首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeIn recent years the use of 68Ga (t1/2 = 67.84 min, β+: 88.88%) for the labelling of different PET radiopharmaceuticals has significantly increased. This work aims to evaluate the feasibility of the production of 68Ga via the 68Zn(p,n)68Ga reaction by proton irradiation of an enriched zinc solution, using a biomedical cyclotron, in order to satisfy its increasing demand.MethodsIrradiations of 1.7 M solution of 68Zn(NO3)2 in 0.2 N HNO3 were conducted with a GE PETtrace cyclotron using a slightly modified version of the liquid target used for the production of fluorine-18. The proton beam energy was degraded to 12 MeV, in order to minimize the production of 67Ga through the 68Zn(p,2n)67Ga reaction. The product’s activity was measured using a calibrated activity meter and a High Purity Germanium gamma-ray detector.ResultsThe saturation yield of 68Ga amounts to (330 ± 20) MBq/µA, corresponding to a produced activity of 68Ga at the EOB of (4.3 ± 0.3) GBq in a typical production run at 46 µA for 32 min. The radionuclidic purity of the 68Ga in the final product, after the separation, is within the limits of the European Pharmacopoeia (>99.9%) up to 3 h after the EOB. Radiochemical separation up to a yield not lower than 75% was obtained using an automated purification module. The enriched material recovery efficiency resulted higher than 80–90%.ConclusionsIn summary, this approach provides clinically relevant amounts of 68Ga by cyclotron irradiation of a liquid target, as a competitive alternative to the current production through the 68Ge/68Ga generators.  相似文献   

2.
In order to develop positron-emitting tracers for imaging metabolic functions of tumors with positron emission tomography, tumor uptake of N-acetyl-3-[18F]fluoroneuraminic acid and N-acetyl-2-deoxy-2,3-di-[18F fluoroneuraminic acid was investigated in mice or rats. The two tracers showed similar tissue distribution patterns. After i.v. injection of each tracer into mice with an FM3A tumor, the radioactivity was very rapidly cleared from normal and tumor tissues. Only tumor-to-brain and tumor-to-muscle uptake ratios were greater than 1.0 for 2 h. In 7 types of tumor models, no selective tumor uptake of tracers was observed 30 min after injection. The metabolic alteration rate of N-acetyl-3-[18F]fluoroneuraminic acid in FM3A, liver and kidney was very slow. Neither tracer may be suitable for tumor imaging in vivo.  相似文献   

3.
The synthesis of an (18)F-labeled sufentanil analogue with apparent high mu-opioid receptor selectivity is reported. Intravenous injection of N-[4-(methoxymethyl)-1-[2-(2-thienyl)ethyl]-4-piperidinyl]-N-phenyl-2-(+/-)-[(18)F]fluoropropan-amide in mice resulted in high brain uptake and a regional brain activity distribution corresponding to the mu-opioid receptor expression pattern. The developed ligand is a promising tracer for extended protocols in mu-opioid receptor mapping and quantitation with positron emission tomography.  相似文献   

4.
Glu-Urea-Lys (GUL) derivatives have been reported as prostate-specific membrane antigen (PSMA) agent. We developed derivatives of GUL conjugated with NOTA or DOTA via a thiourea linker and tested their feasibility as PSMA imaging agents after labeling with 68Ga. NOTA-GUL and DOTA-GUL were synthesized and labeled with 68Ga using generator-eluted 68GaCl3 in 0.1?M HCl in the presence of 1?M NaOAc at pH 5.5. The stabilities of 68Ga-labeled compounds in human serum were tested at 37.5?°C. A competitive binding assay was performed using the PSMA-positive prostate cancer cell line 22Rv1 and [125I]MIP-1072 (PSMA-specific binding agent) as a tracer. Biodistribution and micro-PET studies were performed using 22Rv1-xenograft BALB/c nude mice. The radiolabeling efficiency of NOTA-GUL (>99%) was higher than that of DOTA-GUL (92%). The IC50 of Ga-NOTA-GUL was 18.3?nM. In the biodistribution study, tumor uptake of 68Ga-NOTA-GUL (5.40% ID/g) was higher than that of 68Ga-DOTA-GUL (4.66% ID/g) at 1?h. Tumor/muscle and tumor/blood uptake ratios of 68Ga-NOTA-GUL (31.8 and 135, respectively) were significantly higher than those of 68Ga-DOTA-GUL (16.1 and 31.1, respectively). The tumor/kidney uptake ratio of 68Ga-NOTA-GUL was 3.4-fold higher than that of 68Ga-DOTA-GUL. 68Ga-NOTA-GUL showed specific uptake to PSMA positive tumor xenograft and was blocked by co-injection of the cold ligand. In conclusion, we successfully synthesized 68Ga-NOTA-GUL and 68Ga-DOTA-GUL for prostate cancer imaging. 68Ga-NOTA-GUL showed better radiochemical and biodistribution results. 68Ga-NOTA-GUL may be a promising PSMA targeting radiopharmaceutical.  相似文献   

