首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ovarian follicular development, follicle selection, and the process of ovulation remain poorly understood in most species. Throughout reproductive life, follicle fate is balanced between growth and apoptosis. These opposing forces are controlled by numerous endocrine, paracrine, and autocrine factors, including the ligands represented by the transforming growth factor beta (TGFbeta) superfamily. TGFbeta, activin, inhibin, bone morphometric protein (BMP), and growth differentiation factor 9 (GDF-9) are present in the ovary of many animals; however, no comprehensive analysis of the localization of each ligand or its receptors and intracellular signaling molecules during folliculogenesis has been done. The domestic cat is an ideal model for studying ovarian follicle dynamics due to an abundance of all follicle populations, including primordial stage, and the amount of readily available tissue following routine animal spaying. Additionally, knowledge of the factors involved in feline follicular development could make an important impact on in vitro maturation/in vitro fertilization (IVM/IVF) success for endangered feline species. Thus, the presence and position of TGFbeta superfamily members within the feline ovary have been evaluated in all stages of follicular development by immunolocalization. The cat inhibin alpha subunit protein is present in all follicle stages but increases in intensity within the mural granulosa cells in large antral follicles. The inhibin betaA and betaB subunit proteins, in addition to the activin type I (ActRIB) and activin type II receptor (ActRIIB), are produced in primordial and primary follicle granulosa cells. Additionally, inhibin betaA subunit is detected in the theca cells from secondary through large antral follicle size classes. GDF-9 is restricted to the oocyte of preantral and antral follicles, whereas the type II BMP receptor (BMP-RII) protein is predominantly localized to primordial- and primary-stage follicles. TGFbeta1, 2, and 3 ligand immunoreactivity is observed in both small and large follicles, whereas the TGFbeta type II receptor (TGFbeta RII) is detected in the oocyte and granulosa cells of antral follicles. The intracellular signaling proteins Smad2 and Smad4 are present in the granulosa cell cytoplasm of all follicle size classes. Smad3 is detected in the granulosa cell nucleus, the oocyte, and the theca cell nucleus of all follicle size classes. These data suggest that the complete activin signal transduction pathway is present in small follicles and that large follicles primarily produce the inhibins. Our data also suggest that TGFbeta ligands and receptors are colocalized to large antral follicles. Taken together, the ligands, receptors, and signaling proteins for the TGFbeta superfamily are present at distinct points throughout feline folliculogenesis, suggesting discrete roles for each of these ligands during follicle maturation.  相似文献   

2.
We recently demonstrated that the reduction in the number of primordial follicles in ovaries of near-term baboon fetuses deprived of estrogen in utero was associated with increased expression of alpha-inhibin, but not activin betaA and betaB or the activin receptors. Therefore, we proposed that estrogen regulates fetal ovarian follicular development by controlling the intraovarian inhibin:activin ratio. As a prelude to conducting experiments to test this hypothesis, in the current study we determined whether the primate fetal ovary expressed Smads 2/3 and 4 and whether expression of these activin-signaling proteins was altered in fetal ovaries of baboons in which estrogen production was suppressed. Western blot analyses demonstrated that the 59 kDa Smad 2, 54 kDa Smad 3, and 64 kDa Smad 4 proteins were expressed in fetal ovaries of untreated baboons at both mid and late gestation and that the level of expression was not significantly altered in late gestation by in vivo treatment with CGS 20267 or CGS 20267 and estrogen. Immunocytochemistry localized Smads 2/3 and 4 to cytoplasm of oocytes and pregranulosa cells at midgestation and oocytes and granulosa cells of primordial follicles in late gestation. Smad 4 was also detected in granulosa cell nuclei in late gestation, and nuclear expression appeared to be decreased in fetal ovaries of baboons deprived of estrogen. The site of localization of Smads correlated with localization of the activin receptors IA and IIB, which we previously showed were abundantly expressed in oocytes and (pre)granulosa cells at both mid and late gestation and unaltered by estrogen deprivation. In summary, the results of the current study are the first to show that the intracellular signaling molecules required to transduce an activin signal are expressed in the baboon fetal ovary and that expression was not altered by estrogen deprivation in utero. These findings, coupled with our previous observations showing that estrogen deprivation reduced follicle numbers and upregulated/induced expression of inhibin but not activin or the activin receptors, lend further support to the hypothesis that estrogen regulates fetal ovarian folliculogenesis by controlling the intraovarian activin:inhibin ratio.  相似文献   

