首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To evaluate Ni dynamics at the subcellular level, the distribution and speciation of Ni were determined in wild‐type (WT) and Ni‐tolerant (NIT) tobacco BY‐2 cell lines. When exposed to low but toxic levels of Ni, NIT cells were found to contain 2.5‐fold more Ni (14% of whole‐cell Ni values) in their cell walls than WT cells (6% of whole‐cell Ni values). In addition to higher levels of Ni in the apoplast, a higher proportion (94%) of symplastic Ni was localized in the vacuoles of NIT cells than in the vacuoles of WT cells (81%). The concentration of cytosolic Ni in the NIT cells was significantly lower (18 nmol g?1 FW) than that in the WT cells (85 nmol g?1 FW). In silico simulation showed that 95% of vacuolar Ni was in the form of Ni‐citrate complexes, and that free Ni2+ was virtually absent in the NIT cells. On the other hand, the amount of free metal ions was markedly increased in WT cells because free citrate was depleted by chelation of Ni. A protoplast viability assay using BCECF‐AM further demonstrated that the main mechanism that confers strong Ni tolerance was present in the symplast as opposed to the cell wall.  相似文献   

2.
Phytochelatins (PCs) have been detected in a large range of plant species, but their role in heavy-metal tolerance is unclear. Various clones of Salix viminalis are differently tolerant to heavy metals, and the aim of this work was to investigate whether PCs were differently expressed in tolerant compared with sensitive clones. In a long-term study, five clones with high or low metal tolerance were cultivated 21 days without or with Cd (1 or 10 µ M ), Cu (0.3 or 7 µ M ), Ni (15 µ M ), Pb (7 µ M ) or Zn (10 or 100 µ M ). Controls were further used in a short-term study where Cd (1 µ M ) was added and samples were collected 0, 15 and 30 min, 1, 3 and 24 h after start of treatment. PCs were analysed on high performance liquid chromatography (HPLC) using two different methods: post-column derivatization using Ellmans reagent and pre-derivatization with monobromobimane. Thlaspi caerulescens treated with Cd was used as internal PC standard. No PCs could be detected in Salix with either of the two methods in any of the treatments: different clones, metals, concentrations, plant parts or treatment time. The 16 thiol peaks shown were the same in both control and treated plants. Both HPLC methods showed PC peaks when Thlaspi was used but these peaks could not be associated with any of the 16 peaks. The amino acid composition of the 16 peaks was not the expected composition of that of PCs. Thus, Salix viminalis have no detectable levels of PCs, which in turn are not involved in heavy metal tolerance in Salix .  相似文献   

3.
The influence of excess copper on soybean photosynthetic cell suspensions was investigated. The cell suspensions grew well in the presence of 5–20 µ M CuSO4 and developed tolerance to even higher levels of CuSO4 (i.e. up to 50 µ M ), indicating that copper was not toxic to the cells at that high concentrations. Cu-adapted cell suspensions grew faster than the control in limiting light conditions and had higher content of chlorophyll per dry weight of cells. Copper was accumulated within the cells, and this event was accompanied by (1) increased oxygen evolution activity; (2) increased number of chloroplasts per cell, smaller chloroplasts, increased thylakoid stacking and grana size; (3) higher fluorescence emission of photosystem II antenna complexes and (4) stimulation of plastocyanin protein synthesis compared with untreated cells. Microanalysis of cross-sections revealed an increase of copper content in chloroplasts as well as vacuole, cytoplasm and cell wall in Cu-adapted cells. No antagonist interaction between copper and iron uptake took place in these cell suspensions. On the other hand, copper at subtoxic concentrations stimulated oxygen evolution activity in thylakoids from control cells, but this event did not take place in those from Cu-adapted ones. Furthermore, the loss of activity by copper inhibitory action at toxic concentrations was two-fold slower in thylakoids from Cu-adapted cells compared with the control ones. The data strongly indicate that copper plays a specific positive role on photosynthesis and stimulates the growth and the oxygen evolution activity in soybean cell suspensions.  相似文献   

