首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【目的】利用亚硝基胍(NTG)消除链霉菌FR-008线性质粒以简化其基因组,获得背景清晰的菌株,作为抗生素异源生物合成的底盘细胞。【方法】NTG溶液处理链霉菌FR-008孢子悬液,从存活的诱变株中筛选砷敏感的突变株,再通过脉冲场凝胶电泳(PFGE)检测线性质粒是否被消除;用生测实验定性检测各个线性质粒消除突变株杀念菌素合成的能力,最后通过HPLC定量比较突变株和野生型产生杀念菌素的差异。【结果】从103个诱变株中筛选到3株砷敏感的突变株(10#、59#、115#)。PFGE检测发现它们均丢失了大线性质粒p SSFR1,此外,42#突变株的小线性质粒p SSFR2被消除,在此基础上,第二轮NTG诱变获得了双质粒消除的突变株。大线性质粒p SSFR1消除率约为3%,小线性质粒p SSFR2消除率约为1%。发酵结果显示:10#、115#突变株杀念菌素有效组分III产量分别提高了40%和30%。【结论】首次发现NTG是一种有效消除链霉菌线性质粒的诱变剂,2株大线性质粒消除的突变株杀念菌素的产量得到提高。此方法可以用来消除特定链霉菌菌株中的巨型线性质粒以高效简化其基因组,因而是一种有效的抗生素遗传育种的方法。  相似文献   

2.
Genes for biosynthesis of a Streptomyces sp. FR-008 heptaene macrolide antibiotic with antifungal and mosquito larvicidal activity were cloned in Escherichia coli using heterologous DNA probes. The cloned genes were implicated in heptaene biosynthiesis by gene replacement. The FR-008 antibiotic contains a 38-membered, poiyketide-derived macrolide ring. Southern hybridization using probes encoding domains of the type i modular erythromycin polyketide synthase (PKS) showed that the Streptomyces sp. FR-008 PKS gene cluster contains repeated sequences spanning c. 105 kb of contiguous DNA; assuming c. 5 kb for each PKS module, this is in striking agreement with the expectation for the 21-step condensation process required for synthesis of the FR-008 carbon chain. The methods developed for transformation and gene replacement in Streptomyces sp. FR-008 make it possible to genetically manipulate polyene macrolide production, and may later lead to the biosynthesis of novel polyene macrolides.  相似文献   

3.
以组合生物合成技术得到的链霉菌FR-008突变株CS103为研究对象,研究了3.7L发酵罐上维持一定葡萄糖浓度对其次级代谢产物脱羧FR-008/candicidin衍生聚酮抗生素CS103生物合成的影响。当初始葡萄糖浓度20g/L,发酵过程还原糖浓度维持在10g/L时,抗生素CS103最高产量较分批发酵最高产量相比提高30%。研究了3.7L罐上补料分批发酵生产CS103的工艺,主要考察了脉冲补料、间歇流加补料和连续流加补料三种补料分批发酵工艺,并与分批发酵进行了比较。连续流加补料维持糖浓度的效果明显,最高产量达到126.9μg/mL,与分批发酵相比提高了44%左右。  相似文献   

4.
《Process Biochemistry》2007,42(5):878-883
Medium compositions for the production of the novel derivatives of FR-008/Candicidin which was produced by a mutant of Streptomyces sp. FR-008 were optimized using two statistical methods including Plackett–Burman design (P–B), which was applied to find the key ingredients for the best medium composition, and response surface methodology (RSM), which was used to determine the optimal concentrations of these components. Results indicated that peptone, copper sulfate and glycerol had significant effects on the production. Under the proposed optimized conditions, the CS101 experimental yield (191.259 mg/L) closely matched the yield (203.536 mg/L) predicted by the statistical model. The optimization of the medium contributed to 10-fold higher antibiotic production than that of the control. It was first revealed that copper could stimulate FR-008/Candicidin and their derivatives synthesis at an optimal concentration in this paper, moreover, the basis of this phenomenon was also explained by investigating the enhancement of the enzymatic pathways.  相似文献   

