首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The influence of androgens on the FSH modulation of progestin biosynthetic enzymes was studied in vitro. Granulosa cells obtained from immature, hypophysectomized, estrogen-treated rats were cultured for 3 days in a serum-free medium containing FSH (20 ng/ml) with or without increasing concentrations (10?9?10?6 M) of 17β-hydroxy-5α-androstan-3-one (dihydrotestosterone; DHT), 5α-androstane-3α, 17β-diol (3α-diol), or the synthetic androgen 17β-hydroxy-17-methyl-4,9,11-estratrien-3-one (methyltrienolone; R1881). FSH treatment increased progesterone and 20α-hydroxy-4-pregnen-3-one(20α-OH-P) production by 10.2- and 11-fold, respectively. Concurrent androgen treatment augmented FSH-stimulated progesterone and 20α-OH-P production in a dose-related manner (R1881 > 3α-diol > DHT). In the presence of an inhibitor of 3β-hydroxysteroid dehydrogenase (3β-HSD), the FSH-stimulated pregnenolone (3β-hydroxy-5-pregnen-20-one) production (a 20-fold increase) was further enhanced by co-treatment with R1881, 3α-diol or DHT. Furthermore, FSH treatment increased 4.4-fold the activity of 3β-HSD, which converts pregnenolone to progesterone. This stimulatory action of FSH was further augmented by concurrent androgen treatment. In contrast, androgen treatment did not affect FSH-stimulated activity of a progesterone breakdown enzyme, 20α-hydroxysteroid dehydrogenase(20α-HSD). These results demonstrate that the augmenting effect of androgens upon FSH-stimulated progesterone biosynthesis is not due to changes in the conversion of progesterone to 20α-OH-P, but involves an enhancing action upon 3β-HSDΔ5, Δ4-isomerase complexes and additional enzymes prior to pregnenolone biosynthesis.  相似文献   

2.
In the present investigation the influence of androgens and progestins on the FSH modulation of progesterone biosynthesis was studied in cultured rat granulosa cells. Cells obtained from the ovaries of immature estrogen treated rats were cultured for three days in serum free medium or in medium supplemented with FSH or CPA, with or without reduced androgen DHT or the synthetic progestin R5020 alone or in combination with the anti-androgen CPA. Treatment with FSH increased pregnenolone, progesterone and 20 alpha-OHP accumulation in the culture medium 20-, 14- and 7-fold, respectively. Furthermore FSH increased the activity of the enzyme 3 beta-HSD. Concurrent treatment with DHT or R5020 augmented the FSH stimulated steroidogenesis of cultured cells. The androgen enhancement of FSH stimulated steroidogenesis of cultured granulosa cells was blocked by concomitant treatment with CPA, whereas treatment of cultures with anti-androgen did not affect the stimulatory effect of the synthetic progestin R5020.  相似文献   

3.
We have developed a chemically defined, serum-free medium for the culture of rat granulosa cells. This medium contains Dulbecco's modified Eagle's medium/Ham's nutrient F12 (DME:F12) (1:1) plus insulin (2 micrograms/ml), hydrocortisone (100 ng/ml), transferrin (5 micrograms/ml) and fibronectin (2 micrograms/cm2). Granulosa cells grown in this medium have an absolute requirement for added cholesterol-rich lipoproteins for steroidogenesis. When cells are cultured in basal medium, progestin production is low; when cells are cultured in the presence of follicle-stimulating hormone (FSH) or dibutyryl cAMP [Bu)2 cAMP), progestin secretion is increased 10-100-fold. Both heterologous and homologous lipoproteins synergistically increased the effects of (Bu)2 cAMP or FSH: e.g., addition to the medium of human (h)-HDL3 produced a significant increase in both basal (approx. 15-fold) and (Bu)2 cAMP-stimulated (approx. 1000-2000-fold) progestin production. LDL were less effective than HDL at equivalent concentrations of lipoprotein cholesterol. FSH invoked changes similar to that of (Bu)2 cAMP, although the magnitude of the FSH-induced change was less dramatic than that seen with (Bu)2 cAMP. The effect of h-HDL3 and h-LDL on both basal and hormone-stimulated progestin production was concentration- and time-dependent. The maximum effect of h-HDL3 was achieved at a protein concentration of 500 micrograms/ml, with an ED50 of approx. 90 micrograms/ml. In contrast, h-LDL was most effective at a concentration of 30-40 micrograms protein/ml. Likewise, rat (r-)HDL and r-LDL supported steroidogenesis in a concentration-dependent manner. Maximal responses to all additions were observed after 72 h of treatment. Granulosa cells secreted 20 alpha-hydroxypregn-4-ene-3-one as the predominant steroid in response to (Bu)2 cAMP. However, with the addition of h-HDL3, the major secreted product was progesterone. In conclusion, rat granulosa cells maintained in the described serum-free medium are exquisitely sensitive to supplied cholesterol-rich lipoproteins. When cultured in the presence of both lipoproteins and stimulatory agents, they produce from 1000-2000-times the progestins made by comparable cells maintained in medium alone. This responsiveness of the cells to both lipoprotein and hormone stimulation makes them uniquely suitable for studies involving the uptake and metabolism of lipoproteins during steroidogenesis.  相似文献   

