首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— A series of compounds structurally related to muscimol (5-aminomethyl-3-isoxazolol) was tested as inhibitors of the sodium-independent binding of GABA to membranes from rat brain. Muscimol, 5-(l-aminoethyl)-3-isoxazolol, 5-(2-aminoethyl)-3-isoxazolol (homomuscimol), and the bicyclic derivative 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) were relatively potent inhibitors of GABA binding. THIP is an analogue of muscimol locked in a folded conformation. The structurally related compound 1,2,3,6-tetrahydropyridine-4-carboxylic acid (isoguvacine), a semirigid analogue of trans-4-aminocrotonic acid, was also a potent inhibitor of GABA binding. Apart from muscimol, these inhibitors of GABA binding did not influence the sodium-dependent,'high-affinity' uptake of GABA in rat brain slices, whereas the potent GABA uptake inhibitors guvacine and nipecotic acid did not influence GABA binding. The present results support previous findings that different conformational modes of GABA interact with GABA postsynaptic receptors and the neuronal GABA transport system in rat brain, and indicate that the 'active conformation' of GABA with respect to the receptors is partially folded and almost planar. Based on a comparison of the present results with previous in vivo studies the structural requirements for GABA-like activity in rat cerebral cortex and cat spinal cord seem to be somewhat different.  相似文献   

2.
Abstract: The synthesis of cis -2-(aminomethyl) cyclopropanecarboxylic acid, a new analogue of GABA in a folded conformation, is described, as is also an improved preparation of trans -2-(aminomethyl) cyclopropanecarboxylic acid. When adminstered microelectrophoretically the trans isomer was more potent than GABA as a bicuculline-sensitive depressant of the firing of cat spinal neurons in vivo , whereas the cis-isomer was less potent than GABA and its effects appeared not to be sensitive to bicuculline methochloride. Trans -2-(aminomethyl) cyclopropanecarboxylic acid was a weak inhibitor of the sodium-dependent uptake of GABA by mini slices of rat cerebral cortex and a substrate for the GABA: 2-oxoglutarate aminotransferase activity in extracts of rat brain mitochondria. The cis isomer did not influence GABA uptake or aminotransferase activity and neither isomer reduced glutamate decar-boxylase activity in rat brain homogenates. Both cyclopropane isomers inhibited the sodium-independent binding of GABA to synaptic membranes from rat brain and their relative potencies together with those found for the stereochemically related unsaturated derivatives, cis -and trans -4-aminocrotonic acid, were broadly consistent with the activity observed for these compounds in vivo on cat spinal neurons. These studies reinforce the evidence that extended rather than folded conformations of GABA are active at most GABA recognition sites within the mammalian central nervous system.  相似文献   

3.
RECENT studies strongly support a role for γ-aminobutyric acid (GABA) as an inhibitory transmitter at certain synapses in the mammalian central nervous system. Structure activity correlations of many GABA analogues implicate both the intramolecular distance between the zwitterionic centres and the rotational freedom of the molecule as important factors governing the synaptic activity of these substances1. The following observations provide pertinent information about the active conformation(s) of GABA recognized by the receptor. (1) Muscimol, an isoxazole isolated from Amanita muscaria, seems to function as a GABA analogue as its inhibitory action on central neurones is comparable with that of GABA both in potency2 and with respect to antagonism by bicuculline3. Molecular orbital calculations suggest that GABA and muscimol can assume similar conformations as zwitterions with the charged centres (N+ and 0?) at least 5 and, more likely, 6 Å apart4. (2) The selective GABA antagonist bicuculline exhibits some degree of structural similarity with particular conformations of GABA and muscimol3. (3) X-ray crystallography indicates that GABA exists in a partially folded conformation in the solid state5,6. (4) A model of the GABA receptor proposes that GABA adopts a folded conformation with a distance of less than 4.4 Å between the charged centres7. Observations (1) and (2) suggest extended conformations for GABA, while (3) and (4) suggest folded conformations.  相似文献   

4.
Analogues of the neurotransmitter GABA containing unsaturated bonds are restricted in the conformations they can attain. This review traces three such analogues from their synthesis to their use as neurochemicals. trans-4-Aminocrotonic acid was the first conformationally restricted analogue to be extensively studied. It acts like GABA across a range of macromolecules from receptors to transporters. It acts similarly to GABA on ionotropic receptors. cis-4-Aminocrotonic acid selectively activates bicuculline-insensitive GABAC receptors. 4-Aminotetrolic acid, containing a triple bond, activates bicuculline-sensitive GABAA receptors. These findings indicate that GABA activates GABAA receptors in extended conformations and GABAC receptors in folded conformations. These and related analogues are important for the molecular modelling of ionotropic GABA receptors and to the development of new agents acting selectively on these receptors.  相似文献   