4.
Exposure to a chilling temperature of 2.5°C for 96 h inhibited the subsequent growth of cucumber seedling radicles at 25°C by 92%. Exposing seedling with 5 ± 1 mm long radicles to acetaldehyde vapour (275 µl l−1) or to an aqueous ethanol solution (0.6  M ) for 2 h, or to 45°C for 10 min before chilling, increased chilling tolerance so that the chilling treatment reduced growth by only 47, 39 or 36%, respectively. All of these effective treatments induced the synthesis of a number of proteins, and suppressed de novo protein synthesis (i.e. the incorporation of [35S]-methionine) by about 70%. In contrast, treatment for 2 h with an aqueous arsenite solution (100 µ M ) had no effect on chilling sensitivity or the incorporation of [35S]-methionine, yet it induced the synthesis of a complement of proteins that were similar to that induced by the effective heat-shock treatment. A unique protein or set of proteins may be responsible for heat-shock-induced chilling tolerance, but none was detected. The ability of various abiotic stresses to suppress protein synthesis may be more important in increasing tolerance to chilling injury than their ability to induce the synthesis of specific proteins.  相似文献   

5.
DNA fluorochrome staining with Hoechst 33258 bisbenzimide is commonly used for detection of mycoplasma contamination in cell cultures. Photobleaching of Hoechst 33258 is pronounced under the conditions of intense illumination, high magnification and resolution required for detection of mycoplasmas. To reduce photobleaching we investigated the effects of some antioxidant molecules, p-phenylenediamine (PPD), n-propyl gallate (NPG) and 1,4-diazabicyclo(2,2,2)octane (DABCO), which are known to reduce the fading rate of fluorescein. Mycoplasma-contaminated cell monolayers were stained with Hoechst 33258 and mounted in glycerol containing different amounts of antioxidant additives. The cells were examined in an epifluorescence microscope, and the emitted light intensity was recorded. Results showed that PPD and, to a lower degree, NPG, retarded the photobleaching of Hoechst 33258-stained cells, whereas DABCO was not effective. However, fluorescence half-life was increased about three-fold by NPG and almost 20-fold by PPD. The rate of fluorescence fading of Hoechst 33258 can therefore be retarded by PPD, with obvious advantages for reading and photographic recording of results.  相似文献   

6.
Bean ( Phaseolus vulgaris L.) cell suspensions were adapted for growth in 12 µ M dichlobenil (2,6-dichlorobenzonitrile or DCB) by a stepwise increase in the concentration of the inhibitor in each subculture. Non-tolerant suspensions (I 50  = 0.3 µ M ) gave rise to single cells or small clusters while tolerant cell suspensions (I 50  = 30 µ M ) grown in DCB formed large clusters. The cells in these clusters were surrounded by a thick and irregular cell wall with a lamellate structure and lacking a differentiated middle lamella. Analysis of habituated cell walls by Fourier transform infrared spectroscopy and cell wall fractionation revealed: (1) a reduced amount of cellulose and hemicelluloses, mainly xyloglucan (2) qualitative and quantitative differences in pectin levels, and (3) a non-crystalline and soluble β-1,4-glucan. When tolerant cells were returned to medium lacking DCB, the size of the cell clusters was reduced; the middle lamella was only partly formed, and the composition of the cell wall gradually reverted to that obtained with non-tolerant cells. However, dehabituated cells (I 50  = 12 µ M ) were 40-fold more tolerant to DCB than non-tolerant cells and were only 2.5-fold more sensitive than tolerant cells.  相似文献   