3.
Stage-specific expression of Smad2 and Smad3 during folliculogenesis   总被引:10,自引:0,他引:10  
Paracrine and autocrine growth factors can affect many different aspects of ovarian follicle development. Many members of the transforming growth factor beta (TGFbeta) family of growth factors and their receptors are expressed in developing follicles. However, the presence and function of the family of the TGFbeta signaling molecules known as Smads have not been evaluated during follicle development. We have demonstrated that two Smad family members that function as mediators for both activin and TGFbeta are expressed in granulosa cells of preantral follicles but not in large antral follicles. Smad2 expression, but not Smad3 expression, returns in luteal cells. Both Smad2 and Smad3 are translocated to the nucleus of granulosa cells in response to treatment with either TGFbeta or activin. However, Smad2 is more responsive to activin stimulation, and Smad3 is more responsive to TGFbeta stimulation. Stage-specific expression and differing ligand sensitivity of signaling molecules may work together to allow different effects of TGFbeta family ligands using the same signaling pathways over the course of follicular development.  相似文献   

4.
Granulosa cells produce inhibin and activin, proteins implicated in the local regulation of preovulatory follicular development. To assess interactions among FSH, LH, inhibin and activin on primate granulosa cell aromatase activity, we studied primary granulosa cell cultures from the ovaries of the common marmoset (Callithrix jacchus), a monkey with an ovarian cycle similar in length to the human cycle. The distinctive action of activin was augmentation of gonadotropin-responsive aromatase activity throughout antral follicular development. FSH-stimulated aromatase activity in granulosa cells from immature follicles was augmented many fold by picomolar amounts of activin. In cell cultures from preovulatory follicles, the presence of activin stimulated basal aromatase activity in the absence of gonadotropin, as well as augmenting the action of LH. Thus, locally produced activin has the potential to modulate aromatase activity in developing ovarian follicles. By contrast, inhibin or inhibin -subunit purified from bovine follicular fluid had minimal effects on aromatase activity. The only significant effect was slight suppression of FSH-inducible aromatase activity in granulosa cells from immature follicles at an inhibin concentration of 100 ng/ml. The finding that inhibin has a negligible effect on aromatase activity in granulosa cells from mature follicles suggests that it is unlikely to exert a physiologically significant influence on aromatase activity in vivo. However, evidence from other studies suggests that inhibin might affect aromatization indirectly through acting locally to modulate thecal androgen (aromatase substrate) production. Therefore, both inhibin and activin have the potential to contribute at different levels to paracrine and autocrine regulation of follicular oestrogen synthesis.  相似文献   

5.
Localization of inhibin/activin subunit mRNAs within the primate ovary   总被引:6,自引:0,他引:6  
In order to gain further understanding of the physiology of inhibin and activin in the primate, the expression of inhibin/activin subunit mRNAs in the monkey ovary was examined by in situ hybridization. Granulosa cells of small antral follicles were found to express mRNA for the beta B subunit, which decreased to undetectable levels in dominant follicles. In contrast, expression of alpha and beta A subunit mRNAs was detected in granulosa cells of dominant follicles and in corpora lutea, but not in small antral follicles. These results indicate that the expression of the beta A and beta B subunits is differentially regulated during the growth and development of ovarian follicles in the monkey.  相似文献   