5.
Abstract

The title compound, 9-[4-hydroxy-2-(hydroxymethyl)-butyl]guanine (2HM-HBG), crystallizes in the triclinic space group P1 with two independent molecules and one water molecule in the asymmetric unit. The acyclic chain of one molecule is in the fully extended form, and the other partially folded. The orientation of this chain with respect to the base corresponds to the conformation syn in natural nucleosides. The conformations of the two molecules were compared with the solution conformation from an analysis of the 1H-1H vicinal coupling constants. The comportment of some acyclonucleosides in several enzyme systems is examined in relation to their existence in folded or extended forms.  相似文献   

6.
Summary This review describes a novel class of heterocyclic GABA uptake inhibitor with no affinity for the GABA receptors. The parent compound nipecotic acid is a potent inhibitor of neuronal and glial GABA uptake, and nipecotic acid is a substrate for the transport carriers concerned. The structurally related cyclic amino acids guvacine and cis-4-hydroxynipecotic acid are also potent inhibitors of both GABA transport systems. Even minor structural alterations of these compounds result in considerable or complete loss of activity. Whereas homonipecotic acid is a weak but selective inhibitor of glial GABA uptake, homoguvacine is virtually inactive. Similarly the lower homologues of nipecotic acid and guvacine, -proline and 3-pyrroline-3-carboxylic acid, respectively, show some selectivity with respect to inhibition of glial GABA uptake, but these compounds are much weaker than the parent compounds. The bicyclic compounds THPO and THAO, in which the carboxyl groups of nipecotic acid and homonipecotic acid have been replaced by 3-isoxazolol units are moderately potent and practically specific inhibitors of glial GABA uptake. cis-4-Mercaptonipecotic acid is considerably weaker than the closely related analogue cis-4-hydroxynipecotic acid, but the former compound may interact irreversibly with the GABA transport carriers.The results demonstrate a pronounced substrate specificity of the glial and in particular the neuronal GABA transport system. It is evident that the GABA molecule is transported in a conformation different from that, in which it activates its receptors. These findings are of importance for the development of drugs for selective pharmacological regulation of the functions of central GABA-mediated synapses in certain neurological diseases.  相似文献   

7.
Abstract— trans -4-aminocrotonic acid, dl - cis -aminocyclohexane-ltarboxylic acid and 4-aminotetrolic acid were found to be competitive inhibitors of GABA uptake in rat brain slices. These inhibitors are analogues of extended conformations of GABA, which indicates that these conformations are important in the initial binding of this inhibitory transmitter to its transport carrier.  相似文献   

8.
GABA acts as an intercellular signal in eukaryotes and as an interspecies signal in host–microbe interactions. Structural characteristics of selective eukaryotic GABA receptors and bacterial GABA sensors are unknown. Here, we identified the selective GABA‐binding protein, called Atu4243, in the plant pathogen Agrobacterium tumefaciens. A constructed atu4243 mutant was affected in GABA transport and in expression of the GABA‐regulated functions, including aggressiveness on two plant hosts and degradation of the quorum‐sensing signal. The GABA‐bound Atu4243 structure at 1.28 Å reveals that GABA adopts a conformation never observed so far and interacts with two key residues, Arg203 and Asp226 of which the role in GABA binding and GABA signalling in Agrobacterium has been validated using appropriate mutants. The conformational GABA‐analogue trans‐4‐aminocrotonic acid (TACA) antagonizes GABA activity, suggesting structural similarities between the binding sites of the bacterial sensor Atu4243 and mammalian GABAC receptors. Exploration of genomic databases reveals Atu4243 orthologues in several pathogenic and symbiotic proteobacteria, such as Rhizobium, Azospirillum, Burkholderia and Pseudomonas. Thus, this study establishes a structural basis for selective GABA sensors and offers opportunities for deciphering the role of the GABA‐mediated communication in several host–pathogen interactions.  相似文献   

