首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyclitol 1d-4-O-methyl-myo-inositol (d-ononitol) is accumulated in certain legumes in response to abiotic stresses. S-Adenosyl-l-methionine:myo-inositol 6-O-methyltransferase (m6OMT), the enzyme which catalyses the synthesis of d-ononitol, was extracted from stems of Vigna umbellata Ohwi et Ohashi and purified to apparent homogeneity by a combination of conventional chromatographic techniques and by affinity chromatography on immobilized S-adenosyl-l-homocysteine (SAH). The purified m6OMT was photoaffinity labelled with S-adenosyl-l-[14C-methyl]methionine. The native molecular weight was determined to be 106 kDa, with a subunit molecular weight of 40 kDa. Substrate-saturation kinetics of m6OMT for myo-inositol and S-adenosyl-l-methionine (SAM) were Michaelis-Menten type with K m values of 2.92 mM and 63 M, respectively. The SAH competitively inhibited the enzyme with respect to SAM (K i of 1.63 M). The enzyme did not require divalent cations for activity, but was strongly inhibited by Mn2+, Zn2+ and Cu2+ and sulfhydryl group inhibitors. The purified m6OMT was found to be highly specific for the 6-hydroxyl group of myo-inositol and showed no activity on other naturally occurring isomeric inositols and inositol O-methyl-ethers. Neither d-ononitol, nor d-3-O-methyl-chiro-inositol, d-1-O-methyl-muco-inositol or d-chiro-inositol (end products of the biosynthetic pathway in which m6OMT catalyses the first step), inhibited the activity of the enzyme.Abbreviations DTT dithiothreitol - m6OMT myo-inositol 6-O-methyltransferase - SAH S-adenosyl-l-homocysteine - SAM S-adenosyl-l-methionine We are greatful to Professor M. Popp (University of Vienna) for helpful discussion and comment. This work was supported by Grant P09595-BIO from the Austrian Science Foundation (FWF).  相似文献   

2.
Chlamydomonas reinhardtii chloroplasts catalyzed two sequential steps of Chl biosynthesis, S-adenosyl-l-methionine:Mg-protoporphyrin IX methyltransferase and Mg-protoporphyrin IX monomethyl ester oxidative cyclase. A double mutant strain of C. reinhardtii was constructed which has a cell wall deficiency and is unable to form chlorophyll in the dark. Dark-grown cells were disrupted with a BioNeb nebulizer under conditions which lysed the plasma membrane but not the chloroplast envelope. Chloroplasts were purified by Percoll density gradient centrifugation. The purified chloroplasts were used to define components required for the biosynthesis of Mg-2,4-divinylpheoporphyrin a 5 (divinyl protochlorophyllide) from Mg-protoporphyrin IX. Product formation requires the addition of Mg-protoporphyrin IX, the substrate for S-adenosyl-l-methionine:Mg-protoporphyrin IX methyltransferase which produces Mg-protoporphyrin IX monomethyl ester. The Mg-protoporphyrin IX monomethyl ester that is generated in situ is the substrate for Mg-protoporphyrin IX monomethyl ester oxidative cyclase. The reaction product was identified as Mg-2,4-divinylpheoporphyrin a 5 (divinyl protochlorophyllide) by excitation and emission spectrofluorometry and HPLC on ion-paired reverse-phase and polyethylene columns. Mg-2,4-divinylpheoporphyrin a 5 formation by the coupled enzyme system required O2 and was stimulated by the addition of NADP+, an NADPH regenerating system, and S-adenosyl-l-methionine. Product was formed at a relatively steady rate for at least 60 min.Abbreviations MgDVP Mg-2,4-divinylpheoporphyrin a 5 (divinyl protochlorophyllide) - SAM S-adenosyl-l-methionine  相似文献   

3.
An enzyme,S-adenosyl-l-methionine: flavonoid 7-O-methyltransferase (F7OMT), catalyzing the transfer of the methyl group fromS-adenosyl-l-methionine (SAM) to the 7 position of sophoricoside (5, 7, 4′-trihydroxyisoflavone 4′-O-