首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of multidrug resistant cell lines has led to the identification of the P-glycoprotein multigene family. Two of the three classes of mammalian P-glycoproteins have the ability to confer cellular resistance to a broad range of structurally and functionally diverse cytotoxic agents. P-glycoproteins are integral membrane glycoproteins comprised of two similar halves, each consisting of six membrane spanning domains followed by a cytoplasmic domain which includes a nucleotide binding fold. The P-glycoprotein is a member of a large superfamily of transport proteins which utilize ATP to translocate a wide range of substrates across biological membranes. This superfamily includes transport complexes comprised of multicomponent systems, half P-glycoproteins and P-glycoprotein-like homologs which appear to require 12 -helical transmembrane domains and two nucleotide binding folds for substrate transport. P-glycoprotein homologs have been isolated and characterized from a wide range of species. Amino acid sequences, the similarities between the halves and intron/exon boundaries have been compared to understand the evolutionary origins of the P-glycoprotein.  相似文献   

2.
The overexpression of the P-glycoprotein, theMDR1 gene product, has been linked to the development of resistance to multiple cytotoxic natural product anticancer drugs in certain cancers and cell lines derived from tumors. P-glycoprotein, a member of the ATP-binding cassette (ABC) superfamily of transporters, is believed to function as an ATP-dependent drug efflux pump with broad specificity for chemically unrelated hydrophobic compounds. We review here recent studies on the purification and reconstitution of P-glycoprotein to elucidate the mechanism of drug transport. P-glycoprotein from the human carcinoma multidrug resistant cell line, KB-V1, was purified by sequential chromatography on anion exchange followed by a lectin (wheat germ agglutinin) column. Proteoliposomes reconstituted with pure protein exhibited high levels of drug-stimulated ATPase activity as well as ATP-dependent [3H]vinblastine accumulation. Both the ATPase and vinblastine transport activities of the reconstituted P-glycoprotein were inhibited by vanadate. In addition, the vinblastine transport was inhibited by verapamil and daunorubicin. These studies provide strong evidence that the human P-glycoprotein functions as an ATP-dependent drug transporter. The development of the reconstitution system and the availability of recombinant protein in large amounts due to recent advances in overexpression of P-glycoprotein in a heterologous expression system should facilitate a better understanding of the function of this novel protein.  相似文献   

3.
Inherent or acquired resistance of tumor cells to cytotoxic drugs represents a major limitation to the successful chemotherapeutic treatment of cancer. During the past three decades dramatic progress has been made in the understanding of the molecular basis of this phenomenon. Analyses of drug-selected tumor cells which exhibit simultaneous resistance to structurally unrelated anti-cancer drugs have led to the discovery of the human MDR1 gene product, P-glycoprotein, as one of the mechanisms responsible for multidrug resistance. Overexpression of this 170 kDa N-glycosylated plasma membrane protein in mammalian cells has been associated with ATP-dependent reduced drug accumulation, suggesting that P-glycoprotein may act as an energy-dependent drug efflux pump. P-glycoprotein consists of two highly homologous halves each of which contains a transmembrane domain and an ATP binding fold. This overall architecture is characteristic for members of the ATP-binding cassette or ABC superfamily of transporters. Cell biological, molecular genetic and biochemical approaches have been used for structure-function studies of P-glycoprotein and analysis of its mechanism of action. This review summarizes the current status of knowledge on the domain organization, topology and higher order structure of P-glycoprotein, the location of drug- and ATP binding sites within P-glycoprotein, its ATPase and drug transport activities, its possible functions as an ion channel, ATP channel and lipid transporter, its potential role in cholesterol biosynthesis, and the effects of phosphorylation on P-glycoprotein activity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Chemotherapy, though it remains one of the front-line weapons used to treat human cancer, is often ineffective due to drug resistance mechanisms manifest in tumor cells. One common pattern of drug resistance, characterized by simultaneous resistance to multiple amphipathic, but otherwise structurally dissimilar anticancer drugs, is termed multidrug resistance. Multidrug resistance in various model systems, covering the phylogenetic range from bacteria to man, can be conferred by mammalian P-glycoproteins (PGPs), often termed multidrug transporters. PGPs are 170-kD polytopic membrane proteins, predicted to consist of two homologous halves, each with six membrane spanning regions and one ATP binding site. They are members of the ATP-binding cassette (ABC) superfamily of transporters, and are known to function biochemically as energy-dependent drug efflux pumps. However, much remains to be learned about PGP structure-function relationships, membrane topology, posttranslational regulation, and bioenergetics of drug transport. Much of the recent progress in the study of the human and mouse PGPs has come from heterologous expression systems which offer the benefits of ease of genetic selection and manipulation, and/or short generation times of the organism in which PGPs are expressed, and/or high-level expression of recombinant PGP. Here we review recent studies of PGP inE. coli, baculovirus, and yeast systems and evaluate their utility for the study of PGPs, as well as other higher eukaryotic membrane proteins.  相似文献   