7.
DNA fluorochrome staining with Hoechst 33258 bisbenzimide is commonly used for detection of mycoplasma contamination in cell cultures. Photobleaching of Hoechst 33258 is pronounced under the conditions of intense illumination, high magnification and resolution required for detection of mycoplasmas. To reduce photobleaching we investigated the effects of some antioxidant molecules, p-phenylenediamine (PPD), n-propyl gallate (NPG) and 1,4-diazabicyclo(2,2,2)octane (DABCO), which are known to reduce the fading rate of fluorescein. Mycoplasma-contaminated cell monolayers were stained with Hoechst 33258 and mounted in glycerol containing different amounts of antioxidant additives. The cells were examined in an epifluorescence microscope, and the emitted light intensity was recorded. Results showed that PPD and, to a lower degree, NPG, retarded the photobleaching of Hoechst 33258-stained cells, whereas DABCO was not effective. However, fluorescence half-life was increased about three-fold by NPG and almost 20-fold by PPD. The rate of fluorescence fading of Hoechst 33258 can therefore be retarded by PPD, with obvious advantages for reading and photographic recording of results.  相似文献   

8.
9.
The cellular and subcellular distribution of Ni within leaves of Hybanthus floribundus (Lindley) F. Muell, a hyperaccumulator of Ni, was investigated at relatively high spatial resolution using energy‐dispersive X‐ray microanalysis (EDAX). Elemental distribution maps showed that Ni was predominantly localized in the vacuoles of epidermal cells in the leaves. Quantification of Ni revealed concentrations up to 275 mmol kg?1 (embedded tissue) in some epidermal vacuoles. The accumulation of Ni in these cells was associated with a decrease in the concentration of Na and K. There was no indication that Ni was associated with P, S or Cl in the vacuoles. Ni was also concentrated on the outside of cell walls throughout the leaves, indicating that apoplastic compartmentation is also involved in Ni tolerance and accumulation in this plant.  相似文献   

10.
Abstract: Mutations in the free radical-scavenging enzyme copper/zinc superoxide dismutase (Cu/Zn-SOD) are associated with neuronal death in humans and mice. Here, we examine the effects of human wild-type (WT SOD) and mutant (Gly93→ Ala; G93A) Cu/Zn-SOD enzyme on the fate of postnatal midbrain neurons. One-week-old cultures from transgenic mice expressing WT SOD enzyme had significantly more midbrain neurons and fewer necrotic and apoptotic neurons than non-transgenic cultures. In contrast, 1-week-old cultures from transgenic G93A mice expressing mutant SOD enzyme had significantly fewer midbrain neurons and more necrotic and apoptotic neurons than nontransgenic cultures. To subject postnatal midbrain neurons to oxidative stress, cultures were incubated with l -DOPA. l -DOPA at 200 µ M caused ∼50% loss of tyrosine hydroxylase (TH)-positive neurons in nontransgenic cultures and even greater loss in transgenic G93A cultures; no alterations were noted in GABA neuron numbers. In contrast, 200 µ M l -DOPA did not cause any significant reductions in TH-positive or GABA neuron numbers in transgenic WT SOD cultures. l -DOPA at 50 µ M had opposite effects, in that it significantly increased TH-positive, but not GABA neuron numbers in transgenic WT SOD and G93A and in nontransgenic cultures. These results indicate that increased amounts of WT SOD enzyme promote cell survival and protect against l -DOPA-induced dopaminergic neurotoxicity, whereas increased amounts of mutated Cu/Zn-SOD enzyme have inverse effects. As the spontaneous loss and l -DOPA-induced loss of postnatal dopaminergic midbrain neurons appear to be mediated by free radicals, our study supports the view that mutated Cu/Zn-SOD enzyme kills cells by oxidative stress.  相似文献   