5.
Antibiotic production in Streptomyces can often be increased by introducing heterologous genes into strains that contain an antibiotic biosynthesis gene cluster. A number of genes are known to be useful for this purpose. We chose three such genes and cloned them singly or in combination under the control of the strong constitutive ermE* promoter into a ?C31-derived integrating vector that can be transferred efficiently by conjugation from Escherichia coli to Streptomyces. The three genes are adpA, a global regulator from Streptomyces coelicolor, metK, encoding S-adenosylmethionine synthetase from S. coelicolor, and, VHbS, hemoglobin from Vitreoscilla. The substitutions with GC in VHbS was intended to convert codons from lower usage to higher, yet causing no change to the encoded amino acid. Plasmids containing either one of these genes or genes in various combinations were introduced into Streptomyces sp. FR-008, which produces the macrolide antibiotic FR-008-III (also known as candicidin D). The largest increase in FR-008-III production was achieved by the plasmid containing all three genes. This plasmid also increased avermectin production in Streptomyces avermitilis, and is likely to be generally useful for improving antibiotic production in Streptomyces.  相似文献   

6.
7.
In the arsenic resistance gene cluster from the large linear plasmid pHZ227, two novel genes, arsO (for a putative flavin-binding monooxygenase) and arsT (for a putative thioredoxin reductase), were coactivated and cotranscribed with arsR1-arsB and arsC, respectively. Deletion of the ars gene cluster on pHZ227 in Streptomyces sp. strain FR-008 resulted in sensitivity to arsenic, and heterologous expression of the ars gene cluster in the arsenic-sensitive Streptomyces strains conferred resistance on the new hosts. The pHZ227 ArsB protein showed homology to the yeast arsenite transporter Acr3p. The pHZ227 ArsC appears to be a bacterial thioredoxin-dependent ArsC-type arsenate reductase with four conserved cysteine thioredoxin-requiring motifs.  相似文献   

8.
本文在建立了基因工程FR-008/杀念菌素脱羧衍生物CS103分离提取工艺的基础上, 经进一步纯化, 获得一定供试样品。通过对比脱羧FR-008/杀念菌素CS103、FR-008/杀念菌素和两性霉素B三种化合物对人胚肾细胞毒性、对人血红细胞的溶血活性和对白色念珠菌的抗菌效果, 发现脱羧FR-008/杀念菌素CS103的毒性较FR-008/杀念菌素和两性霉素B大大降低, 且保持了较高的抗真菌(Candida albicans)活性。  相似文献   

9.
ECO-orf27 associated with the cluster of ECO-0501 (LW01) from Amycolatopsis orientalis is deduced to encode a type II thioesterase. Disruption of ECO-orf27 reduced LW01 production by 95?%. Complementation of the disrupted mutant with intact ECO-orf27 restored the production of LW01 suggesting that ECO-orf27 is crucial for LW01 biosynthesis. ECO-TE I, the gene encoding type I thioesterase from LW01 polyketide synthases, cannot complement ECO-orf27 deficient mutant distinguishing ECO-orf27 from type I thioesterase gene. Type II thioesterase gene pikAV from Streptomyces venezuelae could complement ECO-orf27 in A. orientalis indicating that the two genes are equivalent in their function. Overexpression of ECO-orf27 resulted in a 20?% increase in LW01 production providing an alternative approach for yield improvement.  相似文献   

