首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We extracted maximum information for structure-function analysis of the PSE-4 class A beta-lactamase by random replacement mutagenesis of three contiguous codons in the H4 alpha-helix at amino acid positions Ala125, Thr126, Met127, Thr128 and Thr129. These positions were predicted to interact with suicide mechanism-based inhibitors when examining the PSE-4 three-dimensional model. Structure-function studies on positions 125-129 indicated that in PSE-4 these amino acids have a role distinct from those in TEM-1, in tolerating substitutions at Ala125 and being invariant at Met127. The importance of Met127 was suspected to be implicated in a structural role in maintaining the integrity of the H4 alpha-helix structure together, thus maintaining the important Ser130-Asp131-Asn132 motif positioned towards the active site. At the structural level, the H4 region was analyzed using energy minimization of the H4 regions of the PSE-4 YAM mutant and compared with wild-type PSE-4. The Tyr 125 of the mutant YAM formed an edge to face pi-pi interaction with Phe 124 which also interacts with the Trp 210 with the same interactions. Antibiotic susceptibilities showed that amino acid changes in the the H4 alpha-helix region of PSE-4 are particularly sensitive to mechanism based-inhibitors. However, kinetic analysis of PSE-4 showed that the two suicide inhibitors belonging to the penicillanic acid sulfone class, sulbactam and tazobactam, were less affected by changes in the H4 alpha-helix region than clavulanic acid, an inhibitor of the oxypenam class. The analysis of H4 alpha-helix in PSE-4 suggests its importance in interactions with the three clinically useful inhibitors and in general to all class A enzymes.  相似文献   

2.
The clinical use of beta-lactam antibiotics combined with beta-lactamase inactivators, such as clavulanate, has resulted in selection of beta-lactamases that are insensitive to inactivation by these molecules. Therefore, therapeutic combinations of an enzyme inactivator and a penicillin are harmless for bacteria harboring such an enzyme. The TEM beta-lactamase variants are the most frequently encountered enzymes of this type, and presently, 20 variants are designated as inhibitor-resistant TEM ("IRT") enzymes. Three mutations appear to account for the phenotype of the majority of IRT enzymes, one of them being the Asn276Asp substitution. In this study, we have characterized the kinetic properties of the inhibition process of the wild-type TEM-1 beta-lactamase and of its Asn276Asp variant with the three clinically used inactivators, clavulanic acid (clavulanate), sulbactam, and tazobactam, and we report the X-ray structure for the mutant variant at 2.3 A resolution. The changes in kinetic parameters for the interactions of the inhibitors with the wild-type and the mutant enzymes were more pronounced for clavulanate, and relatively inconsequential for sulbactam and tazobactam. The structure of the Asn276Asp mutant enzyme revealed a significant movement of Asp276 and the formation of a salt bridge of its side chain with the guanidinium group of Arg244, the counterion of the inhibitor carboxylate. A water molecule critical for the inactivation chemistry by clavulanate, which is observed in the wild-type enzyme structure, is not present in the crystal structure of the mutant variant. Such structural changes favor the turnover process over the inactivation chemistry for clavulanate, with profound phenotypic consequences. The report herein represents the best studied example of inhibitor-resistant beta-lactamases.  相似文献   

3.
Abstract Spontaneous mutants of OHIO-1 β-lactamase, an SHV-1 family enzyme, resistant to inactivation by clavulanic acid, sulbactam and tazobactam, have been isolated. The resistant mutant (M4) was inhibited by 100 μg/ml ampicillin plus 32 μg/ml clavulanic acid compared to ≤2 μg/ml clavulanic acid required for the parent strain. The pI of the mutant beta-lactamase was 7.0, identical to the parent enzyme. Kinetic parameters showed that the M4 enzyme had an increased Vmax/Km ratio for all beta-lactam substrates compared to the parent enzyme. The apparent K i for clavulanic acid, sulbactam and tazobactam was 15.1, 182 and 18 μM, respectively, up to 70-fold higher than the parent enzyme. Partial nucleotide sequencing revealed that the mutant enzyme had a predicted methionine69→ isoleucine69 substitution accounting for the observed changes in substrate specificity.  相似文献   

