首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 498 毫秒
1.
Phosphorylation of rabbit skeletal muscle glycogen synthase by a cyclic nucleotide and Ca2+-independent protein kinase, PC0.7, caused the enzyme to be a better substrate for phosphorylation by another cyclic nucleotide and Ca2+-independent protein kinase, FA/GSK-3. In contrast, phosphorylation by the combination of FA/GSK-3 and cyclic AMP-dependent protein kinase led to less phosphorylation than predicted from the individual actions of the protein kinases. These results are explained in part by the existence of cooperative interactions among the phosphorylation sites of glycogen synthase. Phosphorylation by FA/GSK-3 also correlated with a reduction in the electrophoretic mobility, in the presence of sodium dodecyl sulfate, of the glycogen synthase subunit from an apparent molecular weight of 85,000-86,000 to values of 88,000 and ultimately 90,000. The synergistic phosphorylation by PC0.7 and FA/GSK-3 was associated with an increased formation of the species of reduced electrophoretic mobility. The effects on subunit mobility were also reflected in the behavior of a larger phosphorylated CNBr fragment of glycogen synthase, CB-2, which gave apparent molecular weights of 22,000-27,000 depending on its phosphorylation state.  相似文献   

2.
32P-labeled glycogen synthase specifically immunoprecipitated from 32P-phosphate incubated rat hepatocytes contains, in addition to [32P] phosphoserine, significant levels of [32P] phosphothreonine (7% of the total [32P] phosphoaminoacids). When the 32P-immunoprecipitate was cleaved with CNBr, the [32P] phosphothreonine was recovered in the large CNBr fragment (CB-2, Mapp 28 Kd). Homogeneous rat liver glycogen synthase was phosphorylated by all the protein kinases able to phosphorylate CB-2 "in vitro" (casein kinases I and II, cAMP-dependent protein kinase and glycogen synthase kinase-3). After analysis of the immunoprecipitated enzyme for phosphoaminoacids, it was observed that only casein kinase II was able to phosphorylate on threonine and 32P-phosphate was only found in CB-2. These results demonstrate that rat liver glycogen synthase is phosphorylated at threonine site(s) contained in CB-2 and strongly indicate that casein kinase II may play a role in the "in vivo" phosphorylation of liver glycogen synthase. This is the first protein kinase reported to phosphorylate threonine residues in liver glycogen synthase.  相似文献   

3.
Prostaglandin E2 (PGE2) and prostaglandin F2 alpha (PGF2 alpha) inactivated glycogen synthase and activated glycogen phosphorylase in rat hepatocytes in a dose- and time-dependent manner. These effects were dependent on the presence of Ca2+ in the incubation medium. When glycogen synthase was immunoprecipitated from cells incubated with [32P]Pi and then treated with PGE2 or PGF2 alpha, there was increased phosphorylation of the 88 kDa subunit of the enzyme. This phosphorylation affected two CNBr fragments of the glycogen synthase, CB-1 and CB-2, the same fragments that are phosphorylated by different glycogenolytic hormones. No phosphorylation of glycogen synthase by prostaglandins was observed in the absence of Ca2+. Thus the effect of PGE2 and PGF2 alpha on these glycogen-metabolizing enzymes supports a role for regulation by prostaglandins of glucose metabolism in parenchymal liver cells.  相似文献   