6.
7.
In situ hybridization was used on frozen tissue sections with digoxigenin-labelled antisense riboprobes to inhibin/activin alpha and beta(A) subunits to determine whether inhibin/activin subunit mRNA expression was associated with development of growing, steroidogenically active follicles during follicle recruitment after ovulation. Cell proliferation-associated nuclear antigen Ki-67 protein and cytochrome P450 aromatase expression in granulosa cells were determined immunohistochemically and used as markers for granulosa cell proliferation and steroidogenesis, respectively, on days 3, 5 and 7 after the onset of oestrus. The amounts of inhibin/activin alpha and beta(A) subunit mRNA and P450 aromatase protein were greater (102, 93, and 238%, respectively; P < 0.05) in medium than in small non-atretic follicles and were positively correlated with Ki-67 and with each other. Inhibin/activin alpha and beta(A) mRNA, P450 aromatase, and Ki-67 in granulosa cells were reduced by 66-83% (P < 0.001) in atretic follicles compared with non-atretic follicles. In addition, inhibin/activin alpha and beta(A) mRNA and P450 aromatase in small (1-2 mm) non-atretic follicles decreased (P < 0.05) between day 3 and day 7 independently of morphological or biochemical signs of atresia. The pattern of inhibin/activin subunit mRNA expression supports the notion that activin and inhibin have roles in growth and steroidogenesis in follicle recruitment during the early luteal phase of the oestrous cycle.  相似文献   

8.
The aim of this study was to locate a possible activin/activin receptor system within porcine ovaries containing functional corpora lutea. In situ hybridization was used to assess the gene expression of beta(A)- and beta(B)-activin subunits, and immunohistochemical studies were done to detect activin-A protein and activin receptor type II. mRNA expression of the beta(A)- and beta(B)-activin subunits was found in the granulosa from the unilaminar follicle stage onward, in the developing thecal layer of multilaminar and small antral follicles, in the theca interna of mid-sized antral follicles, in corpora lutea, and in the ovarian surface epithelium. Immunoreactive activin A protein could be detected at the same ovarian sites, but in thecal tissue of small antral follicles only. This protein was also demonstrated at the peripheral zone of oocytes from multilaminar and antral follicles. A positive immunoreaction for activin receptor was found in granulosa cells from multilaminar and older follicles and in oocytes from the earliest stages of follicular development onward. In late multilaminar follicles and in antral follicles, the oolemma was stained. Except for small antral follicles, a positive activin receptor immunoreaction was absent in the follicular theca. Activin receptor immunoreaction was furthermore present in corpora lutea and in the ovarian surface epithelium. It is concluded that, within porcine ovaries containing functional corpora lutea, an activin/activin receptor system is present in all intact follicles, the corpora lutea and the surface epithelium. Within follicles, granulosa and theca cells are the main sites of activin synthesis, while oocytes and granulosa cells are the main activin binding sites.  相似文献   

9.
The aims of this study were to develop a sensitive and specific assay for bovine inhibin A using europium and to investigate the endocrine role of inhibin A in various reproductive conditions by characterizing the relationship between profiles of inhibin A, FSH, and estradiol and follicle growth during the postpartum period, during the intact estrous cycle, and in cows with follicular cysts. The time-resolved immunofluorometric assay (Tr-IFMA) for bovine inhibin A, using purified polyclonal antibodies to alpha and beta(A) subunits, was specific for bovine inhibin A and did not cross-react with bovine activin A, activin AB, activin B, pro-alphaC or human recombinant inhibin B. The detection limit of the IFMA was 3.3 pg/ml expressed in terms of bovine 32-kDa inhibin A. Dose-response curves of plasma samples obtained from intact and FSH-stimulated cows and cystic cows were parallel to the standard without any preassay processing of samples. Plasma inhibin A levels increased (P < 0.01) concomitant with emergence of nonovulatory or ovulatory follicular waves during the postpartum period. In cystic cows, plasma inhibin A was sustained at high levels for a longer period, associated with growth of persistent dominant follicles. The highest levels of inhibin A were noted during the growth phase of normal and persistent dominant follicles; however, inhibin A levels declined (P < 0.01) as these dominant follicles ceased to grow or ovulated. An inverse relationship between patterns of plasma inhibin A and FSH existed during each follicular wave in the three physiologic conditions. Increases in plasma inhibin A levels were associated with increases in plasma estradiol levels during most follicular waves; however, there was no increase in plasma estradiol level and no relationship between patterns of estradiol and FSH during follicular waves observed during the early postpartum period or midluteal phase of the estrous cycle. In conclusion, the Tr-IFMA does not require pretreatment of samples and can be used for precise measurement of bovine inhibin A without interference with free inhibin alpha subunits. Inhibin A, produced primarily during growth of the dominant follicle, functions as a negative feedback regulator for FSH secretion throughout the postpartum period and the estrous cycle, whereas estradiol appears to have a minor role in regulation of FSH compared with inhibin A, especially during the early postpartum period and midluteal phase of the estrous cycle. The results also indicate that a persistent dominant follicle sustains inhibin A production for a longer period than the dominant follicle emerging in the estrous cycle and establishes long-term dominance by suppressing emergence of a new follicular wave.  相似文献   