5.
18F-Labeled 5-fluorouracil(FUra), 5-fluoro-2'-deoxyuridine(FdUrd) and 5-fluorouridine(FUrd) were synthesized with high radiochemical purities. Biodistribution of the 18F-pyrimidines in tumor-bearing rats, mice or a rabbit was examined. Blood clearance of the 18F-pyrimidines was very rapid. The kidney and liver showed the high uptake and rapid clearance which was due to the metabolism and excretion. The 18F-concentration in the tumor was due to the metabolism and excretion. The 18F-concentration in the tumor was also high and clearance was very slow compared with those in other organs. Tumor uptakes of 18F-FdUrd were also shown by positron emission tomography and autoradiography. Biodistributions of the 18F-FdUrd and radio-deoxythymidine(dThd) were different between several organs, but similar distribution patterns in the tumor were observed by autoradiography.  相似文献   

6.
7.
Four 18F-labeled acetylcholinesterase (AChE) substrates, (S)-N-[18F]fluoroethyl-2-piperidinemethyl acetate (1), (R)-N-[18F]fluoroethyl-3-pyrrolidinyl acetate (2), N-[18F]fluoroethyl-4-piperidinyl acetate (3), and (R)-N-[18F]fluoroethyl-3-piperidinyl acetate (4), were evaluated for in vivo blood and brain metabolism in mice, brain pharmacokinetics in rats monkeys (M. nemistrina) using PET imaging. All 18F-labeled compounds were compared to N-[11C]methyl-4-piperidinyl propionate (PMP). Compound 1 was completely metabolized within 1 min in mouse blood and brain. This compound had relatively fast regional brain pharmacokinetics and poor discrimination between brain regions with different AChE concentration. Compound 4 showed relatively slower blood metabolism and slower pharmacokinetics than compound 1 but again poor discrimination between brain regions. Both compounds 1 and 4 showed different kinetic profiles than PMP in PET studies. Compound 3 had the slowest blood metabolism and slower pharmacokinetics than PMP. Compound 2 showed highly encouraging characteristics with an in vivo metabolism rate, primate brain uptake, and regional brain pharmacokinetics similar to [11C]PMP. The apparent hydrolysis rate constant k3 in primate cortex was very close to that of [11C]PMP. This compound has potential to be a good PET radiotracer for measuring brain AChE activity. The longer lifetime of 18F would permit longer imaging times and allows preparation of radiotracer batches for multiple patients and delivery of the tracer to other facilities, making the technique more widely available to clinical investigators.  相似文献   

8.
BackgroundThere is growing evidence to support beneficial effects of the hypothalamic synthesised hormone, oxytocin, on metabolism. However, the biological half-life of oxytocin is short and receptor activation profile unspecific.MethodsWe have characterised peptide-based oxytocin analogues with structural modifications aimed at improving half-life and receptor specificity. Following extensive in vitro and in vivo characterisation, antidiabetic efficacy of lead peptides was examined in high fat fed (HFF) mice.ResultsFollowing assessment of stability against enzymatic degradation, insulin secretory activity, receptor activation profile and in vivo bioactivity, analogues 2 N (Ac-C ?YIQNC >PLG-NH2) and D7R ((d-C)YIQNCYLG-NH2) were selected as lead peptides. Twice daily injection of either peptide for 22 days reduced body weight, energy intake, plasma glucose and insulin and pancreatic glucagon content in HFF mice. In addition, both peptides reduced total- and LDL-cholesterol, with concomitant elevations of HDL-cholesterol, and D7R also decreased triglyceride levels. The two oxytocin analogues improved glucose tolerance and insulin responses to intraperitoneal, and particularly oral, glucose challenge on day 22. Both oxytocin analogues enhanced insulin sensitivity, reduced HOMA-IR and increased bone mineral density. In terms of pancreatic islet histology, D7R reversed high fat feeding induced elevations of islet and beta cell areas, which was associated with reductions in beta cell apoptosis. Islet insulin secretory responsiveness was improved by 2 N, and especially D7R, treatment.ConclusionNovel, enzymatically stable oxytocin analogues exert beneficial antidiabetic effects in HFF mice.General significanceThese observations emphasise the, yet untapped, therapeutic potential of long-acting oxytocin-based agents for obesity and type 2 diabetes.  相似文献   