5.
6.
1. P-Glycoprotein is a 170-kDa transmembrane glycoprotein active efflux system that confers multidrug resistance in tumors, as well as normal tissues including brain.2. The classical model of multidrug resistance in brain places the expression of P-glycoprotein at the luminal membrane of the brain microvascular endothelial cell. However, recent studies have been performed with human brain microvessels and double-labeling confocal microscopy using (a) the MRK16 antibody to human P-glycoprotein, (b) an antiserum to glial fibrillary acidic protein (GFAP), an astrocyte foot process marker, or (c) an antiserum to the GLUT1 glucose transporter, a brain endothelial plasma membrane marker. These results provide evidence for a revised model of P-glycoprotein function at the brain microvasculature. In human brain capillaries, there is colocalization of immunoreactive P-glycoprotein with astrocytic GFAP but not with endothelial GLUT1 glucose transporter.3. In the revised model of multidrug resistance in brain, P-glycoprotein is hypothesized to function at the plasma membrane of astrocyte foot processes. These astrocyte foot processes invest the brain microvascular endothelium but are located behind the blood–brain barrier in vivo, which is formed by the brain capillary endothelial plasma membrane.4. In the classical model, an inhibition of endothelial P-glycoprotein would result in both an increase in the blood–brain barrier permeability to a given drug substrate of P-glycoprotein and an increase in the brain volume of distribution (V D) of the drug. However, in the revised model of P-glycoprotein function in brain, which positions this protein transporter at the astrocyte foot process, an inhibition of P-glycoprotein would result in no increase in blood–brain barrier permeability, per se, but only an increase in the V D in brain of P-glycoprotein substrates.  相似文献   

7.
Analysis of multidrug resistant cell lines has led to the identification of the P-glycoprotein multigene family. Two of the three classes of mammalian P-glycoproteins have the ability to confer cellular resistance to a broad range of structurally and functionally diverse cytotoxic agents. P-glycoproteins are integral membrane glycoproteins comprised of two similar halves, each consisting of six membrane spanning domains followed by a cytoplasmic domain which includes a nucleotide binding fold. The P-glycoprotein is a member of a large superfamily of transport proteins which utilize ATP to translocate a wide range of substrates across biological membranes. This superfamily includes transport complexes comprised of multicomponent systems, half P-glycoproteins and P-glycoprotein-like homologs which appear to require approximately 12 α-helical transmembrane domains and two nucleotide binding folds for substrate transport. P-glycoprotein homologs have been isolated and characterized from a wide range of species. Amino acid sequences, the similarities between the halves and intron/exon boundaries have been compared to understand the evolutionary origins of the P-glycoprotein. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
9.
The multidrug efflux pump P-glycoprotein (P-gp) contributes to multidrug resistance in about half of human cancers. Recently, high resolution X-ray crystal structures of mouse P-gp (inward-facing) were reported, which significantly facilitates the understanding of the function of P-gp and the structure-based design of inhibitors for P-gp. Here we perform 20?ns molecular dynamics simulations of inward-facing P-gp with/without ligand in explicit lipid and water to investigate the flexibility of P-gp for its poly-specific drug binding. By analyzing the interactions between P-gp and QZ59-RRR or QZ59-SSS, we summarize the important residues and the flexibility of different parts of P-gp. Particularly, the flexibility of the side chains of aromatic residues (Phe and Tyr) allows them to form rotamers with different orientations in the binding pocket, which plays a critical role for the poly-specificity of the drug-binding cavity of P-gp. MD simulations reveal that trans-membrane (TM) TM12 and TM6 are flexible and contribute to the poly-specific drug binding, while TM4 and TM5 are rigid and stabilize the whole structure. We also construct outward-facing P-gp based on the MsbA structure and perform 20?ns MD simulations. The comparison between the MD results for outward-facing P-gp and those for inward-facing P-gp shows that the TM parts in outward-facing P-gp undergo significant conformational change to facilitate the export of small molecules.  相似文献   