10.
It was hypothesized that growth divergence of dominant and subordinate follicles during Wave 1 and growth termination of the dominant follicle would be associated with changes in the number of gonadotropin receptors on granulosa cells and estradiol in follicular fluid. To test this hypothesis, follicular development of 16 Holstein heifers was monitored by ultrasound, and follicles were collected on Days 2,4,6 and 10 (Day 0 = ovulation). Dominant follicles were compared across days, whereas dominant and largest subordinate follicles were compared on Days 2 and 4 only. The numbers of LH and FSH receptors on the granulosa cells of dominant follicles did not differ significantly over Days 2, 4, 6 and 10. In contrast, concentrations of estradiol in follicular fluid decreased (P < 0.05) from Days 2 to 10 (373 +/- 150 to 42 +/- 12 ng/ml) and concentrations of progesterone in follicular fluid increased (P < 0.05) from Days 2 to 10 (12.2 +/- 2.3 to 24.4 +/- 4.8 ng/ml). Correspondingly, the ratio of estradiol:progesterone in the dominant follicles decreased (P < 0.05) from Days 2 to 10. Comparisons between dominant and subordinate follicles indicated greater (P < 0.05) estradiol concentrations in the dominant follicle on Day 2, but the number of gonadotropin receptors was not different until Day 4. Thus, differences in concentrations of follicular fluid estradiol, but not numbers of granulosa cell gonadotropin receptors, were associated with the early growth divergence of dominant and subordinate follicles (Day 2) and the eventual growth termination of the dominant follicle (Day 10). Late divergence (Day 4) was associated with higher gonadotropin receptor numbers and follicular estradiol concentrations in the dominant than in the subordinate follicles. These results indicate that an increase in estradiol productivity of the selected dominant follicle occurred before an increase in the number of gonadotropin receptors.  相似文献   

11.
It is well documented that incidence of fertility problems is high in lactating cows but not in heifers of the same genetic merit. Understanding the metabolic and molecular differences between fertile heifers and relatively infertile lactating cows will help us understand the pathogenesis of infertility in dairy cows. Follicular waves in lactating cows (30–50 days in milk; n = 12) and heifers (n = 10) were synchronized by ultrasound-guided follicle ablation. Follicular fluid and granulosa cells of the dominant follicle were collected by ultrasound-guided aspiration along with blood sampling on Day 6 after synchronization. Dominant and subordinate follicles were larger in lactating cows than in heifers. Metabolic stress in lactating cows was evidenced by lower glucose and higher ß-hydroxy butyric acid compared with heifers. Insulin-like growth factor 1 signaling was reduced in the dominant follicle in lactating cows through reduced insulin-like growth factor 1 concentrations in plasma and follicular fluid of the dominant follicle, and reduced expression of pregnancy-associated plasma protein A (PAPPA) in their granulosa cells. We also found increased levels of total bile acids in the follicular fluid of the dominant follicle of lactating cows compared with heifers. Granulosa cells of the dominant follicle had higher expression of SLC10A2 and GPBAR1 (bile acid transporter and receptor, respectively) in lactating cows. These novel data are indicative of increased bile acid signaling within the dominant follicles of lactating cows compared with heifers. Overall, we demonstrate in the present study the metabolic, endocrine, and molecular differences within the microenvironment of the dominant follicles in lactating cows and heifers. These differences in follicular microenvironment may contribute toward abnormal ovarian function in lactating dairy cows.  相似文献   

