首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From incubations of testosterone with rat testicular homogenates in the presence of a NADPH-generating system, the following 7α-hydroxylated metabolites could be isolated and identified: 7α,17β-dihydroxy-4-androsten-3-one (7α-hydroxy-testosterone), 7α-17β-dihydroxy-5α-androstan-3-one (7α-hydroxy-Dht), 5α-androstan-3α,7α,17β-triol (7α-hydroxy-3α-A'DIOL) and 5α-androstane-3β,7α,l7β-triol (7α-hydroxy-3β-A'DIOL). To our knowledge this is the first demonstration of the formation of 5α-reduced-7α-hydroxylated metabolites of testosterone in the male gonad. These 5α-reduced-7α-hydroxylated metabolites could also be isolated after incubations of 5α-androstane-3α,17β-diol (3α-A'D10L) with testicular homogenates in the presence of a NADPH-generating system.Measured as the sum of 7α-hydroxy-testosterone, 7α-hydroxy-Dht. 7α-hydroxy-3α-A'DIOL and 7α-hydroxy-3β-A'DIOL formed using testosterone as substrate, total 7α-hydroxylase activity was six times higher in testes of mature rats than in testes from animals 23 days old. With 3α-A'DIOL as substrate total 7α-hydroxylase in the mature testis was about three times greater than in the sexually immature testis.  相似文献   

2.
Both the 5α, 6α- and 5β, 6β-dichloromethylene adducts (2a and 2b) of 3β-acetoxy-5-androsten-17-one (1) are produced when the latter is exposed to dichlorocarbene generated from chloroform and base by Phase Transfer Catalysis using ultrasound as a means of agitation. The 1H NMR substituent effects of 5α, 6α- and 5β, 6β-dichloromethylene on the angular methyl groups (Zürcher values) are given. The 13C NMR spectra for both compounds are presented and discussed.  相似文献   

3.
A short and efficient method for the stereospecific synthesis of 3α,7α-dihydroxy-5β-androstan-17-one was accomplished from the readily available 4-androstene-3,17-dione. Key steps are the stereospecific and selective epoxidation of 4,6-androstadiene-3,17-dione, followed by hydrogenations with carefully selected reagents, solvents and reaction conditions.  相似文献   

4.
This study has identified the polar metabolites of 5α-androstane-3β, 17β-diol(3β-diol) produced by the canine prostate. The major metabolite is 5α-androstane-3β, 7α, 17β-triol (7α-triol) accounting for approximately 80% of the total polar metabolites of 3β-diol. The remaining 20% is accounted for exclusively by another triol, 5α-androstane-3β, 6α, 17β-triol(6α-triol). This study has also characterized two enzymatic hydroxylases responsible for respective triol formation: 5α-androstane-3β, 17β-diol 6α-hydroxylase (6α-hydroxylase) and 5α-androstane-3β, 17β-diol 7α-hydroxylase (7α-hydroxylase). Both of these irreversible hydroxylases are located in the particulate fraction of the prostate and can utilize either NADH or NADPH as cofactor. Several in vitro steroid inhibitors of these hydroxylases were identified including cholesterol, estradiol and diethylstilbestrol. Neither of the hydroxylases were found to be decreased by castration (3 months) when expressed as activity/DNA. Using a variety of C19 androstane substrates, 6α- and 7α-triol were found to be major components of the total 3β-hydroxy-5α-androstane metabolites produced by the canine prostate.  相似文献   

5.
A single thin layer chromatography and three antibodies were used for the specific radioimmunoassay of four androgens in pooled rat plasma (Sprague-Dawley adult males). The following values were found (pg/ml ± SD). Testosterone : 3, 138 ± 173; dihydrotestosterone : 374 ± 20; 5α-androstane-3α 17β-diol : 284 ± 24; 5α-androstane-3β, 17β-diol : 223 ± 11.  相似文献   

