首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xanthophylls have a crucial role in the structure and function of the light harvesting complexes of photosystem II (LHCII) in plants. The binding of xanthophylls to LHCII has been investigated, particularly with respect to the xanthophyll cycle carotenoids violaxanthin and zeaxanthin. It was found that most of the violaxanthin pool was loosely bound to the major complex and could be removed by mild detergent treatment. Gentle solubilization of photosystem II particles and thylakoids allowed the isolation of complexes, including a newly described oligomeric preparation, enriched in trimers, that retained all of the in vivo violaxanthin pool. It was estimated that each LHCII monomer can bind at least one violaxanthin. The extent to which different pigments can be removed from LHCII indicated that the relative strength of binding was chlorophyll b > neoxanthin > chlorophyll a > lutein > zeaxanthin > violaxanthin. The xanthophyll binding sites are of two types: internal sites binding lutein and peripheral sites binding neoxanthin and violaxanthin. In CP29, a minor LHCII, both a lutein site and the neoxanthin site can be occupied by violaxanthin. Upon activation of the violaxanthin de-epoxidase, the highest de-epoxidation state was found for the main LHCII component and the lowest for CP29, suggesting that only violaxanthin loosely bound to LHCII is available for de-epoxidation.  相似文献   

2.
The molecular configuration of the xanthophyll cycle carotenoids, violaxanthin and zeaxanthin, was studied in various isolated photosystem II antenna components in comparison to intact photosystem II membranes using resonance Raman combined with low-temperature absorption spectroscopy. The molecular configurations of zeaxanthin and violaxanthin in thylakoids and isolated photosystem II membranes were found to be the same within an isolated oligomeric LHCII antenna, confirming our recent conclusion that these molecules are not freely located in photosynthetic membranes (Ruban, A. V., Pascal, A. A., Robert, B., and Horton, P. (2001) J. Biol. Chem. 276, 24862-24870). In contrast, xanthophyll cycle carotenoids bound to LHCII trimers had largely lost their in vivo configuration, suggesting their partial dissociation from the binding locus. Violaxanthin and zeaxanthin associated with the minor antenna complexes, CP26 and CP29, were also found to be in a relaxed configuration, similar to that of free pigment. The origin of the characteristic C-H vibrational bands of violaxanthin and zeaxanthin in vivo is discussed by comparison with those of neoxanthin and lutein in oligomeric and trimeric LHCII respectively.  相似文献   

3.
The carotenoid zeaxanthin has been implicated in a nonradiative dissipation of excess excitation energy. To determine its site of action, we have examined the location of zeaxanthin within the thylakoid membrane components. Five pigment-protein complexes were isolated with little loss of pigments: photosystem I (PSI); core complex (CC) I, the core of PSI; CC II, the core of photosystem II (PSII); light-harvesting complex (LHC) IIb, a trimer of the major light-harvesting protein of PSII; and LHC IIa, c, and d, a complex of the monomeric minor light-harvesting proteins of PSII. Zeaxanthin was found predominantly in the LHC complexes. Lesser amounts were present in the CCs possibly because these contained some extraneous LHC polypeptides. The LHC IIb trimer and the monomeric LHC II a, c, and d pigment-proteins from dark-adapted plants each contained, in addition to lutein and neoxanthin, one violaxanthin molecule but little antheraxanthin and no zeaxanthin. Following illumination, each complex had a reduced violaxanthin content, but now more antheraxanthin and zeaxanthin were present. PSI had little or no neoxanthin. The pigment content of LHC I was deduced by subtracting the pigment content of CC I from that of PSI. Our best estimate for the carotenoid content of a LHC IIb trimer from dark-adapted plants is one violaxanthin, two neoxanthins, six luteins, and 0.03 mol of antheraxanthin per mol trimer. The xanthophyll cycle occurs mainly or exclusively within the light-harvesting antennae of both photosystems.  相似文献   

