChl-c and Chl-a possessing the alkyl group at the 8-position were exclusively replaced by their 8-vinylated derivatives, whereas BChl-a possessed the original 8-ethyl group. The present observations were inconsistent with the previous report. However, it was apparently confirmed that the enzyme BciA was responsible for the reduction of DV-(P)Chlide-a to produce BChl-c and Chl-a. Noteworthily, exclusive accumulation of the reduced (8-ethylated) form of BChl-a, not its 8-vinylated derivative, in the mutant indicates the presence of another enzyme catalyzing the 8-vinyl reduction as yet unidentified or any other reduction mechanism using a known enzyme to yield BChl-a.  相似文献   

6.
Medium polarity fractions of the hexane extracts of the stems of Bursera suntui afforded six previously known (1-6) and four hitherto unknown verticillane derivatives: (1S,3Z,7S,8S,11S,12S)-(+)-7,8-epoxyverticill-3-en-12,20-diol (7), (1S,3Z,7S,8S,11S,12S)-(+)-7,8-epoxyverticill-3-en-12,20-diol 20-acetate (8), (1S,3Z,7S,11S,12S)-(+)-verticilla-3,8(19)-dien-7,12,20-triol (9), and (1S,3Z,7S,11S,12S)-(+)-verticilla-3,8(19)-dien-7,12,20-triol 20-acetate (10). Acetylation of 9 and 10 yielded (1S,3Z,7S,11S,12S)-(+)-verticilla-3,8(19)-dien-7,12,20-triol 7,20-diacetate (11), while hydrolysis of 8 gave 7. The structures and stereochemistry of 7-11 were established by spectroscopic analyses, particularly by 1D and 2D NMR spectra and HRESIMS. The conformational preferences of 7-11 were studied by molecular mechanics modelling employing the Monte Carlo protocol followed by B3LYP/DGDZVP DFT calculation, thus supporting the observed 1H NMR NOESY cross peaks.  相似文献   

7.
Bacteriochlorophyll b has the most red-shifted absorbance maximum of all naturally occurring photopigments. It has a characteristic ethylidene group at the C8 position in place of the more common ethyl group, the product of a C8-vinyl reductase, which is carried by the majority of chlorophylls and bacteriochlorophylls used in photosynthesis. The subsequent and first step exclusive to bacteriochlorophyll biosynthesis, the reduction of the C7 = C8 bond, is catalyzed by chlorophyllide oxidoreductase. It has been demonstrated that the enzyme from bacteriochlorophyll a-utilizing bacteria can catalyze the formation of compounds carrying an ethyl group at C8 from both ethyl- and vinyl-carrying substrates, indicating a surprising additional C8-vinyl reductase function, while the enzyme from organisms producing BChl b could only catalyze C7 = C8 reduction with a vinyl substrate, but this product carried an ethylidene group at the C8 position. We have replaced the native chlorophyllide oxidoreductase-encoding genes of Rhodobacter sphaeroides with those from Blastochloris viridis, but the switch from bacteriochlorophyll a to b biosynthesis is only detected when the native conventional C8-vinyl reductase is absent. We propose a non-enzymatic mechanism for ethylidene group formation based on the absence of cellular C8-vinyl reductase activity.  相似文献   

8.
New derivatives of bacteriochlorophyll a bearing an extra glutarimide exocycle were synthesized, and their reactivity was studied. Acetyl group in 3-acetyl-2,7,12,18-tetramethyl-8-ethyl-13,15-dicarboxy-17-carboxyethyl-7,8,17,18-tetrahydroporphyrin (bacteriochlorin p) was chemically modified into -hydroxyethyl and vinyl groups. A simple method of preparation of vinylbacteriopurpurin esters under the catalysis by p-toluenesulfonic acid was proposed. The resulting compounds exhibit a high adsorption in the visible and near IR areas of electronic spectra, a reasonable stability, and amphiphilic properties and, therefore, may be regarded as promising photosensitizers for the photodynamic cancer therapy.  相似文献   