6.
17β-Nandrolone (17β-NT) is one of the most frequently misused anabolic steroids in meat producing animals. As a result of its extensive metabolism combined with the possibility of interferences with other endogenous compounds, detection of its illegal use often turns out to be a difficult issue. In recent years, proving the illegal administration of 17β-NT became even more challenging since the presence of endogenous presence of 17β-NT or some of its metabolite in different species was demonstrated. In bovines, 17α-NT can occur naturally in the urine of pregnant cows and recent findings reported that both forms can be detected in injured animals. Because efficient control must both take into account metabolic patterns and associated kinetics of elimination, the purpose of the present study was to investigate further some estranediols (5α-estrane-3β,17β-diol (abb), 5β-estrane-3α,17β-diol (bab), 5α-estrane-3β,17α-diol (aba), 5α-estrane-3α,17β-diol (aab) and 5β-estrane-3α,17α-diol (baa)) as particular metabolites of 17β-NT on a large number of injured (n=65) or pregnant (n=40) bovines. Whereas the metabolites abb, bab, aba and baa have previously been detected in urine up to several days after 17β-NT administration, the present study showed that some of the isomers abb (5α-estrane-3β,17β-diol) and bab (5β-estrane-3α,17β-diol) could not be detected in injured or pregnant animals, even at very low levels. This result may open a new way for the screening of anabolic steroid administration considering these 2 estranediols as biomarkers to indicate nandrolone abuse in cattle.  相似文献   

7.
The neutral urinary excretion products of 17β-hydroxy-2α,3α-cyclopropano-5α-androstane from the rabbit, dosed orally, were investigated. Column chromatography yielded five crystalline metabolites which were identified by GLC and spectroscopic measurements. Three of these substances were hydroxylated in the 4α-position and one in the 6a-position with the cyclopropane ring intact. The fifth substance, 17β-hydroxy-3β-methyl-5α-androstan-2-one, can be derived from initial hydroxylation of the cyclopropane ring at C-2 followed by ring opening. The dosed substance and triol material was shown to be present by GLC and m.s. measurements. GLC determinations show that hydroxylation has occurred at C-4?C-6>C-2.  相似文献   

8.
The syntheses of 15β-carboxyethylmercapto-5α-dihydrotestosterone, 15β-carboxy-ethylmercapto-5α-androstane-3β, 17β-diol and 15β-carboxyethylmercapto-5α-androstane-3α, 17β-diol and the preparation of their bovine serum albumin (BSA) conjugates are described. These conjugates were employed for the generation of specific antisera suitable for radioimmunoassay (RIA) of 5α-dihydrotestosterone (5α-DHT), 5α-androstane-3β, 17β-diol (3β3-diol) and 5α-androstane-3α, 17β-diol (3α-diol).  相似文献   

9.
HE3286, 17α-ethynyl-5-androstene-3β, 7β, 17β-triol, is a novel synthetic compound related to the endogenous sterol 5-androstene-3β, 7β, 17β-triol (β-AET), a metabolite of the abundant adrenal steroid dehydroepiandrosterone (DHEA). HE3286 has shown efficacy in clinical studies in impaired glucose tolerance and type 2 diabetes, and in vivo models of types 1 and 2 diabetes, autoimmunity, and inflammation. Proteomic analysis of solid-phase HE3286-bound bead affinity experiments, using extracts from RAW 264.7 mouse macrophage cells, identified 26 binding partners. Network analysis revealed associations of these HE3286 target proteins with nodes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for type 2 diabetes, insulin, adipokine, and adipocyte signaling. Binding partners included low density lipoprotein receptor-related protein (Lrp1), an endocytic receptor; mitogen activated protein kinases 1 and 3 (Mapk1, Mapk3), protein kinases involved in inflammation signaling pathways; ribosomal protein S6 kinase alpha-3 (Rsp6ka3), an intracellular regulatory protein; sirtuin-2 (Sirt2); and 17β-hydroxysteroid dehydrogenase 1 (Hsd17β4), a sterol metabolizing enzyme.  相似文献   

10.
11.
The metabolic fate of the bile add analogs, 3α,7α-dihydroxy-7β-methyl-5β-cholanoic acid and 3α,7β-dihydroxy-7α-methyl-5β-cholanoic acid, was investigated and compared with that of chenodeoxycholic acid in hamsters. Both bile acid analogs were absorbed rapidly from the intestine and excreted into bile at similar to that of chenodeoxycholic acid. In the strain of hamster studied, the biliary bile were conjugated with both glycine and taurine. After continuous intravenous infusion, chenodeoxycholic acid the analogs became the major bile acid constituents in bile. After oral administration of a single dose of these compounds, fecal analysis revealed the existence of unchanged material (25–35%) as well as considerable amounts of metabolites (65–75%). The major metabolites excreted into feces were more polar than the starting material and were tentatively identified as trifaydroxy-7-methyl compounds by radioactive thin-layer chromatography. However, monohydroxy compounds were also found in the fecal extracts. These results show that chenodeoxycholic acid and ursodeoxycholic acid with a methyl group at the 7-position are resistant to bacterial 7-dehydroxylation than the normally occurring bile acids and that a certain proportion of these analogs is hydroxylated to give the corespondiag trihydroxy compound(s), In a control experiment, about 5% of administered chenodeoxychoulic acid was metabolized to a trihydroxy feile acid, but most of the compound (95%) was transformed into lithocholic acid.  相似文献   