4.
Lutein, neoxanthin and violaxanthin are the main xanthophyll pigment constituents of the largest light-harvesting pigment-protein complex of photosystem II (LHCII). High performance liquid chromatography analysis revealed photoisomerization of LHCII-bound violaxanthin from the conformation all-trans to the conformation 13-cis and 9-cis. Maximally, the conversion of 15% of all-trans violaxanthin to a cis form could be achieved owing to the light-driven reactions. The reactions were dark-reversible. The all-trans to cis isomerization was found to be driven by blue light, absorbed by chlorophylls and carotenoids, as well as by red light, absorbed exclusively by chlorophyll pigments. This suggests that the photoisomerization is a carotenoid triplet-sensitized reaction. The monomolecular layer technique was applied to study the effect of the 13-cis conformer of violaxanthin and its de-epoxidized form, zeaxanthin, on the organization of LHCII as compared to the all-trans stereoisomers. The specific molecular areas of LHCII in the two-component system composed of protein and exogenous 13-cis violaxanthin or 13-cis zeaxanthin show overadditivity, which is an indication of the xanthophyll-induced disassembly of the aggregated forms of the protein. Such an effect was not observed in the monomolecular layers of LHCII containing all-trans conformers of violaxanthin and zeaxanthin. 77 K chlorophyll a fluorescence emission spectra recorded from the Langmuir-Blodgett (L-B) films deposited to quartz from monomolecular layers formed with LHCII and LHCII in the two-component systems with all-trans and 13-cis isomers of violaxanthin and zeaxanthin revealed opposite effects of both conformers on the aggregation of the protein. The cis isomers of both xanthophylls were found to decrease the aggregation level of LHCII and the all-trans isomers increased the aggregation level. The calculated efficiency of excitation energy transfer to chlorophyll a from violaxanthin assumed to remain in two steric conformations was analyzed on the basis of the chlorophyll a fluorescence excitation spectra and the mean orientation of violaxanthin molecules in LHCII (71 degrees with respect to the normal to the membrane), determined recently in the linear dichroism experiments [Gruszecki et al., Biochim. Biophys. Acta 1412 (1999) 173-183]. The calculated efficiency of excitation energy transfer from the violaxanthin pool assumed to remain in conformation all-trans was found to be almost independent on the orientation angle within a variability range. In contrast the calculated efficiency of energy transfer from the form cis was found to be strongly dependent on the orientation and varied between 1.0 (at 67.48 degrees ) and 0 (at 70.89 degrees ). This is consistent with two essentially different, possible functions of the cis forms of violaxanthin: as a highly efficient excitation donor (and possibly energy transmitter between other chromophores) or purely as a LHCII structure modifier.  相似文献   

5.
Summary Leaves from two species, Euonymus kiautschovicus and Arctostaphylos uva-ursi, with a variety of different orientations and exposures, were examined in the field with regard to the xanthophyll cycle (the interconversion of three carotenoids in the chloroplast thylakoid membranes). East-, south-, and west-facing leaves of E. kiautschovicus were sampled throughout the day and all exhibited a pronounced and progressive conversion of violaxanthin to zeaxanthin, followed by a reconversion of zeaxanthin to violaxanthin later in the day. Maximal levels of zeaxanthin and minimal levels of violaxanthin were observed at the time when each leaf (orientation) received the maximum incident light, which was in the morning in east-facing, midday in southfacing, and in the afternoon in west-facing leaves. A very slight degree of hysteresis in the removal of zeaxanthin compared to its formation with regard to incident light was observed. Leaves with a broader range of orientations were sampled from A. uva-ursi prior to sunrise and at midday. All of the examined pigments (carotenoids and chlorophylls) increased somewhat per unit leaf area with increasing total daily photon receipt. The sum of the carotenoids involved in the xanthophyll cycle, violaxanthin + antheraxanthin + zeaxanthin, increased more strongly with increasing growth light than any other pigment. In addition, the amounts of zeaxanthin present at midday also increased markedly with increasing total daily photon receipt. The percentage of the xanthophyll cycle that was converted to zeaxanthin (and antheraxanthin) at peak irradiance was very large (approximately 80%) in the leaves of both E. kiautschovicus and A. uva-ursi. The daily changes in the components of the xanthophyll cycle that paralleled the daily changes in incident light in the leaves of E. kiautschovicus, and the increasing levels of the xanthophyll cycle components with total daily photon receipt in the leaves of A. uva-ursi, are both consistent with the involvement of zeaxanthin (i.e. the xanthophyll cycle) in the photoprotection of the photosynthetic apparatus against damage due to excessive light.Abbreviations A antheraxanthin - EPS epoxidation state of the xanthophyll cycle=(V+0.5A)/(V+A+Z) - PFD photon flux density (400–700 nm) - PFDi photon flux density incident upon the upper leaf surface - Tair air temperature - TL leaf temperature - V violaxanthin - Z zeaxanthin  相似文献   