4.
Purified rabbit liver glycogen synthase was found to be a substrate for six different protein kinases: (i) cyclic AMP-dependent protein kinase, (ii) two Ca2+-stimulated protein kinases, phosphorylase kinase (from muscle) and a calmodulin-dependent glycogen synthase kinase, and (iii) three members of a Ca2+ and cyclic nucleotide independent class, PC0.7, FA/GSK-3, and casein kinase-1. Greatest inactivation accompanied phosphorylation by cyclic AMP-dependent protein kinase (to 0.5-0.7 phosphate/subunit, +/- glucose-6-P activity ratio reduced from approximately 1 to 0.6) or FA/GSK-3 (to approximately 1 phosphate/subunit, activity ratio, 0.46). Phosphorylation by the combination FA/GSK-3 plus PC0.7 was synergistic, and more extensive inactivation was achieved. The phosphorylation reactions just described caused significant reductions in the Vmax of the glycogen synthase with little effect on the S0.5 (substrate concentration corresponding to Vmax/2). Phosphorylase kinase achieved a lesser inactivation, to an activity ratio of 0.75 at 0.6 phosphate/subunit. PC0.7 acting alone, casein kinase-1, and the calmodulin-dependent protein kinase did not cause inactivation of liver glycogen synthase with the conditions used. Analysis of CNBr fragments of phosphorylated glycogen synthase indicated that the phosphate was distributed primarily between two polypeptides, with apparent Mr = 12,300 (CB-I) and 16,000-17,000 (CB-II). PC0.7 and casein kinase-1 displayed a decided specificity for CB-II, and the calmodulin-dependent protein kinase was specific for CB-I. The other protein kinases were able, to some extent, to introduce phosphate into both CB-I and CB-II. Studies using limited proteolysis indicated that CB-II was located at a terminal region of the subunit. CB-I contains a minimum of one phosphorylation site and CB-II at least three sites. Liver glycogen synthase is therefore potentially subject to the same type of multisite regulation as skeletal muscle glycogen synthase although the muscle and liver enzymes display significant differences in both structural and kinetic properties.  相似文献   

5.
The effects of insulin and epinephrine on the phosphorylation of glycogen synthase were investigated using rat hemidiaphragms incubated with [32P]phosphate. Antibodies against rabbit skeletal muscle glycogen synthase were used for the rapid purification of the 32P-labeled enzyme under conditions that prevented changes in its state of phosphorylation. The purified material migrated as a single radioactive species (Mapp = 90,000) when subjected to electrophoresis in sodium dodecyl sulfate. Insulin decreased the [32P]phosphate content of glycogen synthase. This effect occurred rapidly (within 15 min) and was observed with physiological concentrations of insulin (25 microunits/ml). The amount of [32P]phosphate removed from glycogen synthase by either different concentrations of insulin or times of incubation with the hormone was well correlated to the extent to which the enzyme was activated. Epinephrine (10 microM) inactivated glycogen synthase and increased its content of [32P]phosphate by about 50%. Cleavage of the immunoprecipitated enzyme with cyanogen bromide yielded two major 32P-labeled fragments of apparent molecular weights equal to approximately 28,000 and 15,000. The larger fragment (Fragment II) displayed electrophoretic heterogeneity similar to that observed with the corresponding CNBr fragment (CB-2) from purified rabbit skeletal muscle glycogen synthase phosphorylated by different protein kinases. Epinephrine increased [32P]phosphate content of both fragments; however, the increase in the radioactivity of the smaller fragment (Fragment I) was more pronounced. Insulin decreased the amount of [32P] phosphate present in Fragments I and II by about 40%. The results presented provide direct evidence that both insulin and epinephrine control glycogen synthase activity by regulating the phosphate present at multiple sites on the enzyme.  相似文献   

6.
Rat liver glycogen synthase was purified to homogeneity by an improved procedure that yielded enzyme almost exclusively as a polypeptide of Mr 85,000. The phosphorylation of this enzyme by eight protein kinases was analyzed by cleavage of the enzyme subunit followed by mapping of the phosphopeptides using polyacrylamide gel electrophoresis in the presence of SDS, reverse-phase high-performance liquid chromatography and thin-layer electrophoresis. Cyclic AMP-dependent protein kinase, phosphorylase kinase, protein kinase C and the calmodulin-dependent protein kinase all phosphorylated the same small peptide (approx. 20 amino acids) located in a 14 kDa CNBr-fragment (CB-1). Calmodulin-dependent protein kinase and protein kinase C also modified second sites in CB-1. A larger CNBr-fragment (CB-2) of approx. 28 kDa was the dominant site of action for casein kinases I and II, FA/GSK-3 and the heparin-activated protein kinase. The sites modified were all localized in a 14 kDa species generated by trypsin digestion. Further proteolysis with V8 proteinase indicated that FA/GSK-3 and the heparin-activated enzyme recognized the same smaller peptide within CB-2, which may also be phosphorylated by casein kinase 1. Casein kinase 1 also modified a distinct peptide, as did casein kinase II. The results lead us to suggest homology to the muscle enzyme with regard to CB-1 phosphorylation and the region recognized by FA/GSK-3, which in rabbit muscle is characterized by a high density of proline and serine residues. A striking difference with the muscle isozyme is the apparent lack of phosphorylations corresponding to the muscle sites 1a and 1b. These results provide further evidence for the presence of liver- and muscle-specific glycogen synthase isozymes in the rat. That the isozymes differ subtly as to phosphorylation sites may provide a clue to the functional differences between the isozymes.  相似文献   