9.
新型γ-氨基丁酸受体:GABAc受体   总被引:8,自引:0,他引:8  
众多的证据表明,在神经系统,特别是视觉神经通路中,除通常的GABAA和GABAB受体之外,还存在着一种具有不同药理特性的GABAC受体。这种受体不为荷包牡丹碱(bicuculline)所阻遏,亦不为氯苯氨丁酸(baclofen)所激活,在激活后并不显示失敏现象,可能在视网膜中视杆通路的信,自传递和调控中起重要作用。  相似文献   

10.
Investigations into the pharmacology of different types of cys-loop GABA receptor have relied for years on the chemical modification of GABA-like compounds. The GABA metabolite GABOB is an attractive molecule to modify due to its convenient chemical structure. In the process of developing new GABA-mimic compounds from GABOB as a starting compound three small molecule GABA derivatives were synthesized using a variety of chemical transformations. Amongst these, a new and reliable method to synthesize TACA (trans-4-aminocrotonic acid) is reported.  相似文献   

11.
The presence of the sulfur atom of the methionine side chain exerts significant effects at different levels on biochemical behavior of chemotactic N-formylpeptides. In order to acquire more information on this point, the synthesis, the conformation in the crystal, and the activity of For-Hse(Me)-Leu-Phe-OMe (2) —an oxygen analogue of For-Met-Leu-Phe-OMe (f MLP-OMe) containing the O-methyl-L -homoserine in place of the native methionine at position 1—is reported. The new analogue 2 adopts a conformation that is extended at the first two residues and folded at the C-terminal phenylalanine. This conformation is different from that of the parent f MLP-OMe and strikingly similar to that adopted by f MLP-OBut. The side-chain spatial orientation of 2 corresponds to that adopted by f MLP-OH when cocrystallized with an immunoglobulin possessing binding properties similar to those of neutrophil receptors. When tested on human neutrophils the formylpeptide 2 is more active than the parent in the stimulation of directed mobility and maintains both the granule enzyme release activity an the superoxide anion production. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
The affinities of a number of analogues of gamma-aminobutyric acid (GABA) for GABAA and GABAB receptor sites and GABA uptake were studied using rat brain membrane preparations. Studies on the (S)-(+)- and (R)-(-)-isomers of baclofen, 3-hydroxy-4-aminobutyric acid (3-OH-GABA), and 4,5-dihydromuscimol (DHM) revealed different stereoselectivities of these synaptic mechanisms in vitro. Although (S)-3-OH-GABA and, in particular, (S)-DHM were more potent than the corresponding (R)-isomers as inhibitors of GABAA binding, the opposite stereoselectivity was demonstrated for the GABAB binding sites. Thus, (R)-3-OH-GABA and (R)-baclofen were more potent than the (S)-isomers as inhibitors of GABAB binding, (R)-baclofen being some five times more potent than (R)-3-OH-GABA. These two (R)-isomers actually have opposite orientation of the substituents on the GABA backbones, suggesting that the lipophilic substituent of (R)-baclofen interacts with a structural element of the GABAB receptor site different from that that binds the very polar hydroxy group of (R)-3-OH-GABA. The O-methylated analogue of 3-OH-GABA, 3-methoxy-4-aminobutyric acid (3-OCH3-GABA), did not interact significantly with GABAB sites. The homologues of GABA, trans-4-aminocrotonic acid (trans-ACA), muscimol, and 3-OH-GABA, that is, 5-aminovaleric acid (DAVA), trans-5-aminopent-2-enoic acid, homomuscimol, and 3-hydroxy-5-aminovaleric acid (3-OH-DAVA), respectively, were generally much weaker than the parent compounds, whereas 2-hydroxy-5-aminovaleric acid (2-OH-DAVA) showed a significantly higher affinity for GABAB sites than the corresponding GABA analogue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Reduced dipeptides with the general formula RCO-Xaa- rXbb-N+HR′R′′ (rXbb, reduced analogue of residue Xbb: NH-Cα HR1 -Cr H2) are shown to adopt a folded conformation in solution and in the solid state. The protonated reduced amide bond is an active proton donor capable of interacting with a peptide carbonyl to give a strong hydrogen bond topologically equivalent to the i+2 or i+3? i interaction. The resulting conformation is similar to the γ- or β-turn structure found in peptides and proteins.  相似文献   