6.
The carotenoid species lutein, violaxanthin, and zeaxanthin are crucial in the xanthophyll-dependent nonphotochemical quenching occurring in photosynthetic systems of higher plants, since they are involved in dissipation of excess energy and thus protect the photosynthetic machinery from irreversible inhibition. Nonetheless, important properties of the xanthophyll cycle carotenoids, such as the energy of their S(1) electronic states, are difficult to study and were only recently determined in organic solvents [Polívka, T. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 4914. Frank, H. A. (2000) Biochemistry 39, 2831]. In the present study, we have determined the S(1) energies of three carotenoid species, violaxanthin, lutein, and zeaxanthin, in their LHCII (peripheral light-harvesting complex of photosystem II) protein environment by constructing recombinant Lhcb1 (Lhc = light-harvesting complex) proteins containing single carotenoid species. Within experimental error the S(1) energy is the same for all three carotenoids in the monomeric LHCII, 13,900 +/- 300 cm(-1) (720 +/- 15 nm), thus well below the Q(y)() transitions of chlorophylls. In addition, we have found that, although the S(1) lifetimes of violaxanthin, lutein, and zeaxanthin differ substantially in solution, when incorporated into the LHCII protein, their S(1) states have in fact the same lifetime of about 11 ps. Despite the similar spectroscopic properties of the carotenoids bound to the LHCII, we observed a maximal fluorescence quenching when zeaxanthin was present in the LHCII complex. On the basis of these observations, we suggest that, rather than different photochemical properties of individual carotenoid species, changes in the protein conformation induced by binding of carotenoids with distinct molecular structures are involved in the quenching phenomena associated with Lhc proteins.  相似文献   

7.
The study of daily changes in photosynthetic rate, of energy used in photochemical and non-photochemical processes, and of carotenoid composition aimed at evaluating the role of xanthophyll cycle (XC) in protection of hoary plantain plants (Plantago media) in nature. The leaves of sun plants differed from shade plants in terms of CO(2) exchange rate and photosynthetic pigments content. The total pool XC pigments and the conversion state increased from morning to midday in sun plants. An increase in zeaxanthin content occurred concomitantly with the violaxanthin decrease. About 80% violaxanthin was involved in conversion. The maximum of zeaxanthin in XC pigments pool was 60%. The conversion state of XC was twice as lower in shade plants than that in sun plants. The photosynthesis of sun leaves was depressed strongly at midday, but changes of maximum quantum yield of PS2 (F(v)/F(m)) were not apparent at that time. The coefficient qN (non-photochemical quenching) in the sun leaves changed strongly, from 0.3 to 0.9 as irradiance increased. The direct relation between heat dissipation and the conversion state of XC in plantain leaves was revealed. Thus, plantain leaves were found to be resistant to excess solar radiation due to activation of qN mechanisms associated with the XC de-epoxidation.  相似文献   