10.
Chloride channel-3 (ClC-3), a member of the ClC family of voltage-gated Cl channels, is involved in the resistance of tumor cells to chemotherapeutic drugs. Here, we report a new mechanism for ClC-3 in mediating multidrug resistance (MDR). ClC-3 was highly expressed in the P-glycoprotein (P-gp)-dependent human lung adenocarcinoma cell line (A549)/paclitaxel (PTX) and the human breast carcinoma cell line (MCF-7)/doxorubicin (DOX) resistant cells. Changes in the ClC-3 expression resulted in the development of drug resistance in formerly drug-sensitive A549 or MCF-7 cells, and drug sensitivity in formerly drug-resistant A549/Taxol and MCF-7/DOX cells. Double transgenic MMTV-PyMT/CLCN3 mice with spontaneous mammary cancer and ClC-3 overexpression demonstrated drug resistance to PTX and DOX. ClC-3 expression upregulated the expression of MDR1 messenger RNA and P-gp by activating the nuclear factor-κB (NF-κB)-signaling pathway. These data suggest that ClC-3 expression in cancer cells induces MDR by upregulating NF-κB-signaling-dependent P-gp expression involving another new mechanism for ClC-3 in the development of drug resistance of cancers.  相似文献   

11.
The P-glycoproteinmdr is expressed not only in tumoral cells, but also in nontransformed cells, including the specialized endothelial cells of brain capillaries which build up the blood-brain barrier. Since all previously identified blood-brain barrier markers are rapidly lost when cerebral capillary endothelial cells are maintained in primary culture, we have investigated whether P-glycoprotein (P-gp) would follow the same rule, in order to address the influence of the cerebral environment on the specific P-gp expression in the brain endothelium. As compared to freshly isolated purified cerebral capillaries, P-glycoprotein was detected by immunochemistry at a high level in 5–7 day primary cultures. In our culture conditions, P-glycoprotein was immunodetected at a lower molecular weight than that found in freshly isolated capillaries. Enzymatic deglycosylation led to the same 130 kDa protein for both fresh and cultured samples, suggesting that P-gp post-translational modifications were altered in primary cultures. However, studies on the uptake and efflux of the P-gp substrate [3H]vinblastine, and on the effect of variousmdr reversing agents on the uptake and efflux, clearly indicated that the efflux pump function of the P-glycoprotein was maintained in primary cultures of bovine cerebral capillary endothelial cells. P-Glycoprotein may thus represent the first blood-brain barrier marker which is maintained in cerebral endothelial cells cultured in the absence of factors originating from the brain parenchyma.Abbreviations BBB blood-brain barrier - BCEC brain capillary endothelial cells - -GT -glutamyltranspeptidase - HBSS Hank's balanced salt solution - Mab monoclonal antibody - mdr multidrug resistance - P-gp P-glycoprotein  相似文献   