12.
Five alpha-androstane-3α,17β-diol (3α-diol) an active metabolite of testosterone (T) was measured in the spermatic and peripheral venous blood of 6 normal males using mass-fragmentography. Using this method 3α-diol was clearly separated from the following isomers: 5α-androstane-3β,17β-diol, 5β-androstane-3α,17β-diol and 5β-androstane-3β,17β-diol. The mean concentrations (±SE) of 3α-diol in spermatic and peripheral venous blood were respectively 100 ± 38 ng/100 ml and 7.7 ± 1.9 ng/100 ml. The existence of a significant (P < 0.01) gradient between spermatic and peripheral vein clearly demonstrates that the human testis secretes 3α-diol.  相似文献   

13.
The synthesis of labeled and non-labeled 3β,15α-dihydroxy-5-pregnen-20-one (V) and 3β, 15α-dihydroxy-5-androsten-17-one (XI) is described. Treatment of 15α-hydroxy-4-pregnene-3,20-dione (I) with acetic anhydride and acetyl chloride gave 3,15α-diacetoxy-3,5-pregnadien-20-one (II). The enol acetate (II) was ketalized by a modification of the general procedure to yield 3,15α-diacetoxy-3,5-pregnadien-20-one cyclic ethylene ketal (III) which was then reduced with NaBH4 and LiAlH4 to give 3β, 15α-dihydroxy-5-pregnen-20-one cyclic ethylene ketal (IV). Cleavage of the ketal group of IV gave V. Similarly, XI was prepared by starting with 15α-hydroxy-4-androstene-3,17-dione (VII). The (4-14C)-3β,15α-dihydroxy-5-pregnen-20-one was prepared by a modification of the above procedure in that the enol acetate (II)was directly reduced with NaBH4 and LiAlH4 to yield 5-pregnene-3β,15α,20β-triol (XIII) which was then oxidized enzymatically with 20β-hydroxysteroid dehydrogenase to V.  相似文献   

14.
Serum level of LH and levels of LH-RH in the arcuate nucleus and in the median eminence of hypothalamus were measured by radioimmunoassay in castrated male rats 1, 3, 6, 12, 24 h after single administration of 25 μg/100 g b.w. testosterone, 5α-androstane-3α,17β-diol (3α-diol) or 5α-androstane-3β, 17β-diol (3β-diol).The levels were then measured 6 h after single administration of 3α-diol and 3β-diol in different doses: 5 μg; 25 μg; 100 μg; 250 μg; 2500 μg/100 g b.w.The results suggest basic differences between the influence of testosterone and of its 5α-reduced metabolites upon the hypothalamo-pituitary system as to speed and strength of effect. Both 3α-diol and 3β-diol are active in the negative feedback between the gonads and the hypothalamo-pituitary system, but their effect depends on the dose. 3β-Diol is active in the low doses we have studied as opposed to its 3α-epimer.  相似文献   

15.
Inhibition of 5α-reduction of testosterone by an anti-androgen TSAA-291 (16β-ethyl-17β-hydroxy-4-estren-3-one) was studied in rat ventral prostates and the metabolic conversion of 3H-TSAA-291 was examined both in vitro and in vivo. In the in vitro experiment using nuclear 5α-reductase of the prostate, 5α-dihydrotestosterone formation from 3H-testosterone was inhibited in a competitive manner by the anti-androgen. In the in vitro experiment using 3H-TSAA-291, 5α-reduction of the anti-androgen occurred. One, 2 and 4 hr after an intravenous administration of 140 μCi/rat of 3H-TSAA-291 to castrated rats, the unchanged TSAA-291 accumulated in higher amounts in the ventral prostate than in the plasma, skeletal muscle and levator ani muscle, thereby indicating the selective uptake of the anti-androgen by the androgen target organ. No appreciable amounts of the 5α-reduced metabolite of TSAA-291 were detected in the prostate, thus suggesting that TSAA-291 itself may be responsible for the anti-androgenic properties. The inhibitory potency on the 5α-reductase activity of several other 16β-substituted androstane and estrane analogues was also examined.  相似文献   