8.
The distribution of xanthophyll cycle pigments (violaxanthin plus antheraxanthin plus zeaxanthin [VAZ]) among photosynthetic pigment-protein complexes was examined in Vinca major before, during, and subsequent to a photoinhibitory treatment at low temperature. Four pigment-protein complexes were isolated: the core of photosystem (PS) II, the major light-harvesting complex (LHC) protein of PSII (LHCII), the minor light-harvesting proteins (CPs) of PSII (CP29, CP26, and CP24), and PSI with its LHC proteins (PSI-LHCI). In isolated thylakoids 80% of VAZ was bound to protein independently of the de-epoxidation state and was found in all complexes. Plants grown outside in natural sunlight had higher levels of VAZ (expressed per chlorophyll), compared with plants grown in low light in the laboratory, and the additional VAZ was mainly bound to the major LHCII complex, apparently in an acid-labile site. The extent of de-epoxidation of VAZ in high light and the rate of reconversion of Z plus A to V following 2.5 h of recovery were greatest in the free-pigment fraction and varied among the pigment-protein complexes. Photoinhibition caused increases in VAZ, particularly in low-light-acclimated leaves. The data suggest that the photoinhibitory treatment caused an enrichment in VAZ bound to the minor CPs caused by de novo synthesis of the pigments and/or a redistribution of VAZ from the major LHCII complex.  相似文献   

9.
《BBA》2020,1861(2):148117
The xanthophyll cycle is a regulatory mechanism operating in the photosynthetic apparatus of plants. It consists of the conversion of the xanthophyll pigment violaxanthin to zeaxanthin, and vice versa, in response to light intensity. According to the current understanding, one of the modes of regulatory activity of the cycle is associated with the influence on a molecular organization of pigment-protein complexes. In the present work, we analyzed the effect of violaxanthin and zeaxanthin on the molecular organization of the LHCII complex, in the environment of membranes formed with chloroplast lipids. Nanoscale imaging based on atomic force microscopy (AFM) showed that the presence of exogenous xanthophylls promotes the formation of the protein supramolecular structures. Nanoscale infrared (IR) absorption analysis based on AFM-IR nanospectroscopy suggests that zeaxanthin promotes the formation of LHCII supramolecular structures by forming inter-molecular β-structures. Meanwhile, the molecules of violaxanthin act as “molecular spacers” preventing self-aggregation of the protein, potentially leading to uncontrolled dissipation of excitation energy in the complex. This latter mechanism was demonstrated with the application of fluorescence lifetime imaging microscopy. The intensity-averaged chlorophyll a fluorescence lifetime determined in the LHCII samples without exogenous xanthophylls at the level of 0.72 ns was longer in the samples containing exogenous violaxanthin (2.14 ns), but shorter under the presence of zeaxanthin (0.49 ns) thus suggesting a role of this xanthophyll in promotion of the formation of structures characterized by effective excitation quenching. This mechanism can be considered as a representation of the overall photoprotective activity of the xanthophyll cycle.  相似文献   

10.
Laurdan (6-lauroyl-2-dimethylaminonaphthalene) fluorescence spectroscopy has been applied to probe the physical status of the thylakoid membrane upon conversion of violaxanthin to zeaxanthin. So far, only phospholipid-dominated membranes have been studied by this method and hereby we report the first use of laurdan in mono- and digalactosyldiacylglycerol-dominated membrane systems. The generalised polarisation (GP) of laurdan was used as a measure of the structural effect of xanthophyll cycle pigments in isolated spinach (Spinacia oleracea) thylakoids and in model membrane vesicles composed of chloroplast galactolipids. Higher GP values indicate a membrane in a more ordered structure, whereas lower GP values point to a membrane in a less ordered fluid phase. The method was used to probe the effect of violaxanthin and zeaxanthin in thylakoid membranes at different temperatures. At 4, 25 and 37 degrees C the GP values for dark-adapted thylakoids in the violaxanthin-form were 0.55, 0.28 and 0.26. After conversion of violaxanthin to zeaxanthin, at the same temperatures, the GP values were 0.62, 0.36 and 0.34, respectively. GP values increased gradually upon conversion of violaxanthin to zeaxanthin. Similar results were obtained in the liposomal systems in the presence of these xanthophyll cycle pigments. We conclude from these results that the conversion of violaxanthin to zeaxanthin makes the thylakoid membrane more ordered.  相似文献   