9.
3,8-Divinyl (proto)chlorophyll(ide) a 8-vinyl reductase (DVR) catalyzes the reduction of 8-vinyl group on the tetrapyrrole to an ethyl group, which is indispensable for monovinyl chlorophyll (Chl) synthesis. So far, three 8-vinyl reductase genes (DVR, bciA, and slr1923) have been characterized from Arabidopsis (Arabidopsis thaliana), Chlorobium tepidum, and Synechocystis sp. PCC6803. However, no 8-vinyl reductase gene has yet been identified in monocotyledonous plants. In this study, we isolated a spontaneous mutant, 824ys, in rice (Oryza sativa). The mutant exhibited a yellow-green leaf phenotype, reduced Chl level, arrested chloroplast development, and retarded growth rate. The phenotype of the 824ys mutant was caused by a recessive mutation in a nuclear gene on the short arm of rice chromosome 3. Map-based cloning of this mutant resulted in the identification of a gene (Os03g22780) showing sequence similarity with the Arabidopsis DVR gene (AT5G18660). In the 824ys mutant, nine nucleotides were deleted at residues 952 to 960 in the open reading frame, resulting in a deletion of three amino acid residues in the encoded product. High-performance liquid chromatography analysis of Chls indicated the mutant accumulates only divinyl Chl a and b. A recombinant protein encoded by Os03g22780 was expressed in Escherichia coli and found to catalyze the conversion of divinyl chlorophyll(ide) a to monovinyl chlorophyll(ide) a. Therefore, it has been confirmed that Os03g22780, renamed as OsDVR, encodes a functional DVR in rice. Based upon these results, we succeeded to identify an 8-vinyl reductase gene in monocotyledonous plants and, more importantly, confirmed the DVR activity to convert divinyl Chl a to monovinyl Chl a.Chlorophyll (Chl) is the main component of the photosynthetic pigments. Chl molecules universally exist in photosynthetic organisms and perform essential processes of harvesting light energy in the antenna systems and by driving electron transfer in the reaction centers (Fromme et al., 2003). In higher plants, there are two Chl species, Chl a and Chl b. The photosynthetic reaction centers contain only Chl a, and the peripheral light-harvesting antenna complexes contain Chl a and Chl b (Grossman et al., 1995). Chl a is synthesized from glutamyl-tRNA, and Chl b is synthesized from Chl a at the last step of Chl biosynthesis (Beale, 1999). So far, genes for all 15 steps in the Chl biosynthetic pathway have been identified in higher plants, at least in angiosperms represented by Arabidopsis (Arabidopsis thaliana; Beale, 2005; Nagata et al., 2005). Analysis of the complete genome of Arabidopsis showed that it has 15 enzymes encoded by 27 genes for Chl biosynthesis from glutamyl-tRNA to Chl b (Nagata et al., 2005). However, only six genes encoding three enzymes involved in Chl biosynthesis have been identified in rice (Oryza sativa). Magnesium chelatase comprises three subunits (ChlH, ChlD, and ChlI) and catalyzes the insertion of Mg2+ into protoporphyrin IX, the last common intermediate precursor in both Chl and heme biosyntheses. Jung et al. (2003) characterized OsCHLH gene for the OsChlH subunit of magnesium chelatase, and Zhang et al. (2006) cloned Chl1 and Chl9 genes encoding the OsChlD and OsChlI subunits of magnesium chelatase. Chl synthase catalyzes esterification of chlorophyllide (Chlide), resulting in the formation of Chl a. Wu et al. (2007) identified the YGL1 gene encoding the Chl synthase. Chl b is synthesized from Chl a by Chl a oxygenase; Lee et al. (2005) identified OsCAO1 and OsCAO2 genes for Chl a oxygenase.According to the number of vinyl side chains, Chls of oxygenic photosynthetic organisms are classified into two groups: 3,8-divinyl Chl (DV-Chl) and 3-vinyl Chl (monovinyl Chl [MV-Chl]). Almost all of the oxygenic photosynthetic organisms contain MV-Chls, regardless of the variation in their indigenous environments (Porra, 1997). The exceptions are species of Prochlorococcus marinus, marine picophytoplanktons that contain DV-Chls as their photosynthetic pigments (Chisholm et al., 1992).Chl biosynthetic heterogeneity is assumed to originate mainly in parallel DV- and MV-Chl biosynthetic routes interconnected by 8-vinyl reductases that convert DV-tetrapyrroles to MV-tetrapyrroles by conversion of the vinyl group at position 8 of ring B to the ethyl group (Parham and Rebeiz, 1995; Rebeiz et al., 2003). Most of Chls carry an ethyl group or, less frequently, a vinyl group. For example, Chl a and b occur as the MV-derivatives in green plants, but Chl precursors sometimes accumulate as DV-intermediates, and the ratio between the two forms can vary depending on the species, tissue, and growth conditions (Shioi and Takamiya, 1992; Kim and Rebeiz, 1996). So far, five 8-vinyl reductase activities have been detected at the levels of DV Mg-protoporphyrin IX (Kim and Rebeiz, 1996), Mg-protomonomethyl ester (Kolossov et al., 2006), protochlorophyllide (Pchlide) a (Tripathy and Rebeiz, 1988), Chlide a (Kolossov and Rebeiz, 2001; Nagata et al., 2005), and Chl a (Adra and Rebeiz, 1998). What is not clear at this stage is whether the various 8-vinyl reductase activities are catalyzed by one enzyme of broad specificity or by a family of enzymes of narrow specificity encoded by one gene or multiple genes, as is the case for NADPH Pchlide oxidoreductases (Rebeiz et al., 2003). The issue could be settled by purification of the various putative reductases and comparison of their properties.Nagata et al. (2005) and Nakanishi et al. (2005) independently identified the AT5G18660 gene of Arabidopsis as a divinyl reductase (DVR) that has sequence similarity to isoflavone reductase. Chew and Bryant (2007) demonstrated that BciA (CT1063), which is an ortholog of the Arabidopsis gene, encodes a DVR of the green sulfur bacterium Chlorobium tepidum TLS. They also considered that BchJ, which had been reported to be a vinyl reductase (Suzuki and Bauer, 1995), is not the enzyme, but it may play an important role in substrate channeling and/or regulation of bacteriochlorophyll biosynthesis. Islam et al. (2008) and Ito et al. (2008) independently identified a novel 8-vinyl reductase gene (Slr1923) in DVR-less cyanobacterium Synechocystis sp. PCC6803. However, no DVR gene has yet been identified in monocotyledonous plants.In this study, we isolated a spontaneous mutant, 824ys, from indica rice cv 824B. The mutant exhibited a yellow-green leaf phenotype throughout the growth stage, reduced level of Chls, arrested development of chloroplasts, and retarded growth rate. Map-based cloning of the mutant resulted in the identification of the OsDVR gene, showing sequence similarity to the DVR gene of Arabidopsis. In the 824ys mutant, nine nucleotides were deleted at residues 952 to 960 in the open reading frame (ORF), resulting in three amino acid deletion in the encoded protein. HPLC analysis of Chls indicated the mutant accumulates only DV-Chls. Enzymatic analysis demonstrated that the recombinant protein expressed in Escherichia coli is able to catalyze the conversion of DV-Chl(ide) a to MV-Chl(ide) a. Therefore, this study has confirmed that the OsDVR gene encodes a functional DVR in rice.  相似文献   