10.
The pikromycin biosynthetic gene cluster contains the pikAV gene encoding a type II thioesterase (TEII). TEII is not responsible for polyketide termination and cyclization, and its biosynthetic role has been unclear. During polyketide biosynthesis, extender units such as methylmalonyl acyl carrier protein (ACP) may prematurely decarboxylate to generate the corresponding acyl-ACP, which cannot be used as a substrate in the condensing reaction by the corresponding ketosynthase domain, rendering the polyketide synthase module inactive. It has been proposed that TEII may serve as an "editing" enzyme and reactivate these modules by removing acyl moieties attached to ACP domains. Using a purified recombinant TEII we have tested this hypothesis by using in vitro enzyme assays and a range of acyl-ACP, malonyl-ACP, and methylmalonyl-ACP substrates derived from either PikAIII or the loading didomain of DEBS1 (6-deoxyerythronolide B synthase; AT(L)-ACP(L)). The pikromycin TEII exhibited high K(m) values (>100 microm) with all substrates and no apparent ACP specificity, catalyzing cleavage of methylmalonyl-ACP from both AT(L)-ACP(L) (k(cat)/K(m) 3.3 +/- 1.1 m(-1) s(-1)) and PikAIII (k(cat)/K(m) 2.9 +/- 0.9 m(-1) s(-1)). The TEII exhibited some acyl-group specificity, catalyzing hydrolysis of propionyl (k(cat)/K(m) 15.8 +/- 1.8 m(-1) s(-1)) and butyryl (k(cat)/K(m) 17.5 +/- 2.1 m(-1) s(-1)) derivatives of AT(L)-ACP(L) faster than acetyl (k(cat)/K(m) 4.9 +/- 0.7 m(-1) s(-1)), malonyl (k(cat)/K(m) 3.9 +/- 0.5 m(-1) s(-1)), or methylmalonyl derivatives. PikAIV containing a TEI domain catalyzed cleavage of propionyl derivative of AT(L)-ACP(L) at a dramatically lower rate than TEII. These results provide the first unequivocal in vitro evidence that TEII can hydrolyze acyl-ACP thioesters and a model for the action of TEII in which the enzyme remains primarily dissociated from the polyketide synthase, preferentially removing aberrant acyl-ACP species with long half-lives. The lack of rigorous substrate specificity for TEII may explain the surprising observation that high level expression of the protein in Streptomyces venezuelae leads to significant (>50%) titer decreases.  相似文献   

11.
The known functions of type II thioesterases (TEIIs) in type I polyketide synthases (PKSs) include selecting of starter acyl units, removal of aberrant extender acyl units, releasing of final products, and dehydration of polyketide intermediates. In this study, we characterized two TEIIs (ScnI and PKSIaTEII) from Streptomyces chattanoogensis L10. Deletion of scnI in S. chattanoogensis L10 decreased the natamycin production by about 43%. Both ScnI and PKSIaTEII could remove acyl units from the acyl carrier proteins (ACPs) involved in the natamycin biosynthesis. Our results show that the TEII could play important roles in both the initiation step and the elongation steps of a polyketide biosynthesis; the intracellular TEIIs involved in different biosynthetic pathways could complement each other.  相似文献   

12.
Identification of a pathogen is a critical first step in the epidemiology and subsequent management of a disease. A limited number of pathogens have been identified for diseases contributing to the global decline of coral populations. Here we describe Vibrio coralliilyticus strain OCN008, which induces acute Montipora white syndrome (aMWS), a tissue loss disease responsible for substantial mortality of the coral Montipora capitata in Kāne‘ohe Bay, Hawai‘i. OCN008 was grown in pure culture, recreated signs of disease in experimentally infected corals, and could be recovered after infection. In addition, strains similar to OCN008 were isolated from diseased coral from the field but not from healthy M. capitata. OCN008 repeatedly induced the loss of healthy M. capitata tissue from fragments under laboratory conditions with a minimum infectious dose of between 107 and 108 CFU/ml of water. In contrast, Porites compressa was not infected by OCN008, indicating the host specificity of the pathogen. A decrease in water temperature from 27 to 23°C affected the time to disease onset, but the risk of infection was not significantly reduced. Temperature-dependent bleaching, which has been observed with the V. coralliilyticus type strain BAA-450, was not observed during infection with OCN008. A comparison of the OCN008 genome to the genomes of pathogenic V. coralliilyticus strains BAA-450 and P1 revealed similar virulence-associated genes and quorum-sensing systems. Despite this genetic similarity, infections of M. capitata by OCN008 do not follow the paradigm for V. coralliilyticus infections established by the type strain.  相似文献   