11.
Laurdan (6-lauroyl-2-dimethylaminonaphthalene) fluorescence spectroscopy has been applied to probe the physical status of the thylakoid membrane upon conversion of violaxanthin to zeaxanthin. So far, only phospholipid-dominated membranes have been studied by this method and hereby we report the first use of laurdan in mono- and digalactosyldiacylglycerol-dominated membrane systems. The generalised polarisation (GP) of laurdan was used as a measure of the structural effect of xanthophyll cycle pigments in isolated spinach (Spinacia oleracea) thylakoids and in model membrane vesicles composed of chloroplast galactolipids. Higher GP values indicate a membrane in a more ordered structure, whereas lower GP values point to a membrane in a less ordered fluid phase. The method was used to probe the effect of violaxanthin and zeaxanthin in thylakoid membranes at different temperatures. At 4, 25 and 37 °C the GP values for dark-adapted thylakoids in the violaxanthin-form were 0.55, 0.28 and 0.26. After conversion of violaxanthin to zeaxanthin, at the same temperatures, the GP values were 0.62, 0.36 and 0.34, respectively. GP values increased gradually upon conversion of violaxanthin to zeaxanthin. Similar results were obtained in the liposomal systems in the presence of these xanthophyll cycle pigments. We conclude from these results that the conversion of violaxanthin to zeaxanthin makes the thylakoid membrane more ordered.  相似文献   

12.
The pigment composition of the light-harvesting complexes (LHCs) of higher plants is highly conserved. The bulk complex (LHCIIb) binds three xanthophyll molecules in combination with chlorophyll (Chl) a and b. The structural requirements for binding xanthophylls to LHCIIb have been examined using an in vitro reconstitution procedure. Reassembly of the monomeric recombinant LHCIIb was performed using a wide range of native and nonnative xanthophylls, and a specific requirement for the presence of a hydroxy group at C-3 on a single beta-end group was identified. The presence of additional substituents (e.g. at C-4) did not interfere with xanthophyll binding, but they could not, on their own, support reassembly. cis isomers of zeaxanthin, violaxanthin, and lutein were not bound, whereas all-trans-neoxanthin and different chiral forms of lutein and zeaxanthin were incorporated into the complex. The C-3 and C-3' diols lactucaxanthin (a carotenoid native to many plant LHCs) and eschscholtzxanthin (a retro-carotenoid) both behaved very differently from lutein and zeaxanthin in that they would not support complex reassembly when used alone. Lactucaxanthin could, however, be bound when lutein was also present, and it showed a high affinity for xanthophyll binding site N1. In the presence of lutein, lactucaxanthin was readily bound to at least one lutein-binding site, suggesting that the ability to bind to the complex and initiate protein folding may be dependent on different structural features of the carotenoid molecule. The importance of carotenoid end group structure and ring-to-chain conformation around the C-6-C-7 torsion angle of the carotenoid molecule in binding and complex reassembly is discussed.  相似文献   

13.
The xanthophyll cycle pigments, violaxanthin and zeaxanthin, present outside the light-harvesting pigment-protein complexes of Photosystem II (LHCII) considerably enhance specific aggregation of proteins as revealed by analysis of the 77 K chlorophyll a fluorescence emission spectra. Analysis of the infrared absorption spectra in the Amide I region shows that the aggregation is associated with formation of intermolecular hydrogen bonding between the alpha helices of neighboring complexes. The aggregation gives rise to new electronic energy levels, in the Soret region (530 nm) and corresponding to the Q spectral region (691 nm), as revealed by analysis of the resonance light scattering spectra. New electronic energy levels are interpreted in terms of exciton coupling of protein-bound photosynthetic pigments. The energy of the Q excitonic level of chlorophyll is not high enough to drive the light reactions of Photosystem II but better suited to transfer excitation energy to Photosystem I, which creates favourable energetic conditions for the state I-state II transition. The lack of fluorescence emission from this energy level, at physiological temperatures, is indicative of either very high thermal energy conversion rate or efficient excitation quenching by carotenoids. Chlorophyll a fluorescence was quenched up to 61% and 34% in the zeaxanthin- and violaxanthin-containing samples, respectively, as compared to pure LHCII. Enhanced aggregation of LHCII, observed in the presence of the xanthophyll cycle pigments, is discussed in terms of the switch between light-harvesting and energy dissipation systems.  相似文献   