12.
Ovarian follicle development is a process regulated by various endocrine, paracrine and autocrine factors that act coordinately to promote follicle growth. However, the vast majority of follicles does not reach the pre-ovulatory stage but instead, undergo atresia by apoptosis. We have recently described a role for the somatic hyaluronidases (Hyal-1, Hyal-2, and Hyal-3) in ovarian follicular atresia and induction of granulosa cell apoptosis. Herein, we show that Hyal-1 but not Hyal-3 null mice have decreased apoptotic granulosa cells after the induction of atresia and an increased number of retrieved oocytes after stimulation of ovulation. Furthermore, young Hyal-1 null mice had a significantly higher number of primordial follicles than age matched wild-type animals. Recruitment of these follicles at puberty resulted in an increased number of primary and healthy preantral follicles in Hyal-1 null mice. Consequently, older Hyal-1 deficient female mice have prolonged fertility. At the molecular level, immature Hyal-1 null mice have decreased mRNA expression of follistatin and higher levels of phospho-Smad3 protein, resulting in increased levels of phospho-Akt in pubertal mice. Hyal-1 null ovarian follicles did not exhibit hyaluronan accumulation. For Hyal-3 null mice, compensation by Hyal-1 or Hyal-2 might be related to the lack of an ovarian phenotype. In conclusion, our results demonstrate that Hyal-1 plays a key role in the early phases of folliculogenesis by negatively regulating ovarian follicle growth and survival. Our findings add Hyal-1 as an ovarian regulator factor for follicle development, showing for the first time an interrelationship between this enzyme and the follistatin/activin/Smad3 pathway.  相似文献   

13.
Members of the transforming growth factor-beta (TGF-beta) superfamily have wide-ranging influences on many tissue and organ systems including the ovary. Two recently discovered TGF-beta superfamily members, growth/differentiation factor-9 (GDF-9) and bone morphogenetic protein-15 (BMP-15; also designated as GDF-9B) are expressed in an oocyte-specific manner from a very early stage and play a key role in promoting follicle growth beyond the primary stage. Follicle growth to the small antral stage does not require gonadotrophins but appears to be driven by local autocrine/paracrine signals from both somatic cell types (granulosa and theca) and from the oocyte. TGF-beta superfamily members expressed by follicular cells and implicated in this phase of follicle development include TGF-beta, activin, GDF-9/9B and several BMPs. Acquisition of follicle-stimulating hormone (FSH) responsiveness is a pre-requisite for growth beyond the small antral stage and evidence indicates an autocrine role for granulosa-derived activin in promoting granulosa cell proliferation, FSH receptor expression and aromatase activity. Indeed, some of the effects of FSH on granulosa cells may be mediated by endogenous activin. At the same time, activin may act on theca cells to attenuate luteinizing hormone (LH)-dependent androgen production in small to medium-size antral follicles. Dominant follicle selection appears to depend on differential FSH sensitivity amongst a growing cohort of small antral follicles. Activin may contribute to this selection process by sensitizing those follicles with the highest "activin tone" to FSH. Production of inhibin, like oestradiol, increases in selected dominant follicles, in an FSH- and insulin-like growth factor-dependent manner and may exert a paracrine action on theca cells to upregulate LH-induced secretion of androgen, an essential requirement for further oestradiol secretion by the pre-ovulatory follicle. Like activin, BMP-4 and -7 (mostly from theca), and BMP-6 (mostly from oocyte), can enhance oestradiol and inhibin secretion by bovine granulosa cells while suppressing progesterone secretion; this suggests a functional role in delaying follicle luteinization and/or atresia. Follistatin, on the other hand, may favor luteinization and/or atresia by bio-neutralizing intrafollicular activin and BMPs. Activin receptors are expressed by the oocyte and activin may have a further intrafollicular role in the terminal stages of follicle differentiation to promote oocyte maturation and developmental competence. In a reciprocal manner, oocyte-derived GDF-9/9B may act on the surrounding cumulus granulosa cells to attenuate oestradiol output and promote progesterone and hyaluronic acid production, mucification and cumulus expansion.  相似文献   