4.
Characterization of the biochemical steps in the inactivation chemistry of clavulanic acid, sulbactam and tazobactam with the carbenicillin-hydrolyzing beta-lactamase PSE-4 from Pseudomonas aeruginosa is described. Although tazobactam showed the highest affinity to the enzyme, all three inactivators were excellent inhibitors for this enzyme. Transient inhibition was observed for the three inactivators before the onset of irreversible inactivation of the enzyme. Partition ratios (k(cat)/k(inact)) of 11, 41 and 131 were obtained with clavulanic acid, tazobactam and sulbactam, respectively. Furthermore, these values were found to be 14-fold, 3-fold and 80-fold lower, respectively, than the values obtained for the clinically important TEM-1 beta-lactamase. The kinetic findings were put in perspective by determining the computational models for the pre-acylation complexes and the immediate acyl-enzyme intermediates for all three inactivators. A discussion of the pertinent structural factors is presented, with PSE-4 showing subtle differences in interactions with the three inhibitors compared to the TEM-1 enzyme.  相似文献   

5.
The objective of this study was to determine the molecular factors that lead to beta-lactamase inhibitor resistance for the M69V variant in SHV-1 beta-lactamase. With mechanism-based inhibitors, the beta-lactamase forms an acyl-enzyme intermediate that consists of a trans-enamine derivative in the active site. This study focuses on these intermediates by introducing the E166A mutation that greatly retards deacylation. Thus, by comparing the properties of the E166A and M69V/E166A forms, we can explore the consequences of the resistance mutation at the level of the enamine acyl-enzyme forms. The reactions between the beta-lactamase and the inhibitors tazobactam, sulbactam, and clavulanic acid are followed in single crystals of the enzymes by using a Raman microscope. The resulting Raman difference spectroscopic data provide detailed information about conformational events involving the enamine species as well as an estimate of their populations. The Raman difference spectra for each of the inhibitors in the E166A and M69V/E166A variants are very similar. In particular, detailed analysis of the main enamine Raman vibration near 1595 cm(-1) reveals that the structure and flexibility of the enamine fragments are essentially identical for each of the three inhibitors in E166A and in the M69V/E166A double mutant. This finding is in accord with the X-ray-derived structures, presented herein at 1.6-1.75 A resolution, of the trans-enamine intermediates formed by the three inhibitors in M69V/E166A. However, a comparison of Raman results for M69V/E166A and E166A shows that the M69V mutation results in a 40%, 25%, and negligible reductions in the enamine population when the beta-lactamase crystals are soaked in 5 mM tazobactam, clavulanic acid, and sulbactam solutions, respectively. The levels of enamine from tazobactam and clavulanic acid can be increased by increasing the concentrations of inhibitor in the mother liquor. Thus, the sensitivity of population levels to the inhibitor concentration in the mother liquor focuses attention on the properties of the encounter complex preceding acylation. It is proposed that for small ligands, such as tazobactam, sulbactam, and clavulanic acid, the positioning of the lactam ring in the active site in the correct orientation for acylation is only one of a number of poorly defined conformations. For tazobactam and clavulanic acid, the correctly oriented encounter complex is even less likely in the M69V variant, leading to a reduction in the level of inhibition of the enzyme via formation of the acyl-enzyme intermediate and the onset of resistance. Analysis of the X-ray structures of the three intermediates in M69V/E166A demonstrates that, compared to the structures for the E166A form, the oxyanion hole becomes smaller, providing one explanation for why acylation may be less efficient following the M69V substitution.  相似文献   