12.
A homologue of the multidrug resistance (MDR) gene was obtained while screening a potato stolon tip cDNA expression library with35S-labeled calmodulin. The mammalian MDR gene codes for a membrane-bound P-glycoprotein (170–180 kDa) which imparts multidrug resistance to cancerous cells. The potato cDNA (PMDR1) codes for a polypeptide of 1313 amino acid residues (ca. 144 kDa) and its structural features are very similar to the MDR P-glycoprotein. The N-terminal half of the PMDR1-encoded protein shares striking homology with its C-terminal half, and each half contains a conserved ATP-binding site and six putative transmembrane domains. Southern blot analysis indicated that potato has one or two MDR-like genes. PMDR1 mRNA is constitutively expressed in all organs studied with higher expression in the stem and stolon tip. The PMDR1 expression was highest during tuber initiation and decreased during tuber development.  相似文献   

13.
Many studies have been performed with the aim of developing effective resistance modulators to overcome the multidrug resistance (MDR) of human cancers. Potent MDR modulators are being investigated in clinical trials. Many current studies are focused on dietary herbs due to the fact that these have been used for centuries without producing any harmful side effects. In this study, the effect of tetrahydrocurcumin (THC) on three ABC drug transporter proteins, P-glycoprotein (P-gp or ABCB1), mitoxantrone resistance protein (MXR or ABCG2) and multidrug resistance protein 1 (MRP1 or ABCC1) was investigated, to assess whether an ultimate metabolite form of curcuminoids (THC) is able to modulate MDR in cancer cells. Two different types of cell lines were used for P-gp study, human cervical carcinoma KB-3-1 (wild type) and KB-V-1 and human breast cancer MCF-7 (wild type) and MCF-7 MDR, whereas, pcDNA3.1 and pcDNA3.1-MRP1 transfected HEK 293 and MXR overexpressing MCF7AdrVp3000 or MCF7FL1000 and its parental MCF-7 were used for MRP1 and MXR study, respectively. We report here for the first time that THC is able to inhibit the function of P-gp, MXR and MRP1. The results of flow cytometry assay indicated that THC is able to inhibit the function of P-gp and thereby significantly increase the accumulation of rhodamine and calcein AM in KB-V-1 cells. The result was confirmed by the effect of THC on [3H]-vinblastine accumulation and efflux in MCF-7 and MCF-7MDR. THC significantly increased the accumulation and inhibited the efflux of [3H]-vinblastine in MCF-7 MDR in a concentration-dependent manner. This effect was not found in wild type MCF-7 cell line. The interaction of THC with the P-gp molecule was clearly indicated by ATPase assay and photoaffinity labeling of P-gp with transport substrate. THC stimulated P-gp ATPase activity and inhibited the incorporation of [125I]-iodoarylazidoprazosin (IAAP) into P-gp in a concentration-dependent manner. The binding of [125I]-IAAP to MXR was also inhibited by THC suggesting that THC interacted with drug binding site of the transporter. THC dose dependently inhibited the efflux of mitoxantrone and pheophorbide A from MXR expressing cells (MCF7AdrVp3000 and MCF7FL1000). Similarly with MRP1, the efflux of a fluorescent substrate calcein AM was inhibited effectively by THC thereby the accumulation of calcein was increased in MRP1-HEK 293 and not its parental pcDNA3.1-HEK 293 cells. The MDR reversing properties of THC on P-gp, MRP1, and MXR were determined by MTT assay. THC significantly increased the sensitivity of vinblastine, mitoxantrone and etoposide in drug resistance KB-V-1, MCF7AdrVp3000 and MRP1-HEK 293 cells, respectively. This effect was not found in respective drug sensitive parental cell lines. Taken together, this study clearly showed that THC inhibits the efflux function of P-gp, MXR and MRP1 and it is able to extend the MDR reversing activity of curcuminoids in vivo.  相似文献   