16.
Balssa F  Fischer M  Bonnaire Y 《Steroids》2011,76(7):667-668
5α-Estrane-3β,17α-diol is the major metabolite of nandrolone in horse urine. The presence of 5α-estrane-3β,17α-diol in female and gelding urines is prohibited by Racing Rules and its natural presence in male urine led regulation authorities to establish a concentration threshold of 45 ng/mL. This paper describes a rapid, simple and stereoselective synthesis of 5α-estrane-3β,17α-diol, providing horseracing laboratories with an essential reference material for their antidoping performance.  相似文献   

17.
The synthesis of 3β-hydroxy-androsta-5,7-dien-17-one from 3β-hydroxy-androst-5-en-17-one (dehydroepiandrosterone, DHEA) via microbial 7α-hydroxylation has been accomplished. At the first stage, 3β,7α-dihydroxy-androst-5-en-17-one was obtained in high yield (71.2%) using a strain of Gibberella zeae VKM F-2600, which was first applied for DHEA conversion. The further route included the substitution of 7α-hydroxyl group with chlorine followed by a dehydrochlorination stage, and required minimal purifications of the intermediate products. The steroids obtained at every step were characterized by TLC,1H NMR, MS, UV- and IR-spectrometry.The combination of microbial and chemical steps ensured 54.6% yield of the target 3β-hydroxy-androsta-5,7-dien-17-one from DHEA and can be applied for obtaining novel vitamin D derivatives.  相似文献   

18.
5α-androstane-3β,17β-diol was measured in human peripheral plasma using a specific antibody generated against a carboxymethyloxime BSA conjugate linked at position 7. Concentrations were significantly higher in normal men than women. Preliminary results suggest that plasma 5α-androstane-3β,17β-diol concentrations might be a useful clinical parameter in cases of hirsutism and male infertility.  相似文献   

19.
Anordrin, an antifertility agent that is an antiestrogen with weak estrogenic activity, has been studied to further characterize its hormonal activities. A dose of 2.0 μg/mouse·day for 7 days did not increase the uterine content of protein, but it did inhibit to a small extent the effect of administered estradiol-17β on uterine protein content and more significantly the effect of estradiol-17β on the uterine content of progesterone receptors. Anordrin also decreased serum corticosteroid-binding globulin levels. Administration of an average daily dose of 160 μg/day of anordrin to intact male mice had no effect on weights of kidney, testis, or seminal vesicle after 10 days, but seminal vesicle weight was significantly decreased after 30 days at a slightly lower dose. Similarly, anordrin inhibited the increase in seminal vesicle weight induced by testosterone propionate treatment of castrated mice. In female mice anordrin failed to maintain deciduomata and blocked the ability of progesterone (2.0 mg/mouse·day) to do so. However, anordrin did not compete with the androgen [3H]R1881 for binding in kidney cytosol or with the progestin [3H]R5020 for uterine receptor sites. Anordrin also did not compete with [3H]corticosterone for binding to serum proteins.  相似文献   

20.
A sensitive and accurate method is described for measuring urinary corticosteroids by gas chromatography-mass spectroscopy (GC-MS). Using single peak monitoring (mass fragmentography) and electron impact ionization, the acetates of 3α,21-dihydroxy-5β-pregnan-20-one (tetrahydrodeoxycorticoster-one) and 5-pregnene-3β,20α-diol were estimated with deuterio-acetate carriers as recovery markers. With this technique, the coefficient of variation did not exceed 3% for GC-MS analyses of the urinary corticosteroid samples by single peak monitoring. An evaluation of the trimethylsilyl ether derivatives of the two steroids by chemical ionization was also made. Secretion rates determined for deoxycorticos-terone derived from specific activities of urinary tetrahydrodeoxycorticosterone and excretion levels of 5-pregnene-3β,20α-diol were slightly lower than those obtained by other methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号