9.
Two new fluorinated imidazo[1,2-a]pyridine derivatives, 6-(2'-fluoroethyl)-2-(4'-dimethylamino)phenylimidazo[1,2-a]pyridine (FEPIP) and 6-(3'-fluoropropyl)-2-(4'-dimethylamino)phenylimidazo[1,2-a]pyridine (FPPIP), were synthesized. The binding affinity for FEPIP and FPPIP to amyloid plaques in human AD cortical tissues was determined. Radiolabeling, in vitro film autoradiography, and micro-PET study were performed with [18F]FPPIP to determine its utility as a radioligand for amyloid plaque imaging in the brain of AD patients.  相似文献   

10.
The alphav integrins, which act as cell adhesion molecules, are closely involved with tumor invasion and angiogenesis. In particular, alphavbeta3 integrin, which is specifically expressed on proliferating endothelial cells and tumor cells, is a logical target for development of a radiotracer method to assess angiogenesis and anti-angiogenic therapy. In this study, a dimeric cyclic RGD peptide E[c(RGDyK)]2 was labeled with 18F (t(1/2) = 109.7 min) by using a prosthetic 4-[18F]fluorobenzoyl moiety to the amino group of the glutamate. The resulting [18F]FB-E[c(RGDyK)]2, with high specific activity (200-250 GBq/micromol at the end of synthesis), was administered to subcutaneous U87MG glioblastoma xenograft models for micro-PET and autoradiographic imaging as well as direct tissue sampling to assess tumor targeting efficacy and in vivo kinetics of this PET tracer. The dimeric RGD peptide demonstrated significantly higher tumor uptake and prolonged tumor retention in comparison with a monomeric RGD peptide analog [18F]FB-c(RGDyK). The dimeric RGD peptide had predominant renal excretion, whereas the monomeric analog was excreted primarily through the biliary route. Micro-PET imaging 1 hr after injection of the dimeric RGD peptide exhibited tumor to contralateral background ratio of 9.5 +/- 0.8. The synergistic effect of polyvalency and improved pharmacokinetics may be responsible for the superior imaging characteristics of [18F]FB-E[c(RGDyK)]2.  相似文献   

11.
[4-18F]2-(2,4-difluorophenyl)-1,3-bis(1H-1,2,4-triazol-1-yl)-2-propanol ([4-18F]fluconazole) was synthesized from its amino precursor. Fieldel-Crafts acylation of 3-fluoroacetanilide with chloroacetyl chloride produced 2′-fluoro-4′-acteamido-2-(1H-1,2,4-triazole-1-yl) acetophenone in 12% yield. Sequential reaction with (1) dimethylsulphoxonium methylide and (2) 1,2,4-triazole followed by in situ hydrolysis resulted in 2-(2-fluoro-4-aminophenyl)-1,3-bis(1H-1,2,4-triazol-l-yl)-2-propanol in 19% yield. A modified Schiemann reaction on this product resulted in [4-18F]fluconazole with a radiochemical yield of 1.0–2.0% (EOS) within 2 h. [4-18F]Fluconazole was used to measure the pharmacokinetics of fluconazole in rats by measurement of radioactivity in excised tissues and in rabbits by PET. In both species, there was rapid equilibration of [4-18F]fluconazole to a relatively uniform distribution of radioactivity in most organs.  相似文献   