7.
Rat adipocytes were incubated with [32P]phosphate to label glycogen synthase, which was rapidly immunoprecipitated from cellular extracts and cleaved using either CNBr or trypsin. All of the [32P]phosphate in synthase was recovered in two CNBr fragments, denoted CB-1 and CB-2. Isoproterenol (1 microM) rapidly decreased the synthase activity ratio (-glucose-6-P/+glucose-6-P) and stimulated the phosphorylation of both CB-1 and CB-2 by approximately 30%. Insulin opposed the decrease in activity ratio and blocked the stimulation of phosphorylation by isoproterenol. Incubating cells with insulin alone changed the 32P content of neither CB-1 nor CB-2. Trypsin fragments were separated by reverse phase liquid chromatography and divided into peak fractions, denoted F-I-F-VII in order of increasing hydrophobicity. F-V contained almost half of the [32P]phosphate and was phosphorylated when synthase was immunoprecipitated from unlabeled fat cells and incubated with [gamma-32P]ATP and the cAMP-independent protein kinase, FA/GSK-3. That F-V also had the same retention time as the skeletal muscle synthase fragment containing sites 3(a + b + c) suggests that it contains sites 3. Muscle sites 1a, 5, 1b, and 2 eluted with F-I, F-II, F-VI, and F-VII, respectively. F-V was increased approximately 25% by isoproterenol, but the largest relative increases were observed in F-I (4-fold), F-III (4-fold), and F-VI (2-fold). These results indicate that beta-adrenergic receptor activation results in increased phosphorylation of multiple sites on glycogen synthase. Insulin plus glucose decreased the overall 32P content of synthase by approximately 30%, with the largest decrease (40%) occurring in F-V. Without glucose, insulin decreased the [32P]phosphate in F-V by 17%, an effect which was balanced by increases in F-I, F-II, and F-III so that no net change in the total 32P contents of the fractions was observed. Thus, activation of glycogen synthase by the glucose transport-independent pathway seems to involve a redistribution of phosphate in the synthase subunit.  相似文献   

8.
Vanadate inactivated rat hepatocyte glycogen synthase and activated glycogen phosphorylase in a dose- and time-dependent manner. These effects were observed in hepatocytes from both fasted as well as fed rats. When rat hepatocytes were preincubated with [32P]phosphate and then with vanadate, and the 32P-labeled glycogen synthase was specifically immunoprecipitated, it was observed that vanadate stimulated the phosphorylation of the 88,000-dalton subunit of glycogen synthase. All of the phosphate was located in the same two CNBr fragments of the enzyme which are phosphorylated by glucagon and other glycogenolytic hormones. In cells incubated in a calcium-depleted medium, vanadate was still able to inactivate glycogen synthase but its effects on phosphorylase were essentially lost. These results demonstrate that, in the hepatocyte, vanadate exerts opposite effects than in the adipocyte and skeletal muscle, where vanadate has an insulin-like action.  相似文献   