13.
Novel Polyketide Synthase from Nectria haematococca   总被引:1,自引:0,他引:1       下载免费PDF全文
We identified a polyketide synthase (PKS) gene, pksN, from a strain of Nectria haematococca by complementing a mutant unable to synthesize a red perithecial pigment. pksN encodes a 2,106-amino-acid polypeptide with conserved motifs characteristic of type I PKS enzymatic domains: β-ketoacyl synthase, acyltransferase, duplicated acyl carrier proteins, and thioesterase. The pksN product groups with the Aspergillus nidulans WA-type PKSs involved in conidial pigmentation and melanin, bikaverin, and aflatoxin biosynthetic pathways. Inactivation of pksN did not cause any visible change in fungal growth, asexual sporulation, or ascospore formation, suggesting that it is involved in a specific developmental function. We propose that pksN encodes a novel PKS required for the perithecial red pigment biosynthesis.  相似文献   

14.
Type II thioesterases (TE IIs) were shown to maintain the efficiency of polyketide synthases (PKSs) by removing acyl residues blocking extension modules. However, the substrate specificity and kinetic parameters of these enzymes differ, which may have significant consequences when they are included in engineered hybrid systems for the production of novel compounds. Here we show that thioesterase ScoT associated with polyketide synthase Cpk from Streptomyces coelicolor A3(2) is able to hydrolyze acetyl, propionyl, and butyryl residues, which is consistent with its editing function. This enzyme clearly prefers propionate, in contrast to the TE IIs tested previously, and this indicates that it may have a role in control of the starter unit. We also determined activities of ScoT mutants and concluded that this enzyme is an α/β hydrolase with Ser90 and His224 in its active site.  相似文献   

15.
The biosynthesis of the aromatic polyene macrolide antibiotic candicidin, produced by Streptomyces griseus IMRU 3570, begins with a p-aminobenzoic acid (PABA) molecule which is activated to PABA-CoA and used as starter for the head-to-tail condensation of four propionate and 14 acetate units to produce a polyketide molecule to which the deoxysugar mycosamine is attached. Using the gene coding for the PABA synthase ( pabAB) from S. griseusIMRU 3570 as the probe, a 205-kb region of continuous DNA from the S. griseus chromosome was isolated and partially sequenced. Some of the genes possibly involved in the biosynthesis of candicidin were identified including part of the modular polyketide synthase (PKS), genes for thioesterase, deoxysugar biosynthesis, modification, transport, and regulatory proteins. The regulatory mechanisms involved in the production of candicidin, such as phosphate regulation, were studied using internal probes for some of the genes involved in the biosynthesis of the three moieties of candicidin (PKS, aromatic moiety and amino sugar). mRNAs specific for these genes were detected only in the production medium (SPG) but not in the SPG medium supplemented with phosphate or in the inoculum medium, indicating that phosphate represses the expression of genes involved in candicidin biosynthesis. The modular architecture of the candicidin PKS and the availability of the PKSs involved in the biosynthesis of three polyene antibiotics (pimaricin, nystatin, and amphotericin B) shall make possible the creation of new, less toxic and more active polyene antibiotics through combinatorial biosynthesis and targeted mutagenesis.  相似文献   

16.
Catabolism of sulfur-containing amino acids plays an important role in the development of cheese flavor. During ripening, cystathionine β-lyase (CBL) is believed to contribute to the formation of volatile sulfur compounds (VSCs) such as methanethiol and dimethyl disulfide. However, the role of CBL in the generation of VSCs from the catabolism of specific sulfur-containing amino acids is not well characterized. The objective of this study was to investigate the role of CBL in VSC formation by Lactobacillus helveticus CNRZ 32 using genetic variants of L. helveticus CNRZ 32 including the CBL-null mutant, complementation of the CBL-null mutant, and the CBL overexpression mutant. The formation of VSCs from methionine, cystathionine, and cysteine was determined in a model system using gas chromatography-mass spectrometry with solid-phase microextraction. With methionine as a substrate, CBL overexpression resulted in higher VSC production than that of wild-type L. helveticus CNRZ 32 or the CBL-null mutant. However, there were no differences in VSC production between the wild type and the CBL-null mutant. With cystathionine, methanethiol production was detected from the CBL overexpression variant and complementation of the CBL-null mutant, implying that CBL may be involved in the conversion of cystathionine to methanethiol. With cysteine, no differences in VSC formation were observed between the wild type and genetic variants, indicating that CBL does not contribute to the conversion of cysteine.  相似文献   