11.
Abstract: Calcium-activated neutral protease activity was determined in PC12 cells exposed to ethanol for 96 h using a fluorescence-based assay with N -succinyl-Leu-Tyr 7-amido-4-methylcoumarin as the substrate. Stimulated activity was measured at high (1,400 µ M ) or low (140 µ M ) Ca2+ concentrations in the presence of 20 µ M ionomycin. Kinetic parameters were derived by fitting a model relating fluorescence intensity to time: Ft = F final*(1 − e − k obs t ). Cell extracts were subjected to nondenaturing gel electrophoresis and casein zymography with quantification of the activity of the two calpain isoforms. Exposure to ethanol significantly decreased whole cell calpain activity measured by k obs beginning at 20 m M , to 27.8% of control at 1,400 µ M Ca2+ and 29.2% of control at 140 µ M Ca2+ in the presence of 20 µ M ionomycin. No changes in μ-calpain or m-calpain activities were found in cell extracts from cells exposed to 20 m M ethanol, whereas at 40 and 80 m M ethanol, significant decreases in both μ-calpain and m-calpain activities were discovered.  相似文献   

12.
This study is the first to examine the morphology of fish sperm using automated sperm morphology analysis (ASMA). The technique was applied to investigate the effect of an environmental pollutant, mercury, on the sperm morphology of goldfish Carassius auratus , and the effects on sperm morphology were compared with those on sperm motility. Goldfish sperm flagellar length was significantly shortened after instant exposure to 100 mg l−1 (368 µM) mercuric chloride, while curvilinear velocity (VCL) and the percentage of motile sperm were significantly decreased at mercuric chloride concentrations of 1 and 10 mg l−1 (3·68 and 36·8 µM), respectively. After 24 h exposure to 0·001 mg l−1 (0·0037 µM) mercuric chloride, flagellar length was significantly reduced in 38% of the spermatozoa. Following exposure to 0·1 mg l−1 (0·37 µM) mercuric chloride for 24 h, however, the majority of spermatozoa (98%), had significantly shortened flagella and increased sperm head length, width and area. Sperm motility was also significantly decreased at 0·1 mg l−1 (0·37 µM) mercuric chloride, probably due to the significantly reduced flagellar length at this concentration. This study shows that the morphological examination of fish sperm by ASMA provides, not only, an excellent tool for monitoring reproductive disruption caused by environmental pollution, but also has applications to other areas of fish reproductive biology, such as cryopreservation and aquaculture.  相似文献   

13.
An increasing volume of evidence indicating the mechanisms of drought tolerance of AVP1-overexpressing transgenic plants has been reported. In the present study, we are reporting the experiments conducted for the drought tolerance of AVP1 overexpressing plants and WT tobacco plants in three water regimes named as “fully watered,” “less-watered,” and “desiccated”. Results suggest that AVP1 plants exhibited greater vigor and drought tolerance in quantitative terms i.e., increase in size and weight of shoots and capsules. AVP1 plants produced more seeds than WT across all three water regimes. The less-watered regime was found to produce the greatest contrast. AVP1 overexpression enhanced solute accumulation in vacuoles resulting in an increase in water retention and turgor of the cell. The ultrastructure study of AVP1 overexpressing cells and WT leaf cells revealed that AVP1 plants displayed more turgid and hyperosmotic cells than WT. Moreover, guard cells in the AVP1 plants exhibited thick cell walls, few vacuoles, and deep and close stomata, whereas WT plants showed larger vacuoles and relatively open stomata aperture with no significant difference in size and number of the cells per unit area.  相似文献   

14.
A tomato (Lycopersicon esculentum Mill.) monodehydroascorbate reductase gene (LeMDAR) was isolated. The LeMDAR–green fluorescence protein (GFP) fusion protein was targeted to chloroplast in Arabidopsis mesophyll protoplast. RNA and protein gel blot analyses confirmed that the sense‐ and antisense‐ LeMDAR were integrated into the tomato genome. The MDAR activities and the levels of reduced ascorbate (AsA) were markedly increased in sense transgenic lines and decreased in antisense transgenic lines compared with wild‐type (WT) plants. Under low and high temperature stresses, the sense transgenic plants showed lower level of hydrogen peroxide (H2O2), lower thiobarbituric acid reactive substance (TBARS) content, higher net photosynthetic rate (Pn), higher maximal photochemical efficiency of PSII (Fv/Fm) and fresh weight compared with WT plants. The oxidizable P700 decreased more obviously in WT and antisense plants than that in sense plants at chilling temperature under low irradiance. Furthermore, the sense transgenic plants exhibited significantly lower H2O2 level, higher ascorbate peroxidase (APX) activity, greater Pn and Fv/Fm under methyl viologen (MV)‐mediated oxidative stresses. These results indicated that overexpression of chloroplastic MDAR played an important role in alleviating photoinhibition of PSI and PSII and enhancing the tolerance to various abiotic stresses by elevating AsA level.  相似文献   