4.
Earlier studies have shown that rat granulosa cells grown in serum-free medium are exquisitely responsive to exogenously provided lipoprotein cholesterol. In this study we compare the amount of cholesterol (cholesteryl ester) actually delivered from various homologous and heterologous cholesterol-rich lipoproteins and examine the intracellular pathways used in the delivery system. Granulosa cells were incubated for 5 or 24 h with 125I-labeled human (h) HDL3, rat (r) HDL or hLDL equipped with non-releasable apoprotein and cholesteryl ether tags which accumulate within cells, even after degradation. We show that all the tested lipoproteins were similarly efficient in cholesteryl ester delivery; i.e., based on cholesterol: protein ratios of the starting ligands, each delivered approximately the same cholesteryl ester mass and evoked a similar progestin response. However, each lipoprotein was processed quite differently by the granulosa cells: hHDL3-cholesteryl ester was taken up almost exclusively by an non-endocytic pathway, hLDL-cholesteryl ester almost exclusively by an endocytic pathway and rHDL-cholesteryl ester by both pathways. In general, there was no correlation between the total amount of lipoprotein bound or apoprotein internalized and/or degraded by the cells with the amount of cholesteryl ester received or the level of the progestin response. Hormone stimulation upregulated the preferred pathway for each lipoprotein.  相似文献   

5.
Plasma high-density lipoproteins (HDL) can provide rat ovary steroidogenic tissue with cholesterol for steroid hormone production, but the mechanism of cholesterol transfer is unknown. To test the importance of apolipoprotein A-I (the major HDL apolipoprotein) in HDL-cell interactions, we examined the ability of canine-human HDL hybrids containing various proportions of canine apolipoprotein A-I and human apolipoprotein A-II to stimulate steroidogenesis by cultured rat ovary granulosa cells. We observed that as the apolipoprotein A-II to apolipoprotein A-II ratio decreased, the ability of the hybrid particles to stimulate granulosa cell progestin (progesterone and 20 alpha-dihydroprogesterone) production diminished. However, granulosa cell progestin (progesterone and 20 alpha-dihydroprogesterone) production diminished. However, apolipoprotein A-I was not necessary for cholesterol transfer, since hybrids with less than 5% of their total apolipoprotein mass as apolipoprotein A-I stimulated progestin production 30% as effectively as canine HDL, which contained essentially only apolipoprotein A-I. These data indicate that the delivery of cholesterol from HDL into the rat ovary cell for steroidogenesis is not strictly dependent on the presence of a specific HDL apolipoprotein.  相似文献   