14.
The conversion of violaxanthin to zeaxanthin is essentially required for the pH-regulated dissipation of excess light energy in the antenna of photosystem II. Violaxanthin is bound to each of the antenna proteins of both photosystems. Former studies with recombinant Lhcb1 and different Lhca proteins implied that each antenna protein contributes specifically to violaxanthin conversion related to protein-specific affinities of the different violaxanthin binding sites. We investigated the violaxanthin de-epoxidation in the minor antenna proteins of photosystem II, Lhcb4-6. Recombinant proteins were reconstituted with different xanthophyll mixtures to study the conversion of violaxanthin at different xanthophyll binding sites in these proteins. The extent and kinetics of violaxanthin de-epoxidation were found to be dependent on the respective protein and, for each protein, also on the binding site of violaxanthin. In particular, violaxanthin bound to Lhcb4 was nearly inconvertible for de-epoxidation, whereas violaxanthin bound to Lhcb5 was fully convertible but with slow kinetics. Lhcb6 exhibited heterogeneous violaxanthin conversion characteristics, which could be assigned to different populations of reconstituted Lhcb6 complexes with respect to violaxanthin binding sites. The results support the proposed different binding affinities of violaxanthin to the three putative violaxanthin binding sites (V1, N1, and L2) in antenna proteins. Under consideration of former studies with Lhcb1 and Lhca proteins, the data imply that violaxanthin bound to the V1 and N1 binding site of antenna proteins is easily accessible for de-epoxidation in all antenna proteins, whereas violaxanthin bound to L2 is either only slowly or not convertible to zeaxanthin, depending on the respective protein.  相似文献   

15.
The xanthophyll cycle has a major role in protecting plants from photooxidative stress, although the mechanism of its action is unclear. Here, we have investigated Arabidopsis plants overexpressing a gene encoding beta-carotene hydroxylase, containing nearly three times the amount of xanthophyll cycle carotenoids present in the wild-type. In high light at low temperature wild-type plants exhibited symptoms of severe oxidative stress: lipid peroxidation, chlorophyll bleaching, and photoinhibition. In transformed plants, which accumulate over twice as much zeaxanthin as the wild-type, these symptoms were significantly ameliorated. The capacity of non-photochemical quenching is not significantly different in transformed plants compared with wild-type and therefore an enhancement of this process cannot be the cause of the stress tolerant phenotype. Rather, it is concluded that it results from the antioxidant effect of zeaxanthin. 80-90% of violaxanthin and zeaxanthin in wild-type and transformed plants was localized to an oligomeric LHCII fraction prepared from thylakoid membranes. The binding of these pigments in intact membranes was confirmed by resonance Raman spectroscopy. Based on the structural model of LHCII, we suggest that the protein/lipid interface is the active site for the antioxidant activity of zeaxanthin, which mediates stress tolerance by the protection of bound lipids.  相似文献   

