首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The chromosomes of the Namalwa cell line   总被引:1,自引:0,他引:1  
  相似文献   

5.

Background

Mitochondrial DNA (mtDNA) mutations are an important cause of mitochondrial diseases, for which there is no effective treatment due to complex pathophysiology. It has been suggested that mitochondrial dysfunction-elicited reactive oxygen species (ROS) plays a vital role in the pathogenesis of mitochondrial diseases, and the expression levels of several clusters of genes are altered in response to the elevated oxidative stress. Recently, we reported that glycolysis in affected cells with mitochondrial dysfunction is upregulated by AMP-activated protein kinase (AMPK), and such an adaptive response of metabolic reprogramming plays an important role in the pathophysiology of mitochondrial diseases.

Scope of review

We summarize recent findings regarding the role of AMPK-mediated signaling pathways that are involved in: (1) metabolic reprogramming, (2) alteration of cellular redox status and antioxidant enzyme expression, (3) mitochondrial biogenesis, and (4) autophagy, a master regulator of mitochondrial quality control in skin fibroblasts from patients with mitochondrial diseases.

Major conclusion

Induction of adaptive responses via AMPK–PFK2, AMPK–FOXO3a, AMPK–PGC-1α, and AMPK–mTOR signaling pathways, respectively is modulated for the survival of human cells under oxidative stress induced by mitochondrial dysfunction. We suggest that AMPK may be a potential target for the development of therapeutic agents for the treatment of mitochondrial diseases.

General significance

Elucidation of the adaptive mechanism involved in AMPK activation cascades would lead us to gain a deeper insight into the crosstalk between mitochondria and the nucleus in affected tissue cells from patients with mitochondrial diseases. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

6.
CNS myelin inhibits axon growth due to the expression of several growth-inhibitory proteins, including myelin-associated glycoprotein, oligodendrocyte myelin glycoprotein and Nogo. Myelin-associated inhibitory proteins activate rho GTPase in responsive neurons. Rho kinase (ROCK) has been implicated as a critical rho effector in this pathway due to the ability of the pharmacological inhibitor Y-27632 to circumvent myelin-dependent inhibition. Y-27632, however, inhibits the activity of additional kinases. Using three independent approaches, we provide direct evidence that ROCKII is activated in response to the myelin-associated inhibitor Nogo. We demonstrate that Nogo treatment enhances ROCKII translocation to the cellular membrane in PC12 cells and enhances ROCKII kinase activity towards an in vitro substrate. In addition, Nogo treatment enhances phosphorylation of myosin light chain II, a known ROCK substrate. Further, we demonstrate that primary dorsal root ganglia neurons can be rendered insensitive to the inhibitory effects of myelin via infection with dominant negative ROCK. Together these data provide direct evidence for a rho-ROCK-myosin light chain-II signaling cascade in response to myelin-associated inhibitors.  相似文献   