6.
To elucidate how non-active site residues support the catalytic function, five selected residues of AdGSTD3-3 isoenzyme were changed to AdGSTD1-1 residues by means of site-directed mutagenesis. Analysis of the kinetic parameters indicated that Cys69Gln and Asp150Ser showed marked differences in Vmax and Km compared with the wild type enzyme. Both residues were characterized further by replacement with several amino acids. Both the Cys69 and Asp150 mutants showed differences with several GST substrates and inhibitors including affecting the interactions with pyrethroid insecticides. Cys69 and Asp150 mutants possessed a decreased half-life relative to the wild type enzyme. The Asp150 mutation appears to affect neighboring residues that support two important structural motifs, the N-capping box and the hydrophobic staple motif. The Cys69 mutants appeared to have subtle conformational changes near the active site residues resulting in different conformations and also directly affecting the active site region. The results show the importance of the cumulative effects of residues remote from the active site and demonstrate that minute changes in tertiary structure play a role in modulating enzyme activity.  相似文献   

7.
A highly conserved threonine residue marks the amino acid binding pocket within the editing active site of leucyl-tRNA synthetases (LeuRSs). It is essential to substrate specificity for the Escherichia coli enzyme in that it blocks the cognate leucine amino acid from binding in the hydrolytic editing active site. We combined mutagenesis and computational approaches to elucidate the molecular role of the critical side chain of this threonine residue. Removal of the terminal methyl group of the threonine side chain by replacement with serine yielded a mutant LeuRS that hydrolyzes Leu-tRNA(Leu). Substitution of valine for the conserved threonine conferred similar activities to the wild-type enzyme. However, an additional substitution within the editing active site suggested synergistic interactions with the conserved threonine site that significantly affected amino acid editing. On the basis of our combined biochemical and computational data, we propose that the threonine 252 side chain not only sterically hinders the cognate charged leucine from binding for hydrolysis but also plays a critical role in maintaining an active site geometry that is required for the fidelity of LeuRS.  相似文献   

8.
Characterization of the biochemical steps in the inactivation chemistry of clavulanic acid, sulbactam and tazobactam with the carbenicillin-hydrolyzing β-lactamase PSE-4 from Pseudomonas aeruginosa is described. Although tazobactam showed the highest affinity to the enzyme, all three inactivators were excellent inhibitors for this enzyme. Transient inhibition was observed for the three inactivators before the onset of irreversible inactivation of the enzyme. Partition ratios (kcat/kinact) of 11, 41 and 131 were obtained with clavulanic acid, tazobactam and sulbactam, respectively. Furthermore, these values were found to be 14-fold, 3-fold and 80-fold lower, respectively, than the values obtained for the clinically important TEM-1 β-lactamase. The kinetic findings were put in perspective by determining the computational models for the pre-acylation complexes and the immediate acyl-enzyme intermediates for all three inactivators. A discussion of the pertinent structural factors is presented, with PSE-4 showing subtle differences in interactions with the three inhibitors compared to the TEM-1 enzyme.  相似文献   

9.
Here the functional and structural importance of interactions involving the 240s loop of the catalytic chain for the stabilization of the T state of aspartate transcarbamoylase were tested by replacement of Lys-244 with Asn and Ala. For the K244A and K244N mutant enzymes, the aspartate concentration required to achieve half-maximal specific activity was reduced to 8.4 and 4.0 mm, respectively, as compared with 12.4 mM for the wild-type enzyme. Both mutant enzymes exhibited dramatic reductions in homotropic cooperativity and the ability of the heterotropic effectors to modulate activity. Small angle x-ray scattering studies showed that the unligated structure of the mutant enzymes, and the structure of the mutant enzymes ligated with N-phosphonacetyl-L-aspartate, were similar to that observed for the unligated and N-phosphonacetyl-L-aspartateligated wild-type enzyme. A saturating concentration of carbamoyl phosphate alone has little influence on the small angle x-ray scattering of the wild-type enzyme. However, carbamoyl phosphate was able to shift the structure of the two mutant enzymes dramatically toward R, establishing that the mutations had destabilized the T state of the enzyme. The x-ray crystal structure of K244N enzyme showed that numerous local T state stabilizing interactions involving 240s loop residues were lost. Furthermore, the structure established that the mutation induced additional alterations at the subunit interfaces, the active site, the relative position of the domains of the catalytic chains, and the allosteric domain of the regulatory chains. Most of these changes reflect motions toward the R state structure. However, the K244N mutation alone only changes local conformations of the enzyme to an R-like structure, without triggering the quaternary structural transition. These results suggest that loss of cooperativity and reduction in heterotropic effects is due to the dramatic destabilization of the T state of the enzyme by this mutation in the 240s loop of the catalytic chain.  相似文献   