17.
Dematiaceous Fonsecaea monophora is one of the major pathogens of chromoblastomycosis. It has been well established that melanization is catalyzed by the type I polyketide synthase (PKS) in F. monophora. Multidomain protein Type I PKS is encoded by six genes, in which the last enzyme thioesterase (TE) catalyzes the cyclization and releases polyketide. Two PKS genes AYO21_03016 (pks1) and AYO21_10638 have been found in F. monophora and both PKS loci have the same gene arrangement but the TE domain in AYO21_10638 is truncated at 3’- end. TE may be the key enzyme to maintain the function of pks1. To test this hypothesis, we constructed a 3’-end 500 bp deletion mutant of AYO21_03016 (Δpks1-TE-C500) and its complemented strain. We profiled metabolome of this mutant and analyzed the consequences of impaired metabolism in this mutant by fungal growth in vitro and by pathogenesis in vivo. Compared with wild-type strain, we found that the mutant repressed pks1 expression and other 5 genes expression levels were reduced by more than 50%, perhaps leading to a corresponding melanin loss. The mutant also reduced sporulation and delayed germination, became vulnerable to various environmental stresses and was less resistance to macrophage or neutrophil killings in vitro, and less virulence in mice footpad model. Metabolomic analysis indicated that many metabolites were remarkably affected in Δpks1-TE-C500, in particular, an increased nicotinamide and antioxidant glutathione. In conclusion, we confirmed the crucial role of C-terminal TE in maintaining fully function of pks1 in F. monophora. Deletion of TE negatively impacts on the synthesis of melanin and metabolites that eventually affect growth and virulence of F. monophora. Any potential inhibitor of TE then could be a novel antifungal target for drug development.  相似文献   