14.
15.
Generally, unilateral ovariectomy before a critical period in the latter part of the estrous cycle induces a transitory increase in plasma FSH, which causes subordinate follicles to develop and maintain ovulation rates characteristic of the species. A limiting period for subordinate follicles to assume dominance and from which ovulation occurs has not been shown for cattle. Growth and/or regression of subordinate follicles were characterized following removal of the dominant follicle at different days of the luteal phase of the estrous cycle in cattle in this study. In the mid-luteal phase (Day 13 or 15), the ovary with the dominant follicle of the second wave was ablated via unilateral ovariectomy; the corpus luteum also was removed. In the late luteal phase (Day 17 or 19), the dominant follicle was ablated with an ultrasonically guided 20 gauge needle. When the dominant follicle was removed on Day 13, the largest subordinate follicle of the second wave of follicular development became dominant and ovulation occurred from this follicle in 4 of 4 animals. However, when the dominant follicle was removed on Day 15, 17 or 19, a new wave of follicular development was induced in 14 of 15 animals. Moreover, the recovered subordinate follicle of the second wave of follicular development had similar growth characteristics to naturally occurring dominant follicles. In conclusion, the subordinate follicle in the second follicular wave in cattle retained the ability to become dominant, but this ability was lost by Day 15 of the estrous cycle. However, cattle then were able to maintain ovulation by developing a new wave of follicular growth.  相似文献   

16.
Betaglycan was originally characterized as the type III receptor for TGFbeta, yet recent research has indicated that betaglycan can serve as an accessory receptor for inhibin. To understand better the action of inhibin in avian follicular development, we have investigated the expression of betaglycan in the pituitary gland and ovary of the hen. In experiments 1 and 2, betaglycan mRNA was detected at 6 kilobases (kb) by Northern blot analysis (n = 5) in chicken pituitary, granulosa, and theca layers and whole ovary. Expression of betaglycan was greatest in the pituitary gland in experiment 1 and greater in the granulosa layer of small yellow follicles (SYF) compared with the granulosa layer of larger follicles. In experiment 2, betaglycan mRNA was more abundantly expressed in the theca layer compared with the granulosa layer for all follicle sizes, although there was no significant difference in betaglycan expression in the theca layer among follicle sizes. In experiment 3, immunohistochemical analysis revealed betaglycan protein in the anterior pituitary as well as in the ovary (n = 4) and SYF (n = 4). Colocalization studies revealed a high abundance of cells within the anterior pituitary expressing both betaglycan and FSH (n = 4). Betaglycan protein was found in the granulosa layer; however, markedly enhanced staining was observed in the theca layer of ovarian follicles. Our results provide evidence for expression of betaglycan mRNA and protein colocalization with FSH in the anterior pituitary, consistent with known inhibin effects. Ovarian localization of betaglycan, particularly in the theca layer, suggests a paracrine role for inhibin in the hen.  相似文献   