7.
Hepatotoxicity due to mitochondrial dysfunction   总被引:16,自引:0,他引:16  
Mitochondria are involved in fatty acid β-oxidation, the tricarboxylic acid cycle, and oxidative phosphorylation, which provide most of the cell energy. Mitochondria are also the main source of reactive oxygen species in the cell and are involved in cell demise through opening of the mitochondrial permeability transition pore. It was therefore to be expected that mitochondrial dysfunction could be a major mechanism of drug-induced liver disease. Microvesicular steatosis (which may cause liver failure, coma, and death) is the consequence of severe impairment of mitochondrial β-oxidation. Endogenous compounds (such as cytokines or female sex hormones) or xenobiotics (including toxins such as ethanol and drugs such as aspirin, valproic acid, ibuprofen, or zidovudine) can inhibit β-oxidation directly or through a primary effect on the mitochondrial genome or the respiratory chain itself. In some patients, infections and cytokines, or inborn errors of β-oxidation enzymes or the mitochondrial genome, may favor the appearance of drug-induced microvesicular steatosis. Nonalcoholic steatohepatitis may develop under conditions causing prolonged, microvesicular, and/or macrovacuolar steatosis. In this condition, chronic impairment of mitochondrial β-oxidation (causing steatosis) and the respiratory chain (increasing the production of ROS) lead to lipid peroxidation, which, in turn, may cause the diverse lesions of steatohepatitis, namely, necrosis, inflammation, Mallory's bodies, and fibrosis. Finally, mitochondria are involved in several forms of drug-induced cytolytic hepatitis, through inhibition or uncoupling of respiration or through a drug-induced or reactive metabolite-induced mitochondrial permeability transition. The latter effect commits hepatocytes to either apoptosis or necrosis, depending on the number of organelles that have undergone the permeability transition. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
9.
Apoptosis is now recognized as a significant problem in mammalian cell culture. Therefore, in this study, a single gene and multigene approach to inhibit apoptosis has been examined. Stable Chinese hamster ovary (CHO) cell lines were generated to overexpress different single, dual, and triple combinations of three apoptosis inhibitor genes. Two upstream inhibitors involved in the mitochondrial pathway, Bcl-X(L) and Aven, were expressed in addition to a downstream inhibitor of caspases. The caspase inhibitor, a variant of XIAP containing only the caspase inhibitory BIR domains (XIAP-BIRs), has been shown previously to enhance viabilities in mammalian cultures. Stable clonal cell lines were generated and tested for three apoptotic insults: Sindbis virus infection, the chemical reagent etoposide, and spent medium. For all single gene experiments, the Bcl-X(L)-containing cell lines provided superior protection to either the Aven- or XIAP-BIRs-containing cell lines following initial exposure to the insults. However, the cell lines expressing two or more anti-apoptosis proteins were more effective at inhibiting cell death than those expressing just one anti-apoptosis gene. The cell lines overexpressing Bcl-X(L) in combination with XIAP-BIRs were especially effective in delaying cell death for all three apoptotic insults. Expression of all three anti-apoptosis genes in concert was only slightly more effective than using Bcl-X(L) and XIAP-BIRs for some insults. During exposure to spent medium, CHO-BIRS + Aven + BclX(L) was the best inhibitor of apoptosis (IAP) initially, whereas CHO-BIRs + BclX(L) was particularly effective at later times of the experiment. In conclusion, the utilization of a mitochondrial dysfunction inhibitor used in combination with a caspase inhibitor was more effective in thwarting the progression of apoptosis than either inhibitor expressed individually. Thus, the concurrent expression of multiple apoptosis inhibitors may be the most effective strategy to increase survival of mammalian cells in culture.  相似文献   

10.
11.
Sphingolipids have been implicated as key mediators of cell-stress responses and effectors of mitochondrial function. To investigate potential mechanisms underlying mitochondrial dysfunction, an important contributor to diabetic cardiomyopathy, we examined alterations of cardiac sphingolipid metabolism in a mouse with streptozotocin-induced type 1 diabetes. Diabetes increased expression of desaturase 1, (dihydro)ceramide synthase (CerS)2, serine palmitoyl transferase 1, and the rate of ceramide formation by mitochondria-resident CerSs, indicating an activation of ceramide biosynthesis. However, the lack of an increase in mitochondrial ceramide suggests concomitant upregulation of ceramide-metabolizing pathways. Elevated levels of lactosylceramide, one of the initial products in the formation of glycosphingolipids were accompanied with decreased respiration and calcium retention capacity (CRC) in mitochondria from diabetic heart tissue. In baseline mitochondria, lactosylceramide potently suppressed state 3 respiration and decreased CRC, suggesting lactosylceramide as the primary sphingolipid responsible for mitochondrial defects in diabetic hearts. Moreover, knocking down the neutral ceramidase (NCDase) resulted in an increase in lactosylceramide level, suggesting a crosstalk between glucosylceramide synthase- and NCDase-mediated ceramide utilization pathways. These data suggest the glycosphingolipid pathway of ceramide metabolism as a promising target to correct mitochondrial abnormalities associated with type 1 diabetes.  相似文献   