12.
A-ring fluorination of estradiol (ES) at position 2 or 4 decreases the rate of metabolism by blocking the formation of catechol estrogens, one of the major metabolic pathways of ES. We postulate that adding a 2- or 4-fluoro substituent to 16alpha-[18F]fluoroestradiol (FES), a positron emission tomography (PET) radiopharmaceutical used for estrogen receptor (ER) imaging, should prolong its blood circulation time, and thus, improve its localization in ER-rich target tissues. On such account, we prepared a series of FES derivatives substituted with a fluorine atom at C2 or C4, with or without an 11beta-OMe group, and we tested their binding affinities for the ER and different serum proteins including rat alphafetoprotein (AFP) and human sex hormone-binding globulin (SHBG). Labeling at the 16alpha-position was accomplished via nucleophilic substitution with [18F]F(-) on the reactive 16beta,17beta-cyclic sulfate intermediates. Decay corrected yields varied between 30 and 50% for a total synthesis time of 120 min, providing final products with specific activities >3000 Ci/mmol. The 18F-labeled analogs were evaluated for their biodistribution in immature female rats. Substitutions with the 4-F have little effect on binding affinities. Addition of the 2-F diminishes ER and AFP-binding affinities while augmenting the affinity for the SHBG. Addition of the 11beta-OMe decreases all binding affinities, particularly to AFP and SHBG. In contrast, biodistribution of the corresponding [16alpha-18F]fluoro analogs in immature female rats revealed that the presence of the 11beta-OMe group improves ER-mediated uterus uptake, with the 4,16alpha-[16alpha-18F]difluoro-11beta-methoxyestradiol showing the highest uptake values (15% ID at 1-h post-injection). These data suggest that the addition of both a 4-F and 11beta-OMe group onto FES may provide an improved radiopharmaceutical for PET imaging of ER densities in breast cancer patients.  相似文献   

13.
Gold nanoparticles (AuNPs) have been extensively used in biological applications because of their biocompatibility, size, and ease of characterization, as well as an extensive knowledge of their surface chemistry. These features make AuNPs readily exploitable for biomedical applications, including drug delivery and novel diagnostic and therapeutic approaches. In a previous work, we studied ex vivo distribution of the conjugate C(AuNP)-LPFFD for its potential uses in the treatment of Alzheimer's disease. In this study, we covalently labeled the conjugate with [(18)F]-fluorobenzoate to study the in vivo distribution of the AuNP by positron emission tomography (PET). After intravenous administration in rat, the highest concentration of the radiolabeled conjugate was found in the bladder and urine with a lower proportion in the intestine, demonstrating progressive accumulation compatible with biliary excretion of the conjugate. The conjugate also accumulated in the liver and spleen. PET imaging allowed us to study the in vivo biodistribution of the AuNPs in a noninvasive and sensitive way using a reduced number of animals. Our results show that AuNPs can be covalently and radioactively labeled for PET biodistribution studies.  相似文献   

14.
Cholecystokinin (CCK) receptors are overexpressed in several human tumor types, such as medullary thyroid carcinomas and small cell lung cancers. Several ligands for the CCK2 receptor (CCK2R) have been developed for radionuclide targeting of these tumors. In this study, we evaluated whether radiolabeled DOTA-sCCK8 and its stabilized derivative, DOTA-sCCK8[Phe(2)(p-CH2SO3H), Nle(3,6)], are suitable for imaging of CCK2R-positive tumors, using DOTA-MG0 as a reference. In vivo targeting of CCK2R-positive tumors with DOTA-sCCK8, DOTA-sCCK8[Phe(2)(p-CH2SO3H), Nle(3,6)], and DOTA-MG0, labeled with (111)In or (68)Ga, was evaluated in BALB/c nude mice with a subcutaneous A431-CCK2R tumor. Biodistribution studies and single-photon emission computed tomography (SPECT) and positron emission tomography (PET) were performed at 1 hour postinjection. All peptides specifically accreted in the CCK2R-expressing tumors. Both (111)In-DOTA-sCCK8 and (111)In-DOTA-sCCK8[Phe(2)(p-CH2SO3H), Nle(3,6)] showed good tumor retention (4.65% ID/g and 5.44% ID/g, respectively, at 4 hours postinjection). On PET/computed tomographic (CT) and SPECT/CT scans, subcutaneous A431-CCK2R tumors were clearly visualized with low uptake of sCCK8 peptides in the intestines. Whereas radiolabeled DOTA-MG0 showed high kidney uptake (70% ID/g), the sCCK8 peptides showed low uptake in the kidneys. Sulfated CCK8 analogues combined high tumor uptake with low retention in the kidney and are therefore promising tracers for imaging of CCK2R-positive tumors.  相似文献   