9.
A protein kinase, able to phosphorylate casein, phosvitin, and glycogen synthase, was purified approximately 9000-fold from rabbit liver, and appeared analogous to an enzyme studied by Itarte and Huang (Itarte, E., and Huang, K.-P. (1979) J. Biol. Chem. 254, 4052-4057). This enzyme, designated here casein kinase-1, was shown to be a distinct glycogen synthase kinase and in particular to be different from the protein kinase GSK-3 (Hemmings, B.A., Yellowlees, D., Kernohan, J.C., and Cohen, P. (1981) Eur. J. Biochem. 119, 443-451). Casein kinase-1 had native molecular weight of 30,000 as judged by gel filtration. The enzyme phosphorylated beta-casein A or B better than kappa-casein or alpha s1-casein, and modified only serine residues in beta-casein B and phosvitin. The apparent Km for ATP was 11 microM, and GTP was ineffective as a phosphoryl donor. The phosphorylation of glycogen synthase by casein kinase-1 was inhibited by glycogen, half-maximally at 2 mg/ml, and by heparin, half-maximally at 0.5-1.0 microgram/ml, but was unaffected by Ca2+ and/or calmodulin, or by cyclic AMP. Phosphorylation of muscle glycogen synthase proceeded to a stoichiometry of at least 6 phosphates/subunit with reduction in the +/- glucose-6-P activity ratio to less than 0.4. Phosphate was introduced into both a COOH-terminal CNBr fragment (CB-2) as well as a NH2-terminal fragment (CB-1). At a phosphorylation stoichiometry of 6 phosphates/subunit, 84% of the phosphate was associated with CB-2 and 6.5% with CB-1. The remainder of the phosphate was introduced into another CNBr fragment of apparent molecular weight 16,500. Phosphorylation by casein kinase-1 correlated with reduced electrophoretic mobilities, as analyzed on polyacrylamide gels in the presence of sodium dodecyl sulfate, of the intact glycogen synthase subunit, as well as the CNBr fragments CB-1 and CB-2.  相似文献   

10.
Angiotensin II, catecholamines, and vasopressin are thought to stimulate hepatic glycogenolysis and gluconeogenesis via a cyclic AMP-independent mechanism that requires calcium ion. The present study explores the possibility that angiotensin II and vasopressin control the activity of regulatory enzymes in carbohydrate metabolism through Ca2+-dependent changes in their state of phosphorylation. Intact hepatocytes labeled with [32P]PO43- were stimulated with angiotensin II, glucagon, or vasopressin and 30 to 33 phosphorylated proteins resolved from the cytoplasmic fraction of the cell by electrophoresis in sodium dodecyl sulfate polyacrylamide slab gels. Treatment of the cells with angiotensin II or vasopressin increased the phosphorylation of 10 to 12 of these cytosolic proteins without causing measurable changes in cyclic AMP-dependent protein kinase activity. Glucagon stimulated the phosphorylation of the same set of 11 to 12 proteins through a marked increase in cyclic AMP-dependent protein kinase activity. The molecular weights of three of the protein bands whose phosphorylation was increased by these hormones correspond to the subunit molecular weights of phosphorylase (Mr = 93,000), glycogen synthase (Mr = 85,000), and pyruvate kinase (Mr = 61,000). Two of these phosphoprotein bands were positively identified as phosphorylase and pyruvate kinase by affinity chromatography and immunoprecipitation, respectively. Incubation of hepatocytes in a Ca2+-free medium completely abolished the effects of angiotensin II and vasopressin on protein phosphorylation but did not alter those of glucagon. Treatment of hepatocytes with angiotensin II, glucagon, or vasopressin stimulated phosphorylase activity by 250 to 260%, inhibited glycogen synthase activity by 50%, and inhibited pyruvate kinase activity by 30 to 35% (peptides) to 70% (glucagon). The effects of angiotensin II and vasopressin on the activity of all three enzymes were completely abolished if the cells were incubated in a Ca2+-free medium while those of glucagon were not altered. The results imply that angiotensin II, catecholamines, and vasopressin control hepatic carbohydrate metabolism through a Ca2+-requiring, cyclic AMP-independent pathway that leads to the phosphorylation of important regulatory enzymes.  相似文献   

11.
The regulation of glycogen synthase by Ca2+-mobilizing hormones was studied by using rat liver parenchymal cells in primary culture. Long-term exposure of hepatocytes to 4 beta-phorbol 12-myristate 13-acetate (TPA) resulted in a decrease in vasopressin or ATP inhibition of glycogen synthesis and glycogen synthase activity, without any change in the activation of glycogen phosphorylase. In contrast, treatment with TPA did not diminish the effects of glucagon, isoprenaline or A23187 on glycogen synthase or phosphorylase. TPA treatment for 18 h did not change specific [3H]vasopressin binding, but abolished protein kinase C activity in a concentration-dependent manner. The effects of TPA to decrease protein kinase C activity and to reverse the inactivation of glycogen synthase by vasopressin were well correlated and were mimicked by mezerein, but not by 4 alpha-phorbol. However, 1 microM-TPA totally inhibited protein kinase C activity, but reversed only 60% of the vasopressin effect on glycogen synthase. It is therefore concluded that Ca2+-mobilizing hormones inhibit glycogen synthase partly, but not wholly, through a mechanism involving protein kinase C.  相似文献   