10.
C3H/HeN male mice were infected with a lethal population of Trypanosoma cruzi and treated with benznidazole (Bz). Parasitemia, body weight and survival rate were registered during the therapy with significant improvement for T. cruzi-infected Bz-treated animals. Besides, flow cytometry resulted a useful method to discriminate between cured animals from those not cured by monitoring IgG1 bound to live trypomastigotes levels. At the end of Bz therapy, the LT splenocyte compartment was studied for activation/memory cell surface markers ( and ). Cytofluorometric analysis showed that T. cruzi-infected untreated mice increased their activated LT numbers and this effect was completely abolished only in cured mice at the end of Bz administration. The same behavior was observed for the memory LT subpopulation correlating to an effector memory () displayed by T. cruzi infection. Bz treatment was able to modulate the immunological response by reducing the deleterious effect of the acute phase in all T. cruzi-infected mice.  相似文献   

11.
Pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine derivatives such as SCH 442416 display high affinity and selectivity as antagonists for the human A2A adenosine receptor (AR). We extended ether-linked chain substituents at the p-position of the phenyl group using optimized O-alkylation. The conjugates included an ester, carboxylic acid and amines (for amide condensation), an alkyne (for click chemistry), a fluoropropyl group (for 18F incorporation), and fluorophore reporter groups (e.g., BODIPY conjugate 14, Ki 15 nM). The potent and A2AAR-selective N-aminoethylacetamide 7 and N-[2-(2-aminoethyl)-aminoethyl]acetamide 8 congeners were coupled to polyamidoamine (PAMAM) G3.5 dendrimers, and the multivalent conjugates displayed high A2AAR affinity. Theoretical docking of an AlexaFluor conjugate to the receptor X-ray structure highlighted the key interactions between the heterocyclic core and the binding pocket of the A2AAR as well as the distal anchoring of the fluorophore. In conclusion, we have synthesized a family of high affinity functionalized congeners as pharmacological probes for studying the A2AAR.  相似文献   

12.