14.
Summary. In order to characterize the possible regulation of taurine release by GABAergic terminals, the effects of several agonists and antagonists of GABA receptors on the basal and K+-stimulated release of [3H]taurine were investigated in hippocampal slices from adult (3-month-old) and developing (7-day-old) mice using a superfusion system. Taurine release was concentration-dependently potentiated by GABA, which effect was reduced by phaclofen, saclofen and (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) at both ages, suggesting regulation by both GABAB and GABAC receptors. The involvement of GABAA receptors could not be excluded since the antagonist bicuculline was able to affect both basal and K+-evoked taurine release. Furthermore, several GABAB receptor effectors were able to inhibit K+-stimulated taurine release in the adults, while the GABAC receptor agonists trans-4-aminocrotonic acid (TACA) and cis-4-aminocrotonic acid (CACA) potentiated this release. The potentiation of taurine release by agents acting on the three types of GABA receptors in both adult and developing hippocampus further indicates the involvement of transporters operating in an outward direction. This inference is corroborated by the moderate but significant inhibition of taurine uptake by the same compounds. Received June 28, 1999, Accepted August 31, 1999  相似文献   

15.
Important aspects in detailed nmr analyses of the conformations of linear peptides are discussed using enkephalin and the α-mating factor of Saccharomyces cerevisiae as examples. The cationic, dipolar, and anionic forms in dimethyl sulfoxide solution may be identified by ir analyses. Because of the electrostatic interaction between the N- and C-terminal groups, the dipolar form of enkephalin takes the folded conformation, as well as extended conformation(s), in dimethyl sulfoxide solution. Such conformational equilibrium is responsible for anomalous temperature dependences and solvent-composition dependences of the amide and Cα proton chemical shifts. Active analogs, enkephalinamide and enkephalinol, take extended conformation(s) in solution. These opioid peptides probably take a specific active conformation upon binding with a receptor. For the α-mating factor and active peptide analogs in aqueous solution, a folded conformation with two βturn structures is responsible for the biological activity.  相似文献   

16.
Abstract: cis -4-Aminocrotonic acid (CACA; 100 µ M ), an analogue of GABA in a folded conformation, stimulated the passive release of [3H]GABA from slices of rat cerebellum, cerebral cortex, retina, and spinal cord and of β-[3H]alanine from slices of cerebellum and spinal cord without influencing potassium-evoked release. In contrast, CACA (100 µ M ) did not stimulate the passive release of [3H]taurine from slices of cerebellum and spinal cord or of d -[3H]aspartate from slices of cerebellum and did not influence potassium-evoked release of [3H]taurine from the cerebellum and spinal cord and d -[3H]aspartate from the cerebellum. These results suggest that the effects of CACA on GABA and β-alanine release are due to CACA acting as a substrate for a β-alanine-sensitive GABA transport system, consistent with CACA inhibiting the uptake of β-[3H]alanine into slices of rat cerebellum and cerebral cortex. The observed K i for CACA against β-[3H]alanine uptake in the cerebellum was 750 ± 60 µ M . CACA appears to be 10-fold weaker as a substrate for the transporter system than as an agonist for the GABAc receptor. The effects of CACA on GABA and β-alanine release provide indirect evidence for a GABA transporter in cerebellum, cerebral cortex, retina, and spinal cord that transports GABA, β-alanine, CACA, and nipecotic acid that has a similar pharmacological profile to that of the GABA transporter, GAT-3, cloned from rat CNS. The structural similarities of GABA, β-alanine, CACA, and nipecotic acid are demonstrated by computer-aided molecular modeling, providing information on the possible conformations of these substances being transported by a common carrier protein.  相似文献   

17.
Recently, our research group has proposed the hydroxyfurazanyl (4-hydroxy-1,2,5-oxadiazole-3-yl) moiety as a new non-classical isoster of the carboxy function in the design of γ-aminobutyric acid (GABA) analogues. Some compounds showed significant activity at the GABAA receptor, representing the only examples of pentatomic heterocycles bearing an ω-aminoalkyl flexible side chain in the position vicinal to the hydroxy group displaying agonist activity at this receptor subtype. In this work, an ab initio analysis of the structural and electronic features of furazan-3-ol is presented, in order to provide a theoretical basis to the claimed bioisosterism with the carboxy function. An ab initio conformational study with the C-PCM implicit solvent model was carried out to elucidate the reasons of the peculiar behaviour of the furazan models. Alongside, another conformational search through molecular dynamics in explicit solvent was accomplished, in order to validate the first method. The electronic features of the 4-hydroxy-1,2,5-oxadiazole-3-yl substructure seem to account for a marked stabilising effect of the putative bioactive conformation at the GABAA receptor subtype. The 1,2,5-thiadiazole analogue, which shares the same conformational preference of its oxygenated counterpart, was identified as a potential candidate for synthesis and pharmacological testing. Figure 4-(ω-aminoalkyl)-1,2,5-oxadiazole-3-ol analogues of GABA Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