16.
The major light-harvesting complex of photosystem II can be reconstituted in vitro from its bacterially expressed apoprotein with chlorophylls a and b and neoxanthin, violaxanthin, lutein, or zeaxanthin as the only xanthophyll. Reconstitution of these one-carotenoid complexes requires low-stringency conditions during complex formation and isolation. Neoxanthin complexes (containing 30-50% of the all-trans isomer) disintegrate during electrophoresis, exhibit a largely reduced resistance against proteolytic attack; in addition, energy transfer from Chl b to Chl a is easily disrupted at elevated temperature. Complexes reconstituted in the presence of either zeaxanthin or lutein contain nearly two xanthophylls per 12 chlorophylls and are more resistant against trypsin. Lutein-LHCIIb also exhibits an intermediate maintenance of energy transfer at higher temperature. Violaxanthin complexes approach a xanthophyll/12 chlorophyll ratio of 3, similar to the ratio in recombinant LHCIIb containing all xanthophylls. On the other hand, violaxanthin-LHCIIb exhibits a low thermal stability like neoxanthin complexes, but an intermediate accessibility towards trypsin, similar to lutein-LHCIIb and zeaxanthin-LHCIIb. Binary competition experiments were performed with two xanthophylls at varying ratios in the reconstitution. Analysis of the xanthophyll contents in the reconstitution products yielded information about relative carotenoid affinities of three assumed binding sites. In lutein/neoxanthin competition experiments, two binding sites showed a strong preference (> 200-fold) for lutein, whereas the third binding site had a higher affinity (25-fold) to neoxanthin. Competition between lutein and violaxanthin gave a similar result, although the specificities were lower: two binding sites have a 36-fold preference for lutein and one has a fivefold preference for violaxanthin. The lowest selectivity was between lutein and zeaxanthin: two binding sites had a fivefold higher affinity for lutein and one has a threefold higher affinity to zeaxanthin.  相似文献   

17.
The parasitic angiosperm Cuscuta reflexa contains unusually high amounts of the carotenoids lutein-5,6-epoxide and 9- cis -violaxanthin. In this study the light-dependent conversions of these carotenoids in entire plant tissue and purified LHCII b was compared with that of the xanthophyll cycle carotenoid violaxanthin when plants are exposed to high irradiance followed by low irradiance. In entire tissue under high irradiance, similar conversion kinetics and stoichiometry with de-epoxidation products suggest that both lutein-5,6-epoxide and all- trans -violaxanthin are equally suitable substrates for de-epoxidase. This is not the case under low irradiance as, although epoxidation of zeaxanthin and antheraxanthin rapidly restores the violaxanthin pool, the recovery of the lutein-5,6-epoxide pool is comparatively slow and has no stoichiometric relationship with its de-epoxidation product, lutein. Light-dependent changes in the concentration of 9- cis -violaxanthin mimic violaxanthin. However, the inability to detect de-epoxidation products or to de-epoxidize 9- cis -violaxanthin in vitro suggests that it is not subject to de-epoxidation and, instead, its concentration changes may reflect the equilibrium between isomers of violaxanthin. Light exposure did not affect the composition of carotenoids bound to purified LHCII b , indicating that these bound carotenoids are not subject to de-epoxidation and do not contribute to the isomer pool equilibrium. The biosynthetic origins of lutein-5,6-epoxide and the potential role of these carotenoid cycles in photoprotection are discussed.  相似文献   

18.
Banet G  Pick U  Zamir A 《Planta》2000,210(6):947-955
 Like higher plants, unicellular green algae of the genus Dunaliella respond to light stress by enhanced de-epoxidation of violaxanthin and accumulation of Cbr, a protein homologous to early light-inducible proteins (Elips) in plants. Earlier studies indicated that Cbr was associated with the light-harvesting complex of photosystem II (LHCII) and suggested it acted as a zeaxanthin-binding protein and fulfilled a photo-protective function (Levy et al. 1993, J. Biol. Chem. 268: 20892–20896). To characterize the protein-pigment subcomplexes containing Cbr in greater detail than attained so far, thylakoid membranes from Dunaliella salina grown in high light or normal light were solubilized with dodecyl maltoside and fractionated by isoelectric-focusing. Analysis of the resolved LHCII subcomplexes indicated preferred associations among the four LHCIIb polypeptides and between them and Cbr: subcomplexes including Cbr contained one or two of the more acidic of the four LHCIIb polypeptides as well as large amounts of lutein and zeaxanthin relative to chlorophyll a/b. After sucrose gradient centrifugation, Cbr free of LHCIIb polypeptides was detected together with released pigments; this Cbr possibly originated in subcomplexes dissociated in the course of the analysis. These results agree with the conclusion that Cbr is part of the network of LHCIIb protein-pigment complexes and suggest that the role played by Cbr involves the organization and/or stabilization of assemblies highly enriched in zeaxanthin and lutein. Such assemblies may function to protect PSII from photodamage due to overexcitation. Received: 6 August 1999 / Accepted: 23 November 1999  相似文献   