12.
The phosphorylation state of six cytoplasmic proteins is increased following treatment of isolated rat hepatocytes with hormones that elevate free intracellular Ca2+ levels (Garrison, J. C. and Wagner, J. D. (1982) J. Biol. Chem. 257, 13135-13143). Tryptic 32P-phosphopeptide maps of two of the substrates, pyruvate kinase and a 49,000-dalton protein, the major 32P-labeled protein in hepatocytes, were prepared following stimulation of cells with vasopressin, a Ca2+-linked hormone. Peptide maps of the 49,000-dalton protein phosphorylated in vitro with the recently identified multifunctional Ca2+/calmodulin-dependent protein kinase contained phosphopeptides identical to those observed in the intact cell, suggesting that this kinase is activated in response to Ca2+-mobilizing hormones. Similar in vitro phosphorylation experiments with pyruvate kinase suggested that the Ca2+/calmodulin-dependent protein kinase can phosphorylate not only the serine residues observed following vasopressin stimulation of the intact cell but also additional threonine residues. Both pyruvate kinase and the 49,000-dalton protein are also phosphorylated in the hepatocyte in response to glucagon and in vitro by the cAMP-dependent protein kinase. Both vasopressin and glucagon appear to stimulate the phosphorylation of identical serine residues in pyruvate kinase but only vasopressin enhances the phosphorylation of certain sites in the 49,000-dalton protein. Comparison of the tryptic phosphopeptide maps of these substrates phosphorylated in vitro with either the Ca2+/calmodulin-dependent protein kinase or the cAMP-dependent protein kinase suggests that the Ca2+-dependent kinase can phosphorylate unique sites in both substrates. It appears to share specificity at other sites with the cAMP-dependent protein kinase. Overall, the results suggest that the multifunctional Ca2+/calmodulin-dependent protein kinase plays an important role in the response of the hepatocyte to a Ca2+ signal.  相似文献   

13.
Incubation of isolated rat hepatocytes with oxytocin produces a time- and dose-dependent inactivation of glycogen synthase. Such inactivation is associated with an increase in the phosphorylation state of the 88 kDa subunit of the enzyme, as observed after electrophoretic analysis of the 32P-labelled enzyme isolated by immunoprecipitation from cells incubated with [32P]phosphate. CNBr cleavage of the immunoprecipitated glycogen synthase showed that multiple sites were phosphorylated after exposure of the cells to the hormone. The effect of oxytocin on hepatocyte glycogen synthase activity was not observed in the absence of extracellular Ca2+. Inactivation of glycogen synthase by oxytocin was partially abolished in the presence of insulin. These results indicate that the effects of oxytocin on glycogen synthase from rat hepatocytes are similar to those observed for other Ca2+-mediated glycogenolytic hormones, such as vasopressin.  相似文献   

14.
Role of protein kinase C in the regulation of rat liver glycogen synthase   总被引:1,自引:0,他引:1  
Rat liver glycogen synthase was phosphorylated by purified protein kinase C in a Ca2+- and phospholipid-dependent fashion to 1-1.4 mol PO4/subunit. Analysis of the 32P-labeled tryptic peptides derived from the phosphorylated synthase by isoelectric focusing and two-dimensional peptide mapping revealed the presence of a major radioactive peptide. The sites in liver synthase phosphorylated by protein kinase C appears to be different from those phosphorylated by other kinases. Prior phosphorylation of the synthase by protein kinase C has no significant effect on the subsequent phosphorylation by glycogen synthase (casein) kinase-1 or kinase Fa, but prevents the synthase from further phosphorylation by cAMP-dependent protein kinase, Ca2+/calmodulin-dependent protein kinase, phosphorylase kinase, or casein kinase-2. Additive phosphorylation of liver glycogen synthase can be observed by the combination of protein kinase C with the former set of kinases but not with the latter. Phosphorylation of liver synthase by protein kinase C alone did not cause an inactivation nor did the combination of this kinase with glycogen synthase (casein) kinase-1 or kinase Fa produce a synergistic effect on the inactivation of the synthase. Based on these findings we conclude that the phorbol ester-induced inactivation of glycogen synthase previously observed in hepatocytes cannot be accounted for entirely by the activation of protein kinase C.  相似文献   