15.
Glucose transporter 2 (GLUT2) is involved in glucose uptake by hepatocytes, pancreatic beta cells, and absorptive cells in the intestine and proximal tubules in the kidney. Pancreatic GLUT2 also plays an important role in the mechanism of glucose-stimulated insulin secretion. In this study, novel Fluorine-18-labeled streptozotocin (STZ) derivatives were synthesized to serve as glycoside analogs for in-vivo GLUT2 imaging. Fluorine was introduced to hexyl groups at the 3′-positions of the compounds, and we aimed to synthesize compounds that were more stable than STZ. The nitroso derivatives exhibited relatively good stability during purification and purity analysis after radiosynthesis. We then evaluated the compounds in PET imaging and ex-vivo biodistribution studies. We observed high levels of radioactivity in the liver and kidney, which indicated accumulation in these organs within 5 min of administration. In contrast, the denitroso derivatives accumulated only in the kidney and bladder shortly after administration. Compounds with nitroso groups are thus expected to accumulate in GLUT2-expressing organs, and the presence of a nitroso group is essential for in-vivo GLUT2 imaging.  相似文献   

16.
Three 18F-labeled benzamide derivatives were prepared and evaluated as potential ligands to study the dopamine D2 receptor phenomenon. The compounds are analogs of iodobenzamide, eticlopride and raclopride and are labeled with an N-2-[18F]fluoroethyl functionality on the pyrrolidine ring. The compounds were tested in vitro for binding affinity and found to exhibit somewhat lower affinity than the non-fluorinated analog. In vivo distribution studies revealed that all compounds were more highly bound to plasma proteins than was raclopride. In addition, compartmentation of radioactivity demonstrated nonspecific binding to be the predominate retention in the brain as reflected by the low caudate to cerebellum ratios for these compounds. These three 18F-labeled benzamide derivatives are inferior to raclopride and iodobenzamide for studies of the D2 receptor system using positron emission tomography.  相似文献   

17.
18.
A series of fluoro substituted aryl carboxamides was synthesized revealing high affinity for the dopamine D3 receptor. In contrast to 2-methoxy substitution, a 2,3-dichloro substitution pattern at the phenylpiperazine moiety induces a 10-fold increase of D3 affinity which is expressed by Ki values of 0.53, 1.1, and 9.0 nM for 8b, 8d, and 8f. Applying aromatic 18F-for-Br(Cl) substitution, high radiochemical yields between 76-82% were obtained for [18F]8c-f. The most promising ligand, [18F]8d, was used as imaging agent of the D3 receptor in vitro. However, due to the lack of specific binding, further studies should aim at the development of radioligands with improved D3 receptor selectivity.  相似文献   

19.
Carbonic anhydrase IX (CA-IX) is a marker for tumor hypoxia, and its expression is negatively correlated with patient survival. CA-IX represents a potential target for eliminating hypoxic cancers. We synthesized fluorinated cationic sulfonamide inhibitors 13 designed to target CA-IX. The binding affinity for CA-IX ranged from 0.22 to 0.96?μM. We evaluated compound 2 as a diagnostic PET imaging agent. Compound 2 was radiolabeled with 18F in 10?±?4% decay-corrected radiochemical yield with 85.1?±?70.3 GBq/μmol specific activity and >98% radiochemical purity. 18F-labeled 2 was stable in mouse plasma at 37?°C after 1?h incubation. PET/CT imaging was conducted at 1?h post-injection in a human colorectal cancer xenograft model. 18F-labeled 2 cleared through hepatobiliary and renal pathways. Tumor uptake was approximately 0.41?±?0.06% ID/g, with a tumor-to-muscle ratio of 1.99?±?0.25. Subsequently, tumor xenografts were visualized with moderate contrast. This study demonstrates the use of a cationic motif for conferring isoform selectively for CA-IX imaging agents.  相似文献   

20.
Three tertiary benzenesulfonamide inhibitors 4ac were radiolabeled with 18F and evaluated for imaging carbonic anhydrase IX (CA IX) expression with positron emission tomography. All three inhibitors exhibit <10 nM affinity for CA IX with no measurable affinity for CA II. Despite good affinity/selectivity to CA IX and excellent stability in plasma, uptake of [18F]4ac in CA IX-expressing HT-29 tumours was low without significant contrast. [18F]4a,b were excreted rapidly, while [18F]4c exhibited significant in vivo defluorination leading to high bone uptake. Due to minimal uptake in HT-29 tumours compared to normal organs/tissues, 18F-labeled benzenesulfonamides [18F]4ac are not suitable as CA IX imaging agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号