15.
Phenylalanine ammonia-lyase (PAL) induction in UVB-exposed plants leads to an increased synthesis of UV-absorbing phenols. As phenols, including anthocycanins, are linked to many protective mechanisms in plants, we tested the hypothesis that UVB-induced phenol accumulation, mediated by PAL, may confer freezing tolerance in jack pine ( Pinus banksiana Lamb) seedlings. The hypothesis was tested by applying UVB in the presence and absence of the PAL-inhibitor, 2-aminoindan-2-phosphonic acid (AIP). Jack pine seedlings were grown for 3 weeks with and without 10 µ M aqueous AIP. Each treatment was then divided into two groups. One group received near-ambient UVB (5.5 kJ m−2 day−1of biologically effective radiation) for up to 30 h. A second, control group of seedlings received no UVB. Anthocyanin concentration declined by > 99% in PAL-inhibited seedlings and other methanol-extractable UV-absorbing phenols declined by > 48%, relative to the controls. A 20-h exposure to UVB increased seedling freezing (−15°C) tolerance in the absence of the PAL-inhibitor, as shown by a 30% reduction in membrane injury, determined by electrolyte leakage measurements. In PAL-inhibited seedlings, by contrast, the same UVB pre-treatment increased freezing injury by 48%. A longer (30 h) UVB exposure was damaging to both AIP-treated and untreated seedlings. Root feeding with 10 µ M AIP during a 3-week exposure of older (6-month-old) seedlings similarly reduced phenol accumulation in UVB-exposed seedlings. The decline in phenol production in PAL-inhibited seedlings correlated with increased freezing injury. These results suggest a role for ambient UVB in seedling frost hardiness, mediated by a PAL-induced production of phenolic compounds.  相似文献   

16.
17.
To avoid metal toxicity, plants have developed mechanisms including efflux of metal ions from cells and their sequestration into cellular compartments. In this report, we present evidence for the role of plasma membrane efflux systems in metal tolerance of cucumber roots. We have identified the plasma membrane-transport system participating in Cd, Pb, Mn and Ni efflux from the cytosol. Kinetic characterization of this proton-coupled transport system revealed that it is saturable and has a different affinity for each of the metal ions used (with Km 5, 7.5 and 0.1 m M for Mn, Ni and Pb, respectively). Treatment of cucumber roots with 100 μ M Cd prior to the transport measurements caused a great increase (over 250%) in Cd antiport activity in plasmalemma vesicles. After decreasing the metal concentration to 50 μ M we still observed a large increase (over 150%) of this activity in comparison with the control. Moreover, the addition of 50 μ M Cd to the external solution stimulated not only Cd antiport in the plasmalemma vesicles but also the antiport of other metals used in the experiments. Treatment of cucumber roots with 50 μ M Ni revealed a similar effect: the antiport activity of Cd, Mn, Ni and Pb was stimulated, although to a lesser extent in comparison with stimulation by Cd. The data indicate that the root plasma membrane antiporter system is stimulated by the exogenous presence of heavy metals.  相似文献   