Background and Aims

Stomatal density (SD) generally decreases with rising atmospheric CO2 concentration, Ca. However, SD is also affected by light, air humidity and drought, all under systemic signalling from older leaves. This makes our understanding of how Ca controls SD incomplete. This study tested the hypotheses that SD is affected by the internal CO2 concentration of the leaf, Ci, rather than Ca, and that cotyledons, as the first plant assimilation organs, lack the systemic signal.

Methods

Sunflower (Helianthus annuus), beech (Fagus sylvatica), arabidopsis (Arabidopsis thaliana) and garden cress (Lepidium sativum) were grown under contrasting environmental conditions that affected Ci while Ca was kept constant. The SD, pavement cell density (PCD) and stomatal index (SI) responses to Ci in cotyledons and the first leaves of garden cress were compared. 13C abundance (δ13C) in leaf dry matter was used to estimate the effective Ci during leaf development. The SD was estimated from leaf imprints.

Key Results

SD correlated negatively with Ci in leaves of all four species and under three different treatments (irradiance, abscisic acid and osmotic stress). PCD in arabidopsis and garden cress responded similarly, so that SI was largely unaffected. However, SD and PCD of cotyledons were insensitive to Ci, indicating an essential role for systemic signalling.

Conclusions

It is proposed that Ci or a Ci-linked factor plays an important role in modulating SD and PCD during epidermis development and leaf expansion. The absence of a Ci–SD relationship in the cotyledons of garden cress indicates the key role of lower-insertion CO2 assimilation organs in signal perception and its long-distance transport.  相似文献   

13.
Understanding sensory systems that perceive environmental inputs and neural circuits that select appropriate motor outputs is essential for studying how organisms modulate behavior and make decisions necessary for survival. Drosophila melanogaster oviposition is one such important behavior, in which females evaluate their environment and choose to lay eggs on substrates they may find aversive in other contexts. We employed neurogenetic techniques to characterize neurons that influence the choice between repulsive positional and attractive egg-laying responses toward the bitter-tasting compound lobeline. Surprisingly, we found that neurons expressing Gr66a, a gustatory receptor normally involved in avoidance behaviors, receive input for both attractive and aversive preferences. We hypothesized that these opposing responses may result from activation of distinct Gr66a-expressing neurons. Using tissue-specific rescue experiments, we found that Gr66a-expressing neurons on the legs mediate positional aversion. In contrast, pharyngeal taste cells mediate the egg-laying attraction to lobeline, as determined by analysis of mosaic flies in which subsets of Gr66a neurons were silenced. Finally, inactivating mushroom body neurons disrupted both aversive and attractive responses, suggesting that this brain structure is a candidate integration center for decision-making during Drosophila oviposition. We thus define sensory and central neurons critical to the process by which flies decide where to lay an egg. Furthermore, our findings provide insights into the complex nature of gustatory perception in Drosophila. We show that tissue-specific activation of bitter-sensing Gr66a neurons provides one mechanism by which the gustatory system differentially encodes aversive and attractive responses, allowing the female fly to modulate her behavior in a context-dependent manner.  相似文献   

14.
The condensation of substituted aromatic aldehydes with 7-amino-4-methyl-quinolin-2(1H)-one (1) has lead to the isolation of quinolin-2(1H)-one derived Schiff bases (2-14). The copper(II) complexes (2a-14a) of the ligands were also prepared, and together with their corresponding free ligands were fully characterised by elemental analyses, spectral methods (IR, 1H and 13C NMR, AAS, UV-Vis), magnetic and conductance measurements. The bidentate ligands coordinated to the copper(II) ion through the deprotonated phenolic oxygen and the azomethine nitrogen of the ligands in almost all cases. X-ray crystal structures of two of the complexes, 5a and 8a, confirmed the bidentate coordination mode. All of the compounds were investigated for their antimicrobial activities against the fungus, Candida albicans, and against Gram-positive and Gram-negative bacteria. The compounds were found to have excellent anti-Candida activity but were inactive against Staphylococcus aureus and Escherichia coli. Selected compounds (2-8 and 2a-8a) were also screened for their in vitro anticancer potential using the human hepatic carcinoma cell line, Hep-G2. Several derivatives were shown to be active comparable to that of cisplatin.  相似文献   