12.
Melanoma is an aggressive cutaneous cancer, whose incidence is growing in recent years, especially in the younger population. The favorable therapy for this neoplasm consists in its early surgical excision; otherwise, in case of late diagnosis, melanoma becomes very refractory to any conventional therapy. Nevertheless, the acute inflammatory response occurring after excision of the primary melanoma can affect the activation and/or regulation of melanoma invasion and metastasis. Nonsteroidal anti-inflammatory drugs (NSAIDs), widely employed in clinical therapy as cyclooxygenase inhibitors, also display a cytotoxic effect on some cancer cell lines; therefore, their possible usage in combination with conventional chemo- and radio-therapies of tumors is being considered. In particular, diclofenac, one of the most common NSAIDs, displays its anti-proliferative effect in many tumor lines, through an alteration of the cellular redox state. In this study, the possible anti-neoplastic potential of diclofenac on the human melanoma cell lines A2058 and SAN was investigated, and a comparison was made with the results obtained from the nonmalignant fibroblast cell line BJ-5ta. Either in A2058 or SAN, the diclofenac treatment caused typical apoptotic morphological changes, as well as an increase of the number of sub-diploid nuclei; conversely, the same treatment on BJ-5ta had only a marginal effect. The observed decrease of Bcl-2/Bax ratio and a parallel increase of caspase-3 activity confirmed the pro-apoptotic role exerted by diclofenac in melanoma cells; furthermore, the drug provoked an increase of the ROS levels, a decrease of mitochondrial superoxide dismutase (SOD2), the cytosolic translocation of both SOD2 and cytochrome c, and an increase of caspase-9 activity. Finally, the cytotoxic effect of diclofenac was amplified, in melanoma cells, by the silencing of SOD2. These data improve the knowledge on the effects of diclofenac and suggest that new anti-neoplastic treatments should be based on the central role of mitochondrion in cancer development; under this concern, the possible involvement of SOD2 as a novel target could be considered.  相似文献   

13.
The parasites of the order kinetoplastidae including Leishmania spp. emerge from most ancient phylogenic branches of unicellular eukaryotic lineages. In their life cycle, topoisomerase I plays a significant role in carrying out vital cellular processes. Camptothecin (CPT), an inhibitor of DNA topoisomerase I, induces programmed cell death (PCD) both in the amastigotes and promastigotes form of L. donovani parasites. CPT-induced cellular dysfunction in L. donovani promastigotes is characterized by several cytoplasmic and nuclear features of apoptosis. CPT inhibits cellular respiration that results in mitochondrial hyperpolarization taking place by oligomycin-sensitive F0-F1 ATPase-like protein in leishmanial cells. During the early phase of activation, there is an increase in reactive oxygen species (ROS) inside cells, which causes subsequent elevation in the level of lipid peroxidation and decrease in reducing equivalents like GSH. Endogenous ROS formation and lipid peroxidation cause eventual loss of mitochondrial membrane potential. Furthermore, cytochrome c is released into the cytosol in a manner independent of involvement of CED3/CPP32 group of proteases and unlike mammalian cells it is insensitive to cyclosporin A. These events are followed by activation of both CED3/CPP32 and ICE group of proteases in PCD of Leishmania. Taken together, our study indicates that different biochemical events leading to apoptosis in leishmanial cells provide information that could be exploited to develop newer potential therapeutic targets.  相似文献   