10.
Thomä NH  Evans PR  Leadlay PF 《Biochemistry》2000,39(31):9213-9221
Adenosylcobalamin-dependent methylmalonyl-CoA mutase catalyzes the interconversion of methylmalonyl-CoA and succinyl-CoA via radical intermediates generated by substrate-induced homolysis of the coenzyme carbon-cobalt bond. From the structure of methylmalonyl-CoA mutase it is evident that the deeply buried active site is completely shielded from solvent with only a few polar contacts made between the protein and the substrate. Site-directed mutants of amino acid His244, a residue close to the inferred site of radical chemistry, were engineered to investigate its role in catalysis. Two mutants, His244Ala and His244Gln, were characterized using kinetic and spectroscopic techniques. These results confirmed that His244 is not an essential residue. However, compared with that of the wild type, k(cat) was lowered by 10(2)- and 10(3)-fold for the His244Gln and His244Ala mutants, respectively, while the K(m) for succinyl-CoA was essentially unchanged in both cases. The primary kinetic tritium isotope effect (k(H)/k(T)) for the His244Gln mutant was 1.5 +/- 0.3, and tritium partitioning was now found to be dependent on the substrate used to initiate the reaction, indicating that the rearrangement of the substrate radical to the product radical was extremely slow. The His244Ala mutant underwent inactivation under aerobic conditions at a rate between 1 and 10% of the initial rate of turnover. The crystal structure of the His244Ala mutant, determined at 2.6 A resolution, indicated that the mutant enzyme is unaltered except for a cavity in the active site which is occupied by an ordered water molecule. Molecular oxygen reaching this cavity may lead directly to inactivation. These results indicate that His244 assists directly in the unusual carbon skeleton rearrangement and that alterations in this residue substantially lower the protection of reactive radical intermediates during catalysis.  相似文献   

11.
We have identified two glycyl residues whose integrity is essential for the catalytic competence of a model pyridoxal 5'-phosphate requiring enzyme, D-serine dehydratase from Escherichia coli. This was accomplished by isolating and sequencing the structural gene from wild type E. coli and from two mutant strains that produce inactive D-serine dehydratase. DNA sequencing indicated the presence of a single glycine to aspartic acid replacement in each variant. The amino acid replacements lie in a glycine-rich region of D-serine dehydratase well removed from pyridoxal 5'-phosphate-binding lysine 118 in the primary structure of the enzyme. The striking effect of these two glycine to aspartic acid replacements on catalytic activity, the conservation of the glycine-rich region in several pyridoxal 5'-phosphate-dependent enzymes that catalyze alpha/beta-eliminations, and the placement of similar glycine-rich sequences in well-characterized active site structures suggest that the glycine-rich region interacts with the cofactor at the active site of the enzyme.  相似文献   