18.
Two thioesterases are commonly found in natural product biosynthetic clusters, a type I thioesterase that is responsible for removing the final product from the biosynthetic complex and a type II thioesterase that is believed to perform housekeeping functions such as removing aberrant units from carrier domains. We present the crystal structure and the kinetic analysis of RifR, a type II thioesterase from the hybrid nonribosomal peptide synthetases/polyketide synthase rifamycin biosynthetic cluster of Amycolatopsis mediterranei. Steady-state kinetics show that RifR has a preference for the hydrolysis of acyl units from the phosphopantetheinyl arm of the acyl carrier domain over the hydrolysis of acyl units from the phosphopantetheinyl arm of acyl-CoAs as well as a modest preference for the decarboxylated substrate mimics acetyl-CoA and propionyl-CoA over malonyl-CoA and methylmalonyl-CoA. Multiple RifR conformations and structural similarities to other thioesterases suggest that movement of a helical lid controls access of substrates to the active site of RifR.Assembly line complexes, which include modular polyketide synthases (PKS)3 and nonribosomal peptide synthetases (NRPS), are multifunctional proteins composed of modules that work in succession to synthesize secondary metabolites, many of which are precursors of potent antibiotics, immunosuppressants, anti-tumor agents, and other bioactive compounds. Rifamycin, the precursor to the anti-tuberculosis drug rifampicin, is produced by the rifamycin assembly line complex, which is an NRPS/PKS hybrid system composed of one NRPS-like and 10 PKS modules (1). Each module in an assembly line complex extends and modifies the intermediate compound before passing it on to the next module in the series (Fig. 1A). The intermediate compounds are covalently attached through a thioester linkage to the phosphopantetheine arm (Ppant) of carrier domains, one associated with each module, until they are released from the synthase, usually by a type I thioesterase (TEI) (2, 3).Open in a separate windowFIGURE 1.Proposed functions of thioesterase II proteins. A, chain elongation by a PKS module. The chain elongation intermediate is transferred from the ACP of the upstream module to the ketosynthase (KS) domain. The acyltransferase (AT) domain transfers an acyl group building block from CoA to the ACP within the module. The KS domain catalyzes condensation of the new building block with the intermediate, releasing CO2. B, production of a decarboxylated acyl unit by the ketosynthase domain and the subsequent hydrolysis by a TEII. C, mispriming of a PKS by transfer of an acyl-phosphopantetheine arm by a promiscuous phosphopantetheinyl transferase (Pptase) and the subsequent hydrolysis by a TEII. D, hydrolysis of an amino acid derivative by a TEII from an NRPS module comprising an adenylation domain (A) and a peptide carrier protein (PCP) domain.TEIs are usually integrated into the final module of the assembly line complex and remove the final product through macrocyclization or hydrolysis. Occasionally, tandem type I thioesterases are integrated at the C terminus of the final module of NRPS pathways (4).Although TEIs are covalently attached to the terminal module and generally process only the final product of an assembly line complex, type II thioesterases (TEIIs) are discrete proteins that can remove intermediates from any module in the complex. A variety of functions have been attributed to TEIIs, the most prevalent of which is a “housekeeping function,” the removal of aberrant acyl units from carrier domains. These aberrant acyl units may be due to premature decarboxylation by a PKS ketosynthase domain (5) (Fig. 1B) or to mispriming of the carrier domain by a promiscuous phosphopantetheinyl transferase (68) (Fig. 1C). Other proposed functions for TEIIs include the removal of intermediates from the synthase as in the case of the mammary gland rat fatty acid synthase (FAS) TEII in lactating rats, which removes medium chain C8-C12 fatty acids from the ACP domain (9) and the removal of amino acid derivatives from a carrier domain (1013), allowing these derivatives to be incorporated into the natural product by a later module in the assembly line complex (Fig. 1D).Disruption of the TEI function results in a complete loss of product, whereas disruption of TEII function results in a significant decrease in product yield (30–95%) (4, 1424). Removal of the TEII from the rifamycin assembly line resulted in a 60% decrease in product yield (25). Neither TEIs nor TEIIs may rescue the disrupted function of the other (6), but a TEII from another pathway may rescue the function of a disrupted TEII (26).Two models have been proposed for the TEII housekeeping function (5). In the high specificity model, the TEII scans the complex and efficiently removes only aberrant acyl units. In the low specificity model, the TEII removes both correct and incorrect acyl units from the Ppant arm at an inefficient rate. Correct acyl units are quickly incorporated into the growing intermediate compound. In contrast, incorrect acyl units stall the assembly line, providing a longer window of opportunity for removal by a TEII. Thus a slow, low specificity enzyme can be effective.TEIIs from different pathways have differing specificities, but general trends include a preference for decarboxylated acyl units over carboxylated acyl units (5, 6, 27), substrates linked to a carrier domain over substrates linked to CoA or the phosphopantetheine mimic N-acetylcysteamine (7, 28), and single amino acids over di- or tri-peptides (6, 7). TEIIs are able to hydrolyze substrates attached to carrier domains from their native pathway as well as other pathways (6, 20, 28).PKS/NRPS/FAS thioesterases belong to the α/β hydrolase family. Structures are reported for seven PKS/NRPS/FAS thioesterases: crystal structures for the TEIs from the pikromycin (PikTE) PKS (29), 6-deoxyerythronolide B (DEBSTE) PKS (30), surfactin NRPS (SrfTE) (31), fengycin NRPS (FenTE) (32), and human fatty acid synthase (hFasTE) (33) systems, and NMR structures for enterobactin TEI (34), and surfactin TEII (35). Like PKS modules, PKS TEIs are dimers. The dimer interface comprises two N-terminal helices that are unique to the PKS TEIs. NRPS TEIs are monomeric, like NRPS modules. The NRPS TEII of surfactin is also monomeric (31). Although the FAS complex is dimeric, the FAS TEI is a monomer (33). All of the TEs have an α-helical insertion after strand β5 that forms a lid over the active site. Additionally, in the PKS TEIs, the N-terminal dimer-forming helices contribute to the lid structure, forming a fixed channel that runs the length of the TE and contains the active site. In contrast, the active site pocket of monomeric NRPS TEIs and TEIIs is flexible; two conformations of the lid and active site pocket were observed in the surfactin TEI (SrfTEI) crystal structure (7), and chemical shift observations suggested greater flexibility for residues of the lid region in the surfactin TEII (SrfTEII) solution structure (35). These movements seem to be of functional importance, because a movement of a linker peptide in SrfTEI determines the shape of the active site pocket and a movement of the first lid helix appears to modulate access to the active site (31).We report the structure and activity of recombinant RifR, the TEII of the rifamycin biosynthetic cluster. Steady-state kinetic analysis of the hydrolytic activity of RifR on a wide range of acyl-CoA and acyl-ACP substrates demonstrates that acyl-ACP substrates are preferred over the acyl-CoAs. Aberrant, decarboxylated acyl units are processed more efficiently than are the natural rifamycin building blocks. We report the crystal structure of RifR, the first for any hybrid PKS/NRPS TEII. The size and shape of the substrate chamber are variable, because one of the elements forming the chamber, an extended linker segment, is highly flexible, and different crystal forms reveal different shapes for the substrate binding site. Access to the active site is severely restricted, and structural comparisons with other thioesterases suggest that a conformational change in the lid and the flexible linker region is required for access to the substrate pocket.  相似文献   