15.
Specific antibodies were used to purify glycogen synthase from isolated rabbit hepatocytes that had been incubated in a medium containing [32P]phosphate. The enzyme gave rise to two main 32P-labeled CNBr fragments of electrophoretic mobilities similar to those obtained after phosphorylation of the enzyme by individual protein kinases in vitro.  相似文献   

16.
The phosphorylation of glycogen synthase has been studied in freshly isolated adult rat cardiomyocytes. Six peaks of 32P-labeled tryptic peptides are recovered via C-18 high performance liquid chromatography (HPLC) when synthase is immunoprecipitated from 32P-labeled cardiomyocytes and digested with trypsin. When epinephrine treated cells are used as a source of enzyme, the same HPLC profile is obtained with a dramatic enhancement of 32P recovered in two of the HPLC peaks. In vitro phosphorylation of rat heart synthase by cAMP-dependent protein kinase stimulates the conversion of synthase from the I to the D form and results in the recovery of the same tryptic peptides from the C-18 as is the case for synthase derived from cardiomyocytes. Treatment of cAMP-dependent kinase phosphorylated synthase with protein phosphatase-1 leads to a reactivation of the enzyme and a dephosphorylation of the same tryptic peptides that are selectively phosphorylated in epinephrine treated cardiomyocytes. These results are discussed in relation to hormonal control of glycogen metabolism in cardiac tissue.  相似文献   

17.
We have investigated the effects of insulin and motor denervation on the phosphorylation of glycogen synthase in skeletal muscle. Rat epitrochlearis muscles were denervated in vivo 3 days before the contralateral and denervated muscles were incubated in vitro with 32Pi to label sites in glycogen synthase. The 32P-labeled synthase was rapidly immunoprecipitated from extracts under conditions which prevented changes in the phosphorylation state of the enzyme. When 32P-labeled synthase from contralateral muscles was cleaved with CNBr, essentially all of the 32P was recovered in two fragments, denoted CB-1 and CB-2. Incubating these muscles with insulin decreased the 32P content of each fragment by approximately 25%, indicating that the hormone stimulated dephosphorylation of at least two sites. Peptide mapping by reverse phase high performance liquid chromatography was performed to resolve phosphorylation sites more completely. The results suggest that the enzyme was phosphorylated in sites 1a, 1b, 2, 3(a+b+c), and 5. Insulin stimulated dephosphorylation of sites in peptides presumed to contain sites 1b, 2, and 3(a+b+c). Synthase from denervated muscles appeared to contain the same amount of phosphate as enzyme from contralateral muscles, and denervation did not detectably affect the distribution of 32P within the subunit. However, denervation abolished the effect of insulin on decreasing the 32P content of synthase. The results indicate that the insulin resistance induced by denervation involves a loss in the ability of insulin to stimulate dephosphorylation of glycogen synthase.  相似文献   

18.
Addition of glucagon (20 nM) to the isolated hepatocytes from 24-h starved male rats results in an inactivation of glycogen synthase. The A0.5 for glucose-6-P is increased 2-fold over the control but the S0.5 for UDP-glucose is not significantly affected. The glucagon-stimulated inactivation of glycogen synthase is also accompanied by a 60-120% increase in the phosphorylation of the synthase. Glycogen synthase labeled with 32P by incubation of the hepatocytes with [32P] PO4(3-) was recovered by immunoprecipitation and the resulting immunoprecipitate was subjected to tryptic digestion. Analysis of the 32P-labeled peptides reveals that the sites corresponding to those phosphorylated by cAMP-dependent protein kinase and glycogen synthase (casein) kinase-1 (Itarte, E., and Huang, K.-P. (1979) J. Biol. Chem. 254, 4052-4057) are rapidly phosphorylated in response to glucagon. These results demonstrate that glucagon not only triggers the activation of cAMP-dependent protein kinase through an increase in the intracellular level of cAMP but also, by an unknown mechanism, activates a Ca2+- and cAMP-independent protein kinase.  相似文献   