15.
The present study shows that small admixtures of one chlorophyll a (Chla) molecule per several hundred lipid molecules have strong destabilizing effect on lipid bilayers. This effect is clearly displayed in the properties of the Lα-HII transformations and results from a Chla preference for the HII relative to the Lα phase. Chla disfavors the lamellar liquid crystalline phase Lα and induces its replacement with inverted hexagonal phase HII, as is consistently demonstrated by DSC and X-ray diffraction measurements on phosphatidylethanolamine (PE) dispersions. Chla lowers the Lα-HII transition temperature (42 °C) of the fully hydrated dipalmitoleoyl PE (DPoPE) by ∼ 8 °C and ∼ 17 °C at Chla/DPoPE molar ratios of 1:500 and 1:100, respectively. Similar Chla effect was recorded also for dielaidoyl PE dispersions. The lowering of the transition temperature and the accompanying significant loss of transition cooperativity reflect the Chla repartitioning and preference for the HII phase. The reduction of the HII phase lattice constant in the presence of Chla is an indication that Chla favors HII phase formation by decreasing the radius of spontaneous monolayer curvature, and not by filling up the interstitial spaces between the HII phase cylinders. The observed Chla preference for HII phase and the substantial bilayer destabilization in the vicinity of a bilayer-to-nonbilayer phase transformation caused by low Chla concentrations can be of interest as a potential regulatory or membrane-damaging factor.  相似文献   

16.
Reactions of [PtMe3(bpy)(Me2CO)][BF4] (2) with the thionucleobases 2-thiouracil (s2Ura), 4-thiouracil (s4Ura) and 2,4-dithiouracil (s2s4Ura) resulted in the formation of complexes of the type [PtMe3(bpy)(L-κS)][BF4] (L = s2Ura, 3; s4Ura, 4; s2s4Ura, 5). The complexes were characterized by NMR spectroscopy (1H, 13C, 195Pt), IR spectroscopy as well as microanalyses. The coordination through the C4S groups (4, 5) was additionally confirmed by DFT calculations, where it was shown that these complexes [PtMe3(bpy)(L-κS4)]+ (L = s4Ura, s2s4Ura) are about 5.8 (4b) and 3.3 kcal/mol (5b), respectively, more stable than the respective complexes, having thiouracil ligands bound through the C2X groups (X = O, 4a; S, 5a). For [PtMe3(bpy)(s2Ura-κS2)][BF4] (3) no preferred coordination mode could be assigned solely based on DFT calculations. Analysis of NMR spectra showed the κS2 coordination. In vitro cytotoxic studies of complexes 3−5 on nine different cell lines (8505C, A253, FaDu, A431, A549, A2780, DLD-1, HCT-8, HT-29) revealed in most cases moderate activities. However, 3 and 5 showed significant activity towards A549 and A2780, respectively, possessing IC50 values comparable to those of cisplatin. Cell cycle perturbations and trypan blue exclusion test on cancer cell line A431 using [PtMe3(bpy)(s2s4Ura-κS4)][BF4] (5) showed induction of apoptotic cell death. Furthermore, the reaction of [PtMe3(OAc-κ2O,O′)(Me2CO)] (6) with 4-thiouracil yielded the dinuclear complex [(PtMe3)2(μ-s4Ura-H)2] (7), which has been characterized by microanalysis, NMR (1H, 13C, 195Pt) and IR spectroscopy as well as ESI mass spectrometry. X-ray diffraction analysis of crystals yielded in an isolated case exhibited the presence of a hexanuclear thiouracilato platinum(IV) complex, possessing each three different kinds of methyl platinum(IV) moieties and 4-thiouracilato ligands. This exhibited the ability of 4-thiouracil platinum(IV) complexes to form multinuclear complexes.  相似文献   

17.
New fluorous-organometallics based on the chiral ligand α-methyl-N,N-dimethylbenzylamine (TMBA) were prepared by treatment of fluorous silyl bromide reagents with in situ 4-lithiated TMBA to give fluorous N,N-dimethyl(α-methyl-4-trialkylsilylbenzyl)amine ligands 1a-1c that vary in the number of fluorous tails attached to the Si atom. Ligands 1a-1c were successfully cyclo-palladated by treatment with Pd(OAc)2/LiCl in methanol to furnish the corresponding chloride-bridged dimeric arylpalladium(II) complexes 2a-2c in good yields. The latter derivatives could be converted into monomeric Lewis-base adducts by complexation with pyridine (3a-3c), or triphenylphosphine (4a-4c). The crystal structure of triphenylphosphine complex 4a has been elucidated. To probe their fluorophilicity, the partition coefficient of each of the derivatives in the fluorous biphasic solvent (FBS) system perfluoromethylcyclohexane/n-octane has been determined.  相似文献   