17.
A critical transition in ovarian follicular development is the selection of a dominant follicle, capable of ovulating, from a cohort of synchronously growing antral follicles. However, little is known about mechanisms and factors that regulate the selection and growth of dominant ovarian follicles. We have investigated whether a component of the insulin-like growth factor (IGF) system, namely IGFBP-4 protease, is associated with the establishment of follicular dominance in cattle. IGFBP proteases degrade IGFBPs, freeing IGFs to interact with their receptors. In experiment 1, follicular fluid from preovulatory follicles (n = 4) degraded about 80% of the added recombinant human (rh) IGFBP-4 within 18 h of incubation. The IGFBP-4 protease exhibited optimal activity at neutral/basic pH and its sensitivity to various protease inhibitors suggested a metalloprotease. The decline in the intensity of the band corresponding to intact rhIGFBP-4 was accompanied by the appearance of immunoreactive fragments of molecular weights approximately 18 and 14 kDa, which were not detectable by ligand blot analysis. In experiment 2, follicular fluid samples were collected from dominant and subordinate follicles on Day 2 or 3 of the first follicular wave, after ovariectomy (experiment 2a, n = 3/day) or by ultrasound-guided follicular aspiration (experiment 2b, n = 4-5/day). Estradiol concentrations in follicular fluid from dominant vs. subordinate follicles confirmed their identities and indicated that the dominant follicle had been selected by Day 2 of the follicular wave. In both experiments 2a and 2b, IGFBP-4 proteolytic activity was 2- to 3.5-fold (P < 0.05) and 5-fold (P < 0.01) higher in follicular fluid from dominant than subordinate follicles on Days 2 and 3 of the follicular wave, respectively. The finding that IGFBP-4 proteolytic activity is higher in dominant, estrogen-active follicles than in subordinate follicles of the same cohort, as early as Day 2 of the follicular wave, strongly suggests a role for IGFBP-4 protease in the establishment of ovarian follicular dominance.  相似文献   

18.
19.
In order to better understand the pituitary regulation of follicular growth in the domestic cat, follicle stimulating hormone (FSH) and luteinizing hormone (LH) receptors (R) were localized and quantified in relation to follicle diameter and atresia using in situ ligand binding on ovarian sections. Expression of FSHR was homogeneous and restricted to follicle granulosa cells from the early antral stage onwards, whereas expression of LHR was heterogeneous on theca cells of all follicles from the early antral stage onward, and homogeneous on granulosa cells of healthy follicles larger than 800 microm in diameter and in corpora lutea. LHR were also widely expressed as heterogeneous aggregates in the ovarian interstitial tissue. Atretic follicles exhibited significantly reduced levels of both FSHR and LHR on granulosa cells, compared with healthy follicles whatever the follicular diameter, whereas levels of LHR on theca cells were lower only for atretic follicles larger than 1,600 microm in diameter. In healthy follicles, levels of FSHR and LHR in all follicular compartments increased significantly with diameter. Although generally comparable to that observed in other mammals, the expression pattern of gonadotropin receptors in the cat ovary is characterized by an early acquisition of LHR on granulosa cells of growing follicles and islets of LH binding sites in the ovarian interstitial tissue.  相似文献   

20.
To investigate the interrelationship of inhibin alpha and growth differentiation factor 9 (GDF9) during early folliculogenesis, we generated mice lacking both inhibin alpha and GDF9. Our findings on these Inha Gdf9 double-mutant mice are as follows: 1). females develop ovarian tumors and a cachexia-like wasting syndrome, resembling mice lacking inhibin alpha alone. This indicates that the granulosa cells are competent to proliferate despite the lack of GDF9; 2). follicular development progresses to multiple-layer follicle stages before tumorigenesis. This demonstrates that the up-regulation of inhibin alpha in the Gdf9 knockout ovary directly prevents the proliferation of the granulosa cells at the primary follicle stage, an effect that is released in the absence of inhibin alpha; 3). a morphological theca forms around the preantral follicles with no detectable selective theca markers [i.e. 17alpha-hydroxylase (Cyp17), LH receptor (Lhr), and Kit]. These results indicate that the theca recruitment can occur independently of GDF9, but the differentiation of thecal cells is blocked; and 4). inhibin/activin subunits betaA, betaB, and Kit ligand (Kitl) mRNA are highly up-regulated, suggesting that the increased activins and KITL play functional roles in early folliculogenesis. Thus, GDF9 appears to function indirectly to regulate early granulosa cell proliferation and theca recruitment in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号