19.
A rapid method for purifying glycogen synthase a from rat liver was developed and the enzyme was tested as a substrate for nine different protein kinases, six of which were isolated from rat liver. The enzyme was phosphorylated on a 17-kDa CNBr fragment to approximately 1 phosphate/87-kDa subunit by phosphorylase b kinase from muscle or liver with a decrease in the activity ratio (-Glc-6-P/+Glc-6-P) from 0.95 to 0.6. Calmodulin-dependent glycogen synthase kinase from rabbit liver produced a similar phosphorylation pattern, but a smaller activity change. The catalytic subunit of beef heart cAMP-dependent protein kinase incorporated greater than 1 phosphate/subunit initially into a 17-kDa CNBr peptide and then into a 27-30-kDa CNBr peptide, with an activity ratio decrease to 0.5. Glycogen synthase kinases 3, 4, and 5 and casein kinase 1 were purified from rat liver. Glycogen synthase kinase 3 rapidly phosphorylated liver glycogen synthase to 1.5 phosphate/subunit with incorporation of phosphate into 3 CNBr peptides and a decrease in the activity ratio to 0.3. Glycogen synthase kinase 4 produced a pattern of phosphorylation and inactivation of liver synthase which was very similar to that caused by phosphorylase b kinase. Glycogen synthase kinase 5 incorporated 1 phosphate/subunit into a 24-kDa CNBr peptide, but did not alter the activity of the synthase. Casein kinase 1 phosphorylated and inactivated liver synthase with incorporation of phosphate into a 24-kDa CNBr peptide. This kinase and glycogen synthase kinase 4 were more active against muscle glycogen synthase. Calcium-phospholipid-dependent protein kinase from brain phosphorylated liver and muscle glycogen synthase on 17- and 27-kDa CNBr peptides, respectively. However, there was no change in the activity ratio of either enzyme. The following conclusions are drawn. 1) Liver glycogen synthase a is subject to multiple site phosphorylation. 2) Phosphorylation of some sites does not per se control activity of the enzyme under the assay conditions used. 3) Liver contains most, if not all, of the protein kinases active on glycogen synthase previously identified in skeletal muscle.  相似文献   

20.
Glycogen synthase I was purified from rat skeletal muscle. On sodium dodecyl sulfate polyacrylamide gel electrophoresis, the enzyme migrated as a major band with a subunit Mr of 85,000. The specific activity (24 units/mg protein), activity ratio (the activity in the absence of glucose-6-P divided by the activity in the presence of glucose-6-P X 100) (92 +/- 2) and phosphate content (0.6 mol/mol subunit) were similar to the enzyme from rabbit skeletal muscle. Phosphorylation and inactivation of rat muscle glycogen synthase by casein kinase I, casein kinase II (glycogen synthase kinase 5), glycogen synthase kinase 3 (kinase FA), glycogen synthase kinase 4, phosphorylase b kinase, and the catalytic subunit of cAMP-dependent protein kinase were similar to those reported for rabbit muscle synthase. The greatest decrease in rat muscle glycogen synthase activity was seen after phosphorylation of the synthase by casein kinase I. Phosphopeptide maps of glycogen synthase were obtained by digesting the different 32P-labeled forms of glycogen synthase by CNBr, trypsin, or chymotrypsin. The CNBr peptides were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and the tryptic and chymotryptic peptides were separated by reversed-phase HPLC. Although the rat and rabbit forms of synthase gave similar peptide maps, there were significant differences between the phosphopeptides derived from the N-terminal region of rabbit glycogen synthase and the corresponding peptides presumably derived from the N-terminal region of rat glycogen synthase. For CNBr peptides, the apparent Mr was 12,500 for rat and 12,000 for the rabbit. The tryptic peptides obtained from the two species had different retention times. A single chymotryptic peptide was produced from rat skeletal muscle glycogen synthase after phosphorylation by phosphorylase kinase whereas two peptides were obtained with the rabbit enzyme. These results indicate that the N-terminus of rabbit glycogen synthase, which contains four phosphorylatable residues (Kuret et al. (1985) Eur. J. Biochem. 151, 39-48), is different from the N-terminus of rat glycogen synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号