12.
R67 dihydrofolate reductase (R67 DHFR) catalyzes the transfer of a hydride ion from NADPH to dihydrofolate, generating tetrahydrofolate. The homotetrameric enzyme provides a unique environment for catalysis as both ligands bind within a single active site pore possessing 222 symmetry. Mutation of one active site residue results in concurrent mutation of three additional symmetry-related residues, causing large effects on binding of both ligands as well as catalysis. For example, mutation of symmetry-related tyrosine 69 residues to phenylalanine (Y69F), results in large increases in Km values for both ligands and a 2-fold rise in the kcat value for the reaction (Strader, M. B., Smiley, R. D., Stinnett, L. G., VerBerkmoes, N. C., and Howell, E. E. (2001) Biochemistry 40, 11344-11352). To understand the interactions between specific Tyr-69 residues and each ligand, asymmetric Y69F mutants were generated that contain one to four Y69F mutations. A general trend observed from isothermal titration calorimetry and steady-state kinetic studies of these asymmetric mutants is that increasing the number of Y69F mutations results in an increase in the Kd and Km values. In addition, a comparison of steady-state kinetic values suggests that two Tyr-69 residues in one half of the active site pore are necessary for NADPH to exhibit a wild-type Km value. A tyrosine 69 to leucine mutant was also generated to approach the type(s) of interaction(s) occurring between Tyr-69 residues and the ligands. These studies suggest that the hydroxyl group of Tyr-69 is important for interactions with NADPH, whereas both the hydroxyl group and hydrophobic ring atoms of the Tyr-69 residues are necessary for proper interactions with dihydrofolate.  相似文献   

13.
In some inhibitor-resistant TEM-derived beta-lactamases, Met-69 is substituted by Leu, Ile or Val. Residue 69 is located in a region of strong structural constraints, at the beginning of H2 alpha-helix, and in the vicinity of B3 and B4 beta-strands. Analysis of the three-dimensional structure of TEM-1 beta-lactamase suggests that alteration of the substrate-binding site can be produced by changes of the size of residue 69 side chain. Met-69 was substituted by alanine or glycine in TEM-Bs beta-lactamase (a TEM-1-related enzyme) using site-directed mutagenesis. The minimum inhibitory concentrations of the mutants compared with the wild-type revealed an increased susceptibility to beta-lactamase inhibitor-beta-lactam combinations and to first-generation cephalosporins. Comparing the Met69Ala and Met69Gly beta-lactamases with TEM-Bs, K(m) constants of the mutants showed an increased affinity for most beta-lactams but the kcat for most substrates did not change substantially. Mutants also demonstrated lower IC50 for the three inhibitors (clavulanic acid, tazobactam and sulbactam). The two substitutions of the residue 69 by alanine and glycine had a noticeable effect on K(m) values of TEM-Bs beta-lactamase, and on affinity for beta-lactamase inhibitors.  相似文献   

14.
The three-dimensional structure of bovine lens leucine aminopeptidase (EC 3.4.11.1) complexed with bestatin, a slow-binding inhibitor, has been solved to 3.0 A resolution by the multiple isomorphous replacement method with phase combination and density modification. In addition, this structure and the structure of the isomorphous native enzyme have been refined at 2.25 and 2.32 A resolution, respectively, with crystallographic R-factors of 0.180 and 0.159, respectively. The current structural model for the enzyme includes the two zinc ions and 481 of the 487 amino acid residues comprising the asymmetric unit. The enzyme is physiologically active as a hexamer, which has 32 symmetry, and is triangular in shape with a triangle edge length of 115 A and maximal thickness of 90 A. Monomers are crystallographically equivalent. Each is folded into two unequal alpha/beta domains connected by an alpha-helix to give a comma-like shape with approximate maximal dimensions of 90 A x 55 A x 55 A. The secondary structural composition is 35% alpha-helix and 23% beta-strand. The N-terminal domain (160 amino acid residues) mediates trimer-trimer interactions and does not appear to participate directly in catalysis, while the C-terminal domain (327 amino acid residues) is responsible for catalysis and binds the two zinc ions, which are less than 3 A apart. These two metal ions are located near the edge of an eight-stranded, saddle-shaped beta-sheet. The zinc ion that has the lower temperature factor is co-ordinated by one carboxylate oxygen atom from each of Asp255, Asp332 and Glu334, and the carbonyl oxygen of Asp332. The other zinc ion, presumed to be readily exchangeable, is co-ordinated by one carboxylate oxygen atom of each of Asp273 and Glu334 and the side-chain amino group of Lys250. The active site also contains two positively charged residues, Lys262 and Arg336. The six active sites are themselves located in the interior of the hexamer, where they line a disk-shaped cavity of radius 15 A and thickness 10 A. Access to this cavity is provided by solvent channels that run along the 2-fold symmetry axes. Bestatin binds to one of the active site zinc ions, and its phenylalanine and leucine side-chains occupy hydrophobic pockets adjacent to the active site. Finally, the relationship between bovine lens leucine aminopeptidase and the homologous enzyme pepA from Escherichia coli is discussed.  相似文献   