14.
Molecular studies examining the impact of mitochondrial morphology on the mammalian heart have previously focused on dynamin related protein-1 (Drp-1) and mitofusin-2 (Mfn-2), while the role of the other mitofusin isoform, Mfn-1, has remained largely unexplored. In the present study, we report the generation and initial characterization of cardiomyocyte-specific Mfn-1 knockout (Mfn-1 KO) mice. Using electron microscopic analysis, we detect a greater prevalence of small, spherical mitochondria in Mfn-1 KO hearts, indicating that the absence of Mfn-1 causes a profound shift in the mitochondrial fusion/fission balance. Nevertheless, Mfn-1 KO mice exhibit normal left-ventricular function, and isolated Mfn-1 KO heart mitochondria display a normal respiratory repertoire. Mfn-1 KO myocytes are protected from mitochondrial depolarization and exhibit improved viability when challenged with reactive oxygen species (ROS) in the form of hydrogen peroxide (H(2)O(2)). Furthermore, in vitro studies detect a blunted response of KO mitochondria to undergo peroxide-induced mitochondrial permeability transition pore opening. These data suggest that Mfn-1 deletion confers protection against ROS-induced mitochondrial dysfunction. Collectively, we suggest that mitochondrial fragmentation in myocytes is not sufficient to induce heart dysfunction or trigger cardiomyocyte death. Additionally, our data suggest that endogenous levels of Mfn-1 can attenuate myocyte viability in the face of an imminent ROS overload, an effect that could be associated with the ability of Mfn-1 to remodel the outer mitochondrial membrane.  相似文献   

15.
Fusaric acid (FA), a non-specific toxin produced mainly by Fusarium spp., can cause programmed cell death (PCD) in tobacco suspension cells. The mechanism underlying the FA-induced PCD was not well understood. In this study, we analyzed the roles of hydrogen peroxide (H2O2) and mitochondrial function in the FA-induced PCD. Tobacco suspension cells were treated with 100 μM FA and then analyzed for H2O2 accumulation and mitochondrial functions. Here we demonstrate that cells undergoing FA-induced PCD exhibited H2O2 production, lipid peroxidation, and a decrease of the catalase and ascorbate peroxidase activities. Pre-treatment of tobacco suspension cells with antioxidant ascorbic acid and NADPH oxidase inhibitor diphenyl iodonium significantly reduced the rate of FA-induced cell death as well as the caspase-3-like protease activity. Moreover, FA treatment of tobacco cells decreased the mitochondrial membrane potential and ATP content. Oligomycin and cyclosporine A, inhibitors of the mitochondrial ATP synthase and the mitochondrial permeability transition pore, respectively, could also reduce the rate of FA-induced cell death significantly. Taken together, the results presented in this paper demonstrate that H2O2 accumulation and mitochondrial dysfunction are the crucial events during the FA-induced PCD in tobacco suspension cells.  相似文献   

16.
17.
Adaptive responses to antimicrobial agents in biofilms   总被引:3,自引:0,他引:3  
Bacterial biofilms demonstrate adaptive resistance in response to antimicrobial stress more effectively than corresponding planktonic populations. We propose here that, in biofilms, reaction-diffusion limited penetration may result in only low levels of antimicrobial exposure to deeper regions of the biofilm. Sheltered cells are then able to enter an adapted resistant state if the local time scale for adaptation is faster than that for disinfection. This mechanism is not available to a planktonic population. A mathematical model is presented to illustrate. Results indicate that, for a sufficiently thick biofilm, cells in the biofilm implement adaptive responses more effectively than do freely suspended cells. Effective disinfection requires applied biocide concentration that increases quadratically or exponentially with biofilm thickness.  相似文献   

18.
19.
Bacteria are able to induce defense and DNA repair systems that specifically counteract the toxic effects of some important natural agents. «Adaptive responses» to alkylation and oxidation damage have revealed novel strategies for escape from certain kinds of genetic damage.  相似文献   

20.
The endogenous production of H2O2 in isolated rat intestinal mitochondria and oxidant induced damage to mitochondria were examined. There was an appreciable amount of H2O2 production in presence of succinate, glutamate and pyruvate, while the presence of rotenone with succinate further increased production. Superoxide generated by the X-XO system induced membrane permeability transition (MPT), calcium influx, lipid peroxidation and changes in membrane fluidity in mitochondria. A decreased mitochondrial ATPase activity and uncoupling of respiration was also observed. Spermine inhibited swelling induced by X-XO and also blocked the calcium influx and reversed the membrane fluidity changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号