18.
A photosynthetic reaction center (RC) complex was isolated from a purple bacterium, Acidiphilium rubrum. The RC contains bacteriochlorophyll a containing Zn as a central metal (Zn-BChl a) and bacteriopheophytin a (BPhe a) but no Mg-BChl a. The absorption peaks of the Zn-BChl a dimer (PZn), the accessory Zn-BChl a (BZn), and BPhe a (H) at 4 K in the RC showed peaks at 875, 792, and 753 nm, respectively. These peaks were shorter than the corresponding peaks in Rhodobacter sphaeroides RC that has Mg-BChl a. The kinetics of fluorescence from PZn*, measured by fluorescence up-conversion, showed the rise and the major decay with time constants of 0.16 and 3.3 ps, respectively. The former represents the energy transfer from BZn* to PZn, and the latter, the electron transfer from PZn to H. The angle between the transition dipoles of BZn and PZn was estimated to be 36° based on the fluorescence anisotropy. The time constants and the angle are almost equal to those in the Rb. sphaeroides RC. The high efficiency of A. rubrum RC seems to be enabled by the chemical property of Zn-BChl a and by the L168HE modification of the RC protein that modifies PZn.  相似文献   

19.
Horseradish peroxidase was verified to catalyze, without any phenol, the hydrogen peroxide oxidation of chlorophyll a (Chl a), solubilized with Triton X-100. The 132(S) and 132(R) diastereomers of 132-hydroxyChl a were characterized as major oxidation products (ca. 60%) by TLC on sucrose, UV-vis, 1H, and 13C NMR spectra, as well as fast-atom bombardment MS. A minor amount of the 152-methyl, 173-phytyl ester of Mg-unstable chlorin was identified on the basis of its UV-vis spectrum and reactivity with diazomethane, which converted it to the 131,152-dimethyl, 173-phytyl ester of Mg-purpurin 7. The side products (ca. 10%) were suggested to include the 173-phytyl ester of Mg-purpurin 18, which is known to form easily from the Mg-unstable chlorin. The side products also included two red components with UV-vis spectral features resembling those of pure Chl a enolate anion. Hence, the two red components were assigned to the enolate anions of Chl a and pheophytin a or, alternatively, two different complexes of the Chl a enolate ion with Triton X-100. All the above products characterized by us are included in our published free-radical allomerization mechanism of Chl a, i.e. oxidation by ground-state dioxygen. The HRP clearly accelerated the allomerization process, but it did not produce bilins, that is, open-chain tetrapyrroles, the formation of which would require oxygenolysis of the chlorin macrocycle. In this regard, our results are in discrepancy with the claim by several researchers that ‘bilirubin-like compounds’ are formed in the HRP-catalyzed oxidation of Chl a. Inspection of the likely reactions that occurred on the distal side of the heme in the active centre of HRP provided a reasonable explanation for the observed catalytic effect of the HRP on the allomerization of Chl. In the active centre of HRP, the imidazole nitrogen of His-42 was considered to play a crucial role in the C-132 deprotonation of Chl a, which resulted in the Chl a enolate ion resonance hybrid. The Chl enolate was then oxidized to the Chl 132-radical while the HRP Compound I was reduced to Compound II. The same reactive Chl derivatives, i.e. the Chl enolate anion and the Chl 132-radical, which are produced twice in the HRP reaction cycle, happen to be the crucial intermediates in the initial stages of the Chl allomerization mechanism.  相似文献   

20.
Four new (1-4) and 13 known (5-17) sesquiterpene lactones along with two known diterpenes (18, 19) were isolated from the whole plant of Carpesium faberi. The new structures were elucidated by means of spectroscopic techniques and some chemical transformations to be pseudoguaian-1α(H)-8α,12-olide-4β-O-β-d-glucopyranoside (1), 4β,10α-dihydroxy-5α(H)-1,11(13)-guaidien-8α,12-olide (2), 4β,10β-dihydroxy-5α(H)-1, 11(13)-guaidien-8β,12-olide (3), and (4S)-acetyloxyl-11(13)-carabren-8β,12-olide (4). All isolates were tested against MCF-7 human breast cancer cells using the MTT assay. Among them, the sesquiterpene lactones (except tomentosin 17) possessing an α-methylene-γ-lactone moiety were found to have in vitro antiproliferative activities, with IC50 values of 3.0-38.8 μg/mL. The effects of four selected sesquiterpene lactones (guaianolide 2, carabranolide 4, pseudoguaianolide 9, eudesmanolide 13) on the cell cycle were examined using flow cytometry (FCM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号