19.
Moya I  Silvestri M  Vallon O  Cinque G  Bassi R 《Biochemistry》2001,40(42):12552-12561
We have studied the time-resolved fluorescence properties of the light-harvesting complexes (Lhc) of photosystem II (Lhcb) in order to obtain information on the mechanism of energy dissipation (non-photochemical quenching) which is correlated to the conversion of violaxanthin to zeaxanthin in excess light conditions. The chlorophyll fluorescence decay of Lhcb proteins LHCII, CP29, CP26, and CP24 in detergent solution is mostly determined by two lifetime components of 1.2-1.5 and 3.6-4 ns while the contribution of the faster component is higher in CP29, CP26, and CP24 with respect to LHCII. The xanthophyll composition of Lhc proteins affects the ratio of the lifetime components: when zeaxanthin is bound into the site L2 of LHCII, the relative amplitude of the faster component is increased and, consequently, the chlorophyll fluorescence quenching is enhanced. Analysis of quenching in mutants of Arabidopsis thaliana, which incorporate either violaxanthin or zeaxanthin in their Lhc proteins, shows that the extent of quenching is enhanced in the presence of zeaxanthin. The origin of the two fluorescence lifetimes was analyzed by their temperature dependence: since lifetime heterogeneity was not affected by cooling to 77 K, it is concluded that each lifetime component corresponds to a distinct conformation of the Lhc proteins. Upon incorporation of Lhc proteins into liposomes, a quenching of chlorophyll fluorescence was observed due to shortening of all their lifetime components: this indicates that the equilibrium between the two conformations of Lhcb proteins is displaced toward the quenched conformation in lipid membranes or thylakoids with respect to detergent solution. By increasing the protein density in the liposomes, and therefore the probability of protein-protein interactions, a further decrease of fluorescence lifetimes takes place down to values typical of quenched leaves. We conclude that at least two major factors determine the quenching of chlorophyll fluorescence in Lhcb proteins, i.e., intrasubunit conformational change and intersubunit interactions within the lipid membranes, and that these processes are both important in the photoprotection mechanism of nonphotochemical quenching in vivo.  相似文献   

20.
K K Niyogi  A R Grossman    O Bjrkman 《The Plant cell》1998,10(7):1121-1134
A conserved regulatory mechanism protects plants against the potentially damaging effects of excessive light. Nearly all photosynthetic eukaryotes are able to dissipate excess absorbed light energy in a process that involves xanthophyll pigments. To dissect the role of xanthophylls in photoprotective energy dissipation in vivo, we isolated Arabidopsis xanthophyll cycle mutants by screening for altered nonphotochemical quenching of chlorophyll fluorescence. The npq1 mutants are unable to convert violaxanthin to zeaxanthin in excessive light, whereas the npq2 mutants accumulate zeaxanthin constitutively. The npq2 mutants are new alleles of aba1, the zeaxanthin epoxidase gene. The high levels of zeaxanthin in npq2 affected the kinetics of induction and relaxation but not the extent of nonphotochemical quenching. Genetic mapping, DNA sequencing, and complementation of npq1 demonstrated that this mutation affects the structural gene encoding violaxanthin deepoxidase. The npq1 mutant exhibited greatly reduced nonphotochemical quenching, demonstrating that violaxanthin deepoxidation is required for the bulk of rapidly reversible nonphotochemical quenching in Arabidopsis. Altered regulation of photosynthetic energy conversion in npq1 was associated with increased sensitivity to photoinhibition. These results, in conjunction with the analysis of npq mutants of Chlamydomonas, suggest that the role of the xanthophyll cycle in nonphotochemical quenching has been conserved, although different photosynthetic eukaryotes rely on the xanthophyll cycle to different extents for the dissipation of excess absorbed light energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号