15.
The replacement of the active site nucleophile Glu 358 in Agrobacterium beta-glucosidase by Asn and Gln by site-directed mutagenesis results in essentially complete inactivation of the enzyme, while replacement by Asp generates a mutant with a rate constant for the first step, formation of the glycosylenzyme, some 2500 times lower than that of the native enzyme. This low activity is shown to be a true property of the mutant and not due to contaminating wild-type enzyme by active site titration studies and also through studies of its thermal denaturation and of the pH dependence of the reaction catalyzed. Binding of ground-state inhibitors is affected relatively little by the mutation, while binding of transition-state analogues is greatly impaired, consistent with a principal role for Glu 358 being in transition-state stabilization, not substrate binding. Determination of kinetic parameters for a series of aryl glucosides revealed that the glycosylation step is rate determining for all these substrates in contrast to the native enzyme, where a switch from rate-limiting glycosylation to rate-limiting deglycosylation was observed as substrate reactivity was increased. These results coupled with secondary deuterium kinetic isotope effects of kH/kD = 1.17 and 1.12 measured for the 2,4-dinitrophenyl and p-nitrophenyl glucosides point to a principal role of the nucleophile in stabilizing the cationic transition states and in formation of the covalent intermediate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A variety of physico-chemical techniques have been used to probe the possible interactions between the characteristic structural domains of yeast phosphoglycerate kinase by comparison of the wild-type enzyme with the specific H388Q mutant in which a potential interaction between His388 and Glu190 in the crucial interdomain region is disrupted. Enzyme kinetic studies indicate that, despite being structurally remote from the active site, this mutation has significant effects on both the Vmax and Km values for various substrates. The single cysteine residue in the N domain of the protein is markedly more reactive in the mutant, and this enhanced accessibility is moderated by binding of substrates and various anions. Differences are also observed in the near-ultraviolet CD spectra of these proteins. The chemical and thermal stability of the mutant enzyme is reduced, as indicated from guanidinium chloride and differential-scanning calorimetry denaturation studies. Moreover, interdomain interactions seem to be altered in the mutant, resulting in the appearance of independent thermal transition for the two domains, in contrast to the single cooperative transition observed for the wild-type enzyme. The conformational and/or dynamic effects of the mutation on the H388Q enzyme are therefore various and not solely localised in the hinge region.  相似文献   