18.
In Antarctica ozone depletion is highest during spring, coinciding with the reproduction of many seaweed species. Propagules are the life-stage of an alga most susceptible to environmental perturbations. Therefore, fertile thalli of Iridaea cordata (Turner) Bory (Rhodophyta) were collected in the eulittoral of King George Island (Antarctica) to examine spore susceptibility to ultraviolet radiation (UVR). In the laboratory, freshly released tetraspores were exposed to photosynthetically active radiation (PAR) (400–700 nm), PAR+UV-A (320–700 nm) or PAR+UV-A+UV-B (280–700 nm). Photosynthetic efficiency was measured during 1–8 h of exposure and after 48 h of recovery. Additionally, mycosporine-like amino acids (MAAs) and DNA damage were determined. Saturating irradiance of photosynthesis of freshly released tetraspores was 57 µmol photons m−2 s−1. Exposure to increasing fluence of PAR reduced photosynthetic efficiency. UVR further decreased the photosynthetic efficiencies of the tetraspores but spores were able to recover completely after UVR exposure and 2 days post-cultivation under low PAR. DNA damage was minimal and lesions were effectively repaired under photoreactivating light. Concentrations of the MAAs shinorine and palythine were higher in tetraspores treated with UVR than in spores only exposed to PAR. Generally, the tetraspores show a good UV tolerance. This flexible response of the tetraspores of this species to changing radiation conditions enables the alga to grow along a considerable depth gradient from the sublittoral to the eulittoral where they can be exposed to enhanced UVBR under conditions of stratospheric ozone depletion.  相似文献   

19.
The genome of unicellular green alga Chlamydomonas reinhardtii contains four genes encoding B-type methionine sulfoxide reductases, MSRBI.1, MSRB1.2, MSRB2.1, and MSRB2.2, with functions largely unknown. To understand the cell defense system mediated by the methionine suifoxide reductases in Chlamydomonas, we analyzed expression and physiological roles of the MSRBs under different abiotic stress conditions using immunoblotting and quantitative polymerase chain reaction (PCR) analyses. We showed that the MSRB2.2 protein was accumulated in cells treated with high light (1,300 μE-/m2 per s), whereas MSRBI.1 was accumulated in the cells under 1 mmol/L H2O2 treatment or sulfur depletion. We observed that the cells with the MSRB2.2 knockdown and overexpression displayed increased and decreased sensitivity to high light, respectively, based on in situ chlorophyll a fluorescence measures. We also observed that the cells with the MSRBI.1 knockdown and overexpression displayed decreased and increased tolerance to sulfur-depletion and oxidative stresses, respectively, based on growth and H2- producing performance. The physiological implications revealed from the experimental data highlight the importance of MSRB2.2 and MSRBI.1 in protecting Chlamydomonas cells against adverse conditions such as high-light, sulfur-depletion, and oxidative stresses.  相似文献   

20.
Viscotoxins (Vts) are basic peptides expressed in mistletoe leaves, seeds and stems which have been shown to be cytotoxic to mammalian cells. The aim of this study was to analyse whether Vts were able to control and/or inhibit the growth of phytopathogenic fungi to obtain a clue to their biological function. Incubation of two Vt isoforms, VtA3 and VtB, at a final concentration of 10 µ M resulted in a complete blockage of the germination of spores from three different pathogenic fungi. It was also shown that lower concentrations than 10 µ M of VtA3 and VtB inhibit their mycelial growth in a dose-dependent manner. The protein dose required to inhibit the growth of Fusarium solani and Sclerotinia sclerotiorum to a 50% was between 1.5 and 3.75 µ M , which represents a potent activity. No significant differences in the antifungal potency for each Vt isoform, either VtA3 and VtB, were observed, although they have been shown to exert differential cytotoxicity on mammalian cells. It was also demonstrated that Vts act as fungicidal compounds. To explore the basis of the antifungal activity the ability of VtA3 to induce changes in membrane permeability and on the oxidative status of F. solani spores was analysed. By using a specific fluorescent probe on intact spores, it was demonstrated that VtA3 produces rapid changes in fungal membrane permeability. It also induces H2O2 production verified by a histochemical staining. The data presented in this study support a direct role of Vts in the plant defence determined by their lethal effect on fungal pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号