14.
In this review we analyze the data supporting the notion that vault-related MDR, as reflected by LRP/MVP overexpression, represents a marker of drug resistance in vitro and in the clinic. Vaults, besides playing a fundamental biological role, may be involved in a novel mechanism of MDR. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
线粒体DNA缺失细胞(ρ~0细胞)拮抗化疗药物诱导的凋亡,但其确切机制尚不明确。本研究探讨P-gp线粒体转位与人肝癌细胞(SK-Hepl)mtDNA缺失细胞(ρ~0SK-Hep1)多药耐药产生的关系。以SK-Hep1、ρ~0SK-Hep1和转线粒体细胞SK-Hep1Cyb为研究对象,CCK-8方法检测细胞对药物敏感性;AnnexinV/PI双染法及DAPI染色法检测细胞凋亡;Westernblot检测P-gp表达;激光共聚焦显微镜结合免疫荧光检测P-gP细胞内分布。结果显示,SK-Hep1、ρ~0SK-Hep1和SK-Hep1Cyb细胞对多柔比星(DOX)的IC_(50)分别为0.62±0.02μg/ml、4.93±0.17μg/ml和0.57±0.02μg/ml。SK-Hep1、ρ~0SK-Hep1和SK-Hep1Cyb细胞凋亡率分别为1 1.25%±1.36%、4.75%±0.98%和14.50%±1.57%,ρ~0SK-Hep1对细胞凋亡有明显抗性。Western blot检测发现ρ~0细胞内P-gP、Bax、Bcl-2表达增加,Bcl-2/Bax比值增加。免疫荧光共定位显示,ρ~0细胞线粒体内P-gP...  相似文献   

16.
Summary 1. The antiinflammatory actions of glucocorticoid steroids are thought to occur through induction of the protein lipocortin-1 (LC-1; annexin-1). The purpose of the current study was to investigate whether astrocytic LC-1 content was increased in the presence of a synthetic glucocorticoid, dexamethasone.2. Steroid-induced changes in cellular levels of LC-1 in astrocytes were determined by electrotransfer and immunoblotting techniques. Separate cell fractions were investigated to study the influence of dexamethasone on astroglial LC-1 content. The effect of culture state on LC-1 expression was also examined.3. Intracellular LC-1 content was found to decrease after initiation of culture, with a substantial rise in both cell proliferation and LC-1 expression occurring after the replenishment of medium containing steroid-free serum. A further increase in intracellular LC-1 occurred upon incubation with dexamethasone. The glucocorticoid-induced change in intracellular LC-1 was a time-dependent event and coincided with an increase in membrane-associated LC-1.4. The findings in this study indicate that astrocytic LC-1 content is influenced by cell culture conditions and, in the presence of glucocorticoid steroids, the cellular localization of LC-1 is altered. This may indicate that LC-1 has functions at more than one cellular locality.  相似文献   

17.
We have earlier isolated a glucocorticoid-resistant, dedifferentiated rat hepatoma variant, the clone 2, which exhibited deficient stress activation of the major stress-inducible heat-shock protein hsp68.Multidrug-resistant variants were isolated from clone 2 cells using increasing concentrations of colchicine. The induction deficiency of hsp68 was maintained in the colchicine-resistant clone 2 cells grown for several months in the presence of 1 g/ml colchicine (termed ashighly multidrug-resistant variant) indicating that this heat-shock protein is not involved in the multidrug resistance. No alteration of the protein synthesis pattern was observed except the strong increase of the P-glycoprotein, which correlated with high level of corresponding mRNA. Stableheat-resistant variants of clone 2 were also isolated, which showed increaseddrug resistance to several drugs, i.e. they becamemoderately multidrug-resistant. This moderate multidrug resistance of the heat-resistant variants was further increased by stepwise selection with colchicine (highly multidrug-resistant heat-resistant variants). The levels of P-glycoprotein mRNA and protein were elevated both in the heat-resistant, non drug selected, moderately drug-resistant and in heatresistant, colchicine selected, highly drug-resistant variants. Decreased retention of antitumor drugs was observed in all multidrug-resistant variants indicating that P-glycoprotein was functional. Verapamil increased doxorubicin retention and cytotoxicity significantly. Our results showing that severely stressed hepatoma cells overexpressed the multidrug resistance gene(s) raise the possibility that the P-glycoprotein may participate in protection against enviromental stress such as heat.Abbreviations hsp heat-shock protein - MDR multidrug resistance - P-gp P-glycoprotein  相似文献   