19.
Asukamycin, a member of the manumycin family metabolites, is an antimicrobial and potential antitumor agent isolated from Streptomyces nodosus subsp. asukaensis. The entire asukamycin biosynthetic gene cluster was cloned, assembled, and expressed heterologously in Streptomyces lividans. Bioinformatic analysis and mutagenesis studies elucidated the biosynthetic pathway at the genetic and biochemical level. Four gene sets, asuA–D, govern the formation and assembly of the asukamycin building blocks: a 3-amino-4-hydroxybenzoic acid core component, a cyclohexane ring, two triene polyketide chains, and a 2-amino-3-hydroxycyclopent-2-enone moiety to form the intermediate protoasukamycin. AsuE1 and AsuE2 catalyze the conversion of protoasukamycin to 4-hydroxyprotoasukamycin, which is epoxidized at C5–C6 by AsuE3 to the final product, asukamycin. Branched acyl CoA starter units, derived from Val, Leu, and Ile, can be incorporated by the actions of the polyketide synthase III (KSIII) AsuC3/C4 as well as the cellular fatty acid synthase FabH to produce the asukamycin congeners A2–A7. In addition, the type II thioesterase AsuC15 limits the cellular level of ω-cyclohexyl fatty acids and likely maintains homeostasis of the cellular membrane.  相似文献   

20.
Cerulenin, an inhibitor of fatty acid synthesis, inhibits specifically the biosynthesis of the polyene macrolide candicidin by resting cells of Streptomyces griseus. 50% inhibition was achieved with a cerulenin concentration of 1.5 μg/ml. Cells in which candicidin synthesis was inhibited for 10 h remained capable of candicidin synthesis after removal of the inhibitor. Cerulenin inhibits specifically the incorporation of [14C] propionate into candicidin but does not affect total protein or RNA synthesis. The uptake of [14C] propionate was not inhibited under conditions which totally prevented the incorporation of propionate into candicidin. Incorporation of p-amino[14C] benzoic acid NH2[14C]BzO into the aromatic moiety of candicidin was also inhibited by cerulenin. The inhibitory action of cerulenin was not reversed by exogenous fatty acids. Since cerulenin is known to block the condensation of malonyl-CoA subunits in the formation of fatty acids, it is concluded that the polyene macrolide candicidin is synthesized via the polyketide pathway by condensation steps similar to those occurring in fatty acid biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号