17.
Antibiotic resistance to beta-lactam compounds in Gram-negative bacteria such as Escherichia coli and Klebsiella pneumoniae is often mediated by beta-lactamase enzymes like TEM and SHV. Previously, a limited number of inhibitors have shown efficacy in combating such bacterial drug resistance. However, many Gram-negative pathogens have evolved inhibitor resistant forms of these hydrolytic enzymes. A single point mutation of the active site residue Ser130 to a Gly in either TEM or SHV results in resistance to amoxicillin and clavulanic acid, an important clinical beta-lactam-beta-lactamase inhibitor combination antibiotic. Previous structural and modeling studies of the S130G mutants of TEM and SHV have shown differences in how these two distinct but closely related enzymes compensate for the loss of the Ser130 residue. In the case of S130G SHV, a structure of tazobactam in the active site has suggested that the inhibitor preferentially assumes a cis-enamine intermediate form when the Ser130 hydroxyl is absent. Raman crystallographic studies of S130G SHV inhibited with tazobactam, sulbactam, clavulanic acid, and 2'-glutaroxy penem sulfone (SA2-13) were performed with the aim of identifying the type and amount of intermediate formed with each drug to understand the role of the S130G mutation in formation of the important enamine intermediates. It is demonstrated that with the exception of sulbactam, each compound forms observable trans-enamine intermediates. For S130G reacted with tazobactam, identical steady state levels of enamine are achieved when compared to those of wild-type (WT) or even deacylation deficient forms of the enzyme. With clavulanic acid, slightly smaller amounts of enamine are observed within the first 30 min of the reaction but are not significantly different than those for tazobactam. Thus, the resistance mutation does not substantially affect the amount of trans-enamine formed with clavulanic acid during the critical early time period of inhibition. This finding has important implications in the design of beta-lactamase inhibitors for drug resistant variants like S130G SHV.  相似文献   

18.
Non-conserved amino acids that are far removed from the active site can sometimes have an unexpected effect on enzyme catalysis. We have investigated the effects of alanine replacement of residues distant from the active site of the replicative RB69 DNA polymerase, and identified a substitution in a weakly conserved palm residue (D714A), that renders the enzyme incapable of sustaining phage replication in vivo. D714, located several angstroms away from the active site, does not contact the DNA or the incoming dNTP, and our apoenzyme and ternary crystal structures of the PolD714A mutant demonstrate that D714A does not affect the overall structure of the protein. The structures reveal a conformational change of several amino acid side chains, which cascade out from the site of the substitution towards the catalytic center, substantially perturbing the geometry of the active site. Consistent with these structural observations, the mutant has a significantly reduced kpol for correct incorporation. We propose that the observed structural changes underlie the severe polymerization defect and thus D714 is a remote, non-catalytic residue that is nevertheless critical for maintaining an optimal active site conformation. This represents a striking example of an action-at-a-distance interaction.  相似文献   

19.
20.
Aspartic acid 244 that occurs at the putative NAD(+)-binding site of rat liver S-adenosylhomocysteinase was replaced by glutamic acid by oligonucleotide-directed mutagenesis. The mutant enzyme was purified to homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gel permeation chromatography showed that the purified mutant enzyme was a tetramer as is the wild-type enzyme. In contrast to the wild-type enzyme, which possesses 1 mol of tightly bound NAD+ per mol of enzyme subunit, the mutant enzyme had only 0.05 mol of NAD+ but contained about 0.6 mol each of NADH and adenine per mol of subunit. The mutant enzyme, after removal of the bound compounds by acid-ammonium sulfate treatment, exhibited S-adenosylhomocysteinase activity when assayed in the presence of NAD+. From the appearance of activity as a function of NAD+ concentration, the enzyme was shown to bind NAD+ with a Kd of 23.0 microM at 25 degrees C, a value greater than 280-fold greater than that of the wild-type enzyme. In the presence of a saturating concentration of NAD+, the mutant enzyme showed apparent Km values for substrates similar to those of the wild-type enzyme. Moderate decreases of 8- and 15-fold were observed in Vmax values for the synthetic and hydrolytic directions, respectively. These results indicate the importance of Asp-244 in binding NAD+, and are consistent with the idea that the region of S-adenosylhomocysteinase from residues 213 to 244 is part of the NAD+ binding site. This region has structural features characteristic of the dinucleotide-binding domains of NAD(+)- and FAD-binding proteins (Ogawa, H., Gomi, T., Mueckler, M. M., Fujioka, M., Backlund, P.S., Jr., Aksamit, R.R., Unson, C.G., and Cantoni, G.L. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 719-723).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号