18.
The molecular and crystal structures of three compounds, representing the repeating units of the β-bend ribbon (an approximate 310-helix, with an intramolecular hydrogen-bonding donor every two residues), have been determined by x-ray diffraction. They are Boc-Aib-Hib-NHBzl, Z-Aib-Hib-NHBzl, and Z-L -Hyp-Aib-NHMe (Aib, α-aminoisobutyric acid; Bzl, benzyl; Boc, t-butyloxycarbonyl; Hyp, hydroxyproline Hib, α-hydroxyisobutyric acid; Z, benzyloxycarbonyl). The two former compounds are folded in a β-bend conformation: type III (III′) for Boc-Aib-Hib-NHBzl, while type II (II′) for the Z analogue. Conversely, the structure of Z-L -Hyp-Aib-NHMe, although not far from a type II β-bend, is partially open.  相似文献   

19.
Applying GABA (1 microM-1 mM) to the soma of cultured lobster olfactory receptor neurons evokes an inward current (V(m) = -60 mV) accompanied by an increase in membrane conductance, with a half-effect of 487 microM GABA. The current-voltage relationship of this current is linear between -100 and 100 mV and reverses polarity at the equilibrium potential for Cl(-). The current is blocked by picrotoxin and bicuculline methiodide, and is evoked by trans-aminocrotonic acid, isoguvacine, muscimol, imidazole-4-acetic acid, and 3-amino-1-propanesulfonic acid, but not by the GABA(C)-receptor agonist cis-4-aminocrotonic acid and the GABA(B)-receptor agonist 3-aminopropylphosphonic. Applying GABA to the soma of the cells in situ reversibly suppresses the spontaneous discharge and substantially decreases the odor-evoked discharge. The effects of GABA on the cell soma in situ are antagonized by both picrotoxin and bicuculline methiodide. Taken together with evidence that GABA directly activates a chloride channel in outside-out patches excised from the soma of these neurons, we conclude that lobster olfactory receptor neurons express an ionotropic GABA receptor that can potentially regulate the output of these cells. Copyright Copyright 1999 S. Karger AG, Basel  相似文献   

20.
SODIUM-DEPENDENT EFFLUX AND EXCHANGE OF GABA IN SYNAPTOSOMES   总被引:12,自引:10,他引:2  
Abstract— The influx and efflux of [3H]GABA were investigated in synaptosomes. Two efflux components were detected. The first, termed spontaneous efflux, was not affected by the external sodium chloride concentration. The second, termed GABA-stimulated efflux, was observed when low levels of GABA were added to the incubation medium and was found to require external sodium chloride. The rate of spontaneous efflux at 0°C was about 37 per cent of the rate at 27°C but both GABA-stimulated efflux and GABA influx were completely inhibited at 0°C. The stimulation of efflux by external GABA followed simple Michaelis–Menten kinetics with respect to external GABA. The concentration of external GABA required for half-maximal stimulation was 4·9 ± 1·4 μm and the Vmax for efflux was 1·0 ± 0·6 nmol. min-1.mg-1 of protein. A similar stimulation of efflux was observed with GABA analogue l -2,4-diamino-butyric acid which is a competitive inhibitor of influx. The concentration of external l -2,4-diaminobutyric acid required for half-maximal stimulation of efflux was 51 ± 12 μm and the Vmax for efflux was 0·8 ± 0·5 nmol.min-1.mg-1 of protein. Since the sodium-dependency, temperature sensitivity, and kinetic properties of the GABA-stimulated efflux system were similar to the influx system, GABA-stimulated efflux was attributed to carrier-mediated exchange diffusion. Measurement of efflux and influx in the same preparation showed there was a net efflux when total fluxes were considered and that the exchange ratio (influx to GABA-stimulated efflux) was 0·9 when carrier-mediated fluxes were considered. The effect of the temperature of the fluid used to rinse synaptosomes collected on filters in influx experiments was investigated. There was no detectable difference in measured values of influx between samples rinsed with cold fluid (0°C) and warm fluid (27°C). The endogenous GABA content of synaptosomes was found to be 20·3 ± 2·5 nmol GABA per mg of protein. From this value, the cytoplasmic concentration of GABA in synaptosomes was estimated to be a maximum of 40 mm . About 5 per cent of total cerebral cortical GABA was found in the synaptosomal fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号