18.
结肠癌是常见的消化道恶性肿瘤。对术后患者以及无法采用手术治疗的患者,临床多采用化疗、放疗等综合性治疗方法。随着大量化疗药物在临床的广泛使用,结肠癌多药耐药性成为化疗失败的最主要原因。研究表明,P-糖蛋白(P-glycoprotein, P-gp)作为ATP结合盒(ABC)转运蛋白超家族成员之一,与多种肿瘤的多药耐药相关,其介导的多药耐药已经成为目前研究的热点。本文旨在通过对P-糖蛋白的结构、耐药机制以及逆转P-糖蛋白介导的结肠癌多药耐药新发现进行阐述,引导读者对P-糖蛋白在结肠癌多药耐药中的作用有更深入的了解。  相似文献   

19.
The multidrug resistance gene product, P-glycoprotein or the multidrug transporter, confers multidrug resistance to cancer cells by maintaining intracellular levels of cytotoxic agents below a killing threshold. P-glycoprotein is located within the plasma membrane and is thought to act as an energy-dependent drug efflux pump. The multidrug transporter represents a member of the ATP-binding cassette superfamily of transporters (or traffic ATPases) and is composed of two highly homologous halves, each of which harbors a hydrophobic transmembrane domain and a hydrophilic ATP-binding fold. This review focuses on various biochemical and molecular genetic approaches used to analyze the structure, function, and mechanism of action of the multidrug transporter, whose most intriguing feature is its ability to interact with a large number of structurally and functionally different amphiphilic compounds. These studies have underscored the complexity of this membrane protein which has recently been suggested to assume alternative topological and quaternary structures, and to serve multiple functions both as a transporter and as a channel. With respect to the multidrug transporter activity of P-glycoprotein, progress has been made towards the elucidation of essential amino acid residues and/or polypeptide regions. Furthermore, the drug-stimulatable ATPase activity of P-glycoprotein has been established. The mechanism of drug transport by P-glycoprotein, however, is still unknown and its physiological role remains a matter of speculation.  相似文献   

20.
为寻找能有效逆转肿瘤细胞多药耐药性的药物,通过体外细胞实验对Ams-11、Fw-13、Tul-17三种中药制剂逆转肿瘤细胞多药耐药性的作用进行了分析。并用流式细胞仪测定了Tul-17处理细胞后药物累积程度的变化及细胞P糖蛋白表达情况。为进一步研究体外细胞实验筛选出的多药耐药逆转剂在体内的药效学,将其中Fw13用于人白血病K562/ADR裸鼠移植瘤逆转试验。结果:在无细胞毒性的剂量范围内,该三种中药制剂均能明显增强多药耐药细胞对抗癌药物的敏感性,而且其逆转作用呈剂量依赖关系。Tu-17处理后,K562耐药细胞表达的P糖蛋白较对照降低1.5倍,对罗丹明123的累积量是对照的2.5倍。用Fw13治疗人白血病K562/ADR裸鼠移植瘤,可将硫酸长春新碱(VCR)对K562/ADR的抑瘤率从19.79%提高到86.59%,与单独VCR治疗疗效有显著性差异(P<0.05)。结果表明,这三种中药制剂可望成为肿瘤多药耐药逆转剂,在肿瘤化疗中发挥作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号