6.
Androgens acting via the androgen receptor (AR) have been implicated in regulation of folliculogenesis in many animal species. These effects are possibly mediated via enhancement of FSH and/or insulin-like growth factor (IGF)-I activity in granulosa cells, which contain high levels of AR protein. We examined the in vitro effect of dihydrotestosterone (DHT) on DNA synthesis and progesterone secretion by follicular cells in response to FSH and IGF-I, alone or in combination. Cells from separate pools of 1- to 3-mm and 3- to 5-mm antral follicles were aspirated from gilt ovaries and fractioned into mural granulosa cells (MGCs) and cumulus-oocyte complexes (COCs) for subsequent cell culture. Androgen alone or with any combination of mitogen had minimal effect on proliferative and no effect on steroidogenic responses of MGCs from 3- to 5-mm antral follicles. Conversely, in MGCs from 1- to 3-mm follicles, DHT significantly enhanced IFG-I-stimulated proliferation and had variable influence on progesterone secretion. The effects of DHT on proliferative responses of COCs were also dependent on follicle size: DHT significantly augmented either IGF-I-stimulated proliferation (1- to 3-mm follicles) or FSH-stimulated proliferation (3- to 5-mm follicles). However, the steroidogenic responses of all COCs were identical, whereby DHT significantly suppressed progesterone secretion, predominantly in the presence of FSH. Addition of an AR antagonist, hydroxyflutamide, generally reversed the proliferative responses invoked by DHT but not the steroidogenic responses. We conclude that androgen-receptor-mediated activity in granulosa cells of antral follicles is dependent on follicle size, is influenced by proximity of cells to the oocyte, and possibly involves both classic and nonclassic steroid mechanisms.  相似文献   

7.
Testosterone (T) and 5α-dihydrotestosterone (17β-hydroxy-5α-androstan-3-one; DHT) are bound to specific cytoplasmic receptors (CR) in 105, 000 × g supernatant fractions of seminiferous tubules from hypophysectomized rats following the intravenous injection of [1, 2-3h]testosterone. CR is clearly different from the testicular androgen binding protein (ABP) by electrophoretic mobility, temperature stability and rate of dissociation of steroid-CR complex, but very similar to the cytoplasmic receptors of epididymis and ventral prostate. Under these labeling conditions, the nuclei of seminiferous tubules also contain radioactive T and DHT bound to protein. These androgen-protein complexes, which can be extracted with 0.4 M ? 1 M KC1, have a sedimentation coefficient of 3–4 S. Binding of radioactive T and DHT to both cytoplasmic and nuclear receptors in vivo is specific for androgen target tissues and abolished by simultaneous injection of unlabeled T, DHT and cyproterone acetate (1, 2-α-methylene-6-chloro-pregn-4, 6-diene-17α-o1–3, 20-diene-17-acetate), but not by cortisol. It is suggested that receptors for testosterone and DHT in the seminiferous tubules are involved in the mediation of the androgenic stimulus to the germ cells.  相似文献   

8.
Receptor-mediated uptake of low density lipoprotein (LDL) has been shown to provide a major source of cholesterol for a variety of cell types, particularly steroidogenic cells. In this study, the functional significance of lipoproteins in porcine ovarian granulosa cells and their mechanism of uptake by the cell was examined. Porcine LDL and high density lipoprotein (HDL) were isolated using a KBr density gradient, and the purity of both lipoproteins was confirmed by single corresponding bands on agarose gel stained for lipid and protein. Purified LDL and HDL were radioiodinated and labelled with colloidal gold for binding and tracer studies respectively. Both lipoproteins bind to cell surface and are internalized within 30 min at 37 degrees C. The cultured granulosa cells possess more HDL binding sites than LDL binding sites and are more responsive in progesterone production when supplemented with HDL. These results suggest that granulosa cells may preferentially utilize HDL over LDL as a source of cholesterol for steroidogenesis.  相似文献   

9.
This study examines the effect of mutation of the low-density lipoprotein receptor (LDLR) on cholesterol metabolism, and especially lipoprotein-derived cholesteryl ester uptake, in murine ovarian granulosa cells. Although the tests were conducted on cells prepared by two different procedures, the results are similar. Deletion of LDLR function did not noticeably affect key enzymes of the steroidogenic pathway or affect progestin production and secretion in granulosa cells. No change was found in expression of LDL-related protein (LRP). These data suggested that cholesterol turnover in cells from the knockout animals is within normal limits and that the cells are not stressed to acquire more cholesterol. Both biochemical and morphological data indicate that unstimulated granulosa cells from LDLR−/− mice are nonetheless programmed to take in double the amount of lipoprotein-derived cholesteryl ester (via the selective cholesteryl ester uptake pathway) and to process (hydrolyze, re-esterify, or utilize) more than twofold the cholesteryl ester processed by cells from wildtype (LDLR+/+) animals. Bt2cAMP stimulation of the murine granulosa cells increases the mass of cholesteryl ester taken up by the selective pathway by an additional 38%. To determine to what extent this increase is related to high-density lipoprotein (HDL) scavenger receptor protein (SR-BI) or caveolin function, Western blots and immunohistochemical studies were performed under a variety of conditions. SR-BI levels are found to be low in unstimulated cells of both LDLR+/+ and LDLR−/− animals, but highly expressed (∼20-fold increase over basal levels) in stimulated (Bt2cAMP) cells of both animal models. Thus, the functional relationship between selective cholesteryl ester uptake and SR-BI receptor protein is not as tight as in previously reported studies, suggesting a requirement for other tissue factors. Caveolin expression did not change under any of the conditions tested and appears not to be functionally involved in this process. J. Cell. Physiol. 180:190–202, 1999. Published 1999 Wiley-Liss, Inc.  相似文献   

10.
Androgen receptors in rat testis   总被引:1,自引:0,他引:1  
Testosterone (T) and 5α-dihydrotestosterone (17β-hydroxy-5α-androstan-3-one; DHT) are bound to specific cytoplasmic receptors (CR) in 105,000 × g supernatant fractions of seminiferous tubules from hypophysectomized rats following the intravenous injection of [1,2-3H]testosterone. CR is clearly different from the testicular androgen binding protein (ABP) by electrophoretic mobility, temperature stability and rate of dissociation of steroid-CR complex, but very similar to the cytoplasmic receptors of epididymis and ventral prostate. Under these labeling conditions, the nuclei of seminiferous tubules also contain radioactive T and DHT bound to protein. These androgen-protein complexes, which can be extracted with 0.4 M — 1 M KC1, have a sedimentation coefficient of 3–4 S. Binding of radioactive T and DHT to both cytoplasmic and nuclear receptors in vivo is specific for androgen target tissues and abolished by simultaneous injection of unlabeled T, DHT and cyproterone acetate (1,2-α-methylene-6-chloro-pregn-4, 6-diene-17α-ol-3,20-diene-17-acetate), but not by cortisol. It is suggested that receptors for testosterone and DHT in the seminiferous tubules are involved in the mediation of the androgenic stimulus to the germ cells.  相似文献   

11.
Thus far, liver, intestine, heart, and placenta have been shown to secrete apolipoprotein (apo)B-containing lipoproteins. In the present study, we first investigated lipoproteins in human follicular fluid (FF), surrounding developing oocytes within the ovary, as well as in corresponding plasma samples (n = 12). HDL cholesterol within FF correlated well with plasma HDL cholesterol (r = 0.80, P < 0.01), whereas VLDL cholesterol did not, indicating that VLDL in FF might originate directly from the granulosa cells producing FF. Primary human granulosa cells expressed apoB, microsomal triglyceride transfer protein, and apoE, but not the apoB-editing enzyme apobec-1. Using 3H-leucine, we show that granulosa cells secrete apoB100-containing lipoproteins and that secretion can be stimulated by adding oleate to the medium (+83%). With electron microscopy, apoB-containing lipoproteins within the secretory pathway of human granulosa cells were directly visualized. Finally, we found a positive relationship between apoB levels in FF and improved fertility parameters in a population of 27 women undergoing in vitro fertilization. This study demonstrates that human granulosa cells assemble and secrete apoB100-containing lipoproteins, thereby identifying a novel cell type equipped with these properties. These results might have important implications for female infertility phenotypes as well as for the development of drugs targeting the VLDL production pathway.  相似文献   

12.
The influence of high density lipoproteins (HDL) on luteinizing hormone-stimulated rat ovarian theca/interstitial cell steroidogenesis was studied. Without HDL the cells produced primarily androgens from progestin precursors. In the presence of rat or human HDL steroid output increased 3-5-fold, but the type of steroid produced was dependent on the source of the HDL. Human HDL nonselectively amplified luteinizing hormone-stimulated steroid production, whereas rat HDL promoted progestin production without a concomitant increase in androgen output. Comparisons of the activities of apoprotein E-rich HDL (e.g. HDL from intact mature rats) with apoprotein E-poor HDL (e.g. human HDL or rat HDL from hypophysectomized immature rats) suggested that apoprotein E was responsible for the inhibition of androgen production. Furthermore, the inhibitory activity of rat HDL was abolished by depleting apoprotein E-containing lipoproteins with heparin affinity chromatography. Direct evidence that apoprotein E was the inhibitory constituent of rat HDL was obtained by showing that isolated lipid-free rat apoprotein E inhibited androgen production, whereas isolated rat apoproteins A-I and A-IV did not. The possible paracrine function of apoprotein E in ovarian follicular maturation of the ovary is discussed.  相似文献   

13.
Steroidal regulation of gene expression in follicular cells is not completely defined. Granulosa cells from 5 mm bovine follicles were cultured and treated and steady-state mRNA levels determined for FSHR (follicle-stimulating hormone receptor) and CYP19A1 (aromatase). Cells were treated for 5 days with (0.1-300 ng/ml) 17beta-estradiol (E2), testosterone (T), or 5alpha-dihydrotestosterone (DHT). FSHR mRNA was increased by T and DHT but not E2. In contrast, CYP19A1 mRNA was induced by all doses of E2 but only high doses of T and DHT. Similarly, varying treatment duration (1-5 days) showed that FSHR was increased by T and DHT and CYP19A1 mRNA increased by E2 and T at all times. Synergism between steroid hormones and FSH or forskolin was also evaluated. FSH or E2 did not alter FSHR mRNA and did not enhance DHT stimulation of FSHR mRNA. In contrast, DHT alone had no effect on CYP19A1 mRNA but synergized with FSH plus E2 to increase CYP19A1 mRNA, probably due to induction of FSHR by DHT. Effects of E2 and T on CYP19A1 were blocked by ICI 182,780, indicating mediation by estrogen receptors. However, the specific androgen receptor antagonist bicalutamide did not block E2 or T effects on CYP19A1 but did block T and DHT stimulation of FSHR. Thus, FSHR is specifically regulated through androgen receptor, whereas CYP19A1 is regulated by multiple pathways, including estrogen receptors and cAMP/protein kinase A induced by FSHR activation in granulosa cells. These inter- and intracellular regulatory mechanisms may be critical for normal follicle growth and dominant follicle selection.  相似文献   

14.
Regulation of apolipoprotein E synthesis in rat ovarian granulosa cells   总被引:2,自引:0,他引:2  
Apoprotein E (apo-E) is a surface component of several classes of plasma lipoproteins. It functions as a ligand for receptor-mediated uptake of lipoproteins. Granulosa cells from ovaries of diethylstilbestrol-stimulated hypophysectomized immature rats cultured in serum-free medium with [35S]methionine secretes a 34-kDa protein which reacts with a monospecific anti-rat apo-E antibody and represents 0.2% of total secreted protein. Protease mapping confirms that this protein is apoprotein E. The secreted apoprotein E may be complexed with lipid since it floats in the ultracentrifuge at density less than 1.21 micrograms/ml. Freshly isolated granulosa cells contain receptors for follicle stimulating hormone (FSH) but not for human chorionic gonadotropin (hCG) or prolactin. Apoprotein E secretion is stimulated 2-fold by FSH, but hCG and prolactin have no effect. When granulosa cells develop hCG and prolactin receptors after 48 h of culture with FSH, apoprotein E secretion is not stimulated by addition of FSH, hCG, or prolactin although steroidogenesis is induced. The addition of 10(-7) M androgen plus FSH stimulates a marked increase in progestin synthesis over FSH alone, but androgen has little added effect on apoprotein E secretion. Cholera toxin (1.25 micrograms/ml) and dibutyryl cAMP (5 mg/ml), both of which increase intracellular cAMP, stimulate apo-E secretion 9-fold and 12-fold, respectively. The dibutyryl cAMP effect is dependent on both dose (greater than or equal to 0.5 mg/ml required) and time (onset at 24 h, maximum at 48 h, and back to near baseline at 96 h). Isobutylmethylxanthine, a phosphodiesterase inhibitor, augments FSH-stimulated apoprotein E synthesis 2.5-fold, supporting a role for cAMP in mediating the FSH effect. This is the first demonstration of the hormonal regulation of apoprotein E synthesis in an extrahepatic tissue.  相似文献   

15.
S L Young  M H Melner 《Steroids》1989,54(6):583-591
The effects of androgens on granulosa cell stimulation by isoproterenol and follicle-stimulating hormone (FSH) were determined. Two functional parameters of granulosa cell stimulation were monitored: (a) activity of a transfected proopiomelanocortin (POMC) promoter and (b) production of progesterone. Treatment with the beta-adrenergic agonist, isoproterenol, stimulated steroidogenesis, and both isoproterenol and FSH appeared to enhance POMC promoter activity. The non-aromatizable androgen, 5 alpha-dihydrotestosterone (DHT), produced no effect on either parameter, but it potentiated the steroidogenic response to isoproterenol. Preliminary data also indicated a potentiation by DHT of the FSH-mediated increase in POMC promoter activity; results with a combination of DHT and isoproterenol were suggestive of potentiation. A possible role for androgen amplification of adrenergic stimulation in polycystic ovarian syndrome is discussed.  相似文献   

16.
The modulation of ovarian steroidogenesis by epidermal growth factor (EGF) was investigated in cultured rat granulosa cells. Granulosa cells, obtained from ovaries of immature, hypophysectomized, estrogen-treated rats, were incubated for 2 days with EGF, follicle-stimulating hormone (FSH), or EGF plus FSH. Treatment with EGF did not affect estrogen production, but stimulated progestin (i.e. progesterone and 20 alpha-hydroxy-pregn-4-en-3-one) production in a dose-dependent manner. Stimulation of progestin production by EGF appears to be the result of an increase in pregnenolone biosynthesis as well as increases in the activities of 20 alpha-hydroxysteroid dehydrogenase and 3 beta-hydroxysteroid dehydrogenase/isomerase. Treatment with FSH increased both estrogen and progestin production by cultured granulosa cells. When cells were treated concomitantly with EGF, FSH-stimulated estrogen production was inhibited, while progestin production was further enhanced. The EGF enhancement of FSH-stimulated progestin production appears to be the result of synergistic increases in pregnenolone biosynthesis and 20 alpha-hydroxysteroid dehydrogenase activity, resulting in substantial increases in 20 alpha-hydroxypregn-4-en-3-one but not progesterone production. The effects of EGF were shown to be time-dependent. The concept of a direct action of EGF on rat granulosa cells is reinforced by the demonstration of high affinity (Kd approximately 3 X 10(-10) M), low capacity (approximately 5,000 sites/cell) EGF binding sites in these cells. Thus, EGF interacts with specific granulosa cell receptors to stimulate progestin but to inhibit estrogen biosynthesis.  相似文献   

17.
Progesterone production of granulosa cells cultured in vitro is stimulated and cell differentiation increased, by follicle-stimulating hormone (FSH). This study examined whether the increased progesterone production observed when bovine granulosa cells are cultured occurs because (1) progesterone production by undifferentiated and/or differentiated cells is increased or (2) the differentiation of granulosa cells is stimulated. Viable bovine granulosa cells (2−3×105) from follicles 5–8 mm in diameter were cultured in the presence of 0, 1, 10 and 100 μu FSH (1 μu ≡ 1 μg NIH-FSH-S1) for 6 days at 37°C in a humidified atmosphere of 5% CO2 in air in 1 ml of a 1:1 mixture of Dulbecco's modified Eagle medium: Ham's F10 medium supplemented with 365 μg ml−1 l-glutamine, 100 U ml−1 penicillin and 100 μg ml−1 streptomycin. Progesterone production, total DNA and protein, and cell diameter were determined sequentially over the culture period. The increases in progesterone production (ng μg−1 DNA per 24 h), cytoplasmic:nuclear ratio (μg protein μg−1 DNA) and cell diameter (μm) over 6 days culture indicated that granulosa cells underwent differentiation in the presence of FSH. Progesterone production of undifferentiated granulosa cells (diameter 14 μm or less) was stimulated by FSH (P < 0.01) in a dose dependent manner (1.0±0.2, 2.9±0.3, 3.7±0.3 and 4.9±0.4 ng μg−1 DNA per 24 h for 0, 1, 10 and 100 μu ml−1 FSH respectively) but remained constant within dose (P > 0.05) during a 6 day culture period. FSH stimulated (P < 0.05) the rate of granulosa cell differentiation (10±3%, 53±13%, 74±21% and 82±10% differentiating cells per well for 0 μu, 1 μu, 10 μu and 100 μu ml−1 FSH respectively) but did not stimulate (P > 0.05) progesterone production by differentiating granulosa cells (8.7±0.5 ng μg−1 DNA per 24 h). In conclusion, the increase in progesterone production of FSH-stimulated granulosa cells cultured in vitro appears to be mainly due to an increase in the number of differentiating cells with a constant rather than an increasing progesterone production per cell.  相似文献   

18.
J B Davoren  A J Hsueh 《Life sciences》1986,39(13):1143-1150
The effects of cell plating density on granulosa cell sensitivity to follicle-stimulating hormone (FSH) were investigated, using a serum-free culture of cells obtained from immature, estrogen-treated rats. The cells were incubated at densities of 0.25 to 5 X 10(5) cells/dish with increasing concentrations of FSH for 2 days, and medium estrogen and progestin accumulation were measured by radioimmunoassay. Per-cell estrogen and progestin production rose with increasing FSH concentration and cell density up to 2 X 10(5) cells/dish. At a higher density (5 X 10(5)/dish), per-cell estrogen production fell; progestin production remained constant, although the major progestin produced was no longer progesterone, but rather its metabolite, 20 alpha-hydroxy-progesterone. The effects of changing cell density could not be accounted for by medium steroids or cytotoxic substances. It is concluded that in vitro plating density can markedly affect granulosa cell sensitivity to FSH. In vivo, changing intrafollicular cell densities may thus affect the ability of the whole cell complement to respond to gonadotropin.  相似文献   

19.
Medroxyprogesterone acetate (MPA), a widely used synthetic steroid, was studied to determine both its effects on steroid receptors and steroidogenesis in the well-characterized rat ovarian granulosa cell model. Initial receptor binding studies showed MPA was as potent as progesterone and 10-fold less potent than R-5020 (an active synthetic progestin) in binding to progesterone cytosolic receptors in rat ovarian granulosa cells. MPA was 20-fold less potent than testosterone, and 10-fold less potent than dexamethasone in binding to the androgen and glucocorticoid cytosolic receptors, respectively. The binding of MPA to progestrone, androgen and glucocorticoid receptors predicted direct effects of MPA on FSH-stimulated estrogen (E), progesterone (P), and 20 alpha-dihydroprogesterone (DHP) production by cultured rat ovarian granulosa cells. MPA at 10(-7) to 10(-6) M significantly augmented FSH-stimulated P and DHP production (a previously documented progestin, androgen and glucocorticoid effect). This augmentation was blocked by the concurrent addition to cell culture of 10-fold excess RU-486 (a potent anti-progestin and anti-glucocorticoid). At concentrations greater than 10(-6) M, MPA inhibited the production of P and DHP (a progestin effect), and the production of E (a progestin and glucocorticoid effect). MPA, structurally a progestin, has complex steroid hormone effects predicted by its interaction with progesterone, androgen and glucocorticoid receptors.  相似文献   

20.
Although androgens have been implicated in follicular atresia, ovarian follicular androgen synthesis is required for preovulatory follicular growth. To localize the site(s) of androgen biosynthesis and to obtain a better understanding of the regulation of the androgenic pathway(s) in rat ovarian follicles we examined the relative abilities of developing follicles to accumulate specific androgens [testosterone (T) and dihydrotestosterone (DHT)] using both radioimmunoassay (RIA) and 3H-substrate metabolism techniques. Small antral and preovulatory follicles were obtained from control or human chorionic gonadotropin (hCG)-primed immature rats, respectively (Richards and Bogovich, 1982). Small antral follicles, theca and granulosa cells produced little immunoassayable androgen (T + DHT) when incubated with or without 8-bromo-cAMP. In contrast, preovulatory follicles and theca produced more androgen than small antral tissues and in a manner acutely stimulable by cAMP. Granulosa cells produced little androgen under these conditions. Inclusion of [3H] androstenedione in the incubates yielded increased accumulation of [3H] T and [3H] DHT for all small antral and preovulatory tissues. Indeed, granulosa cells from both small antral and preovulatory follicles possessed a remarkable ability to accumulate [3H] T. This ability was not altered by hypophysectomy or subsequent treatment with estradiol and/or follicle-stimulating hormone (FSH). These results suggest that 17-ketosteroid reductase may be a constitutive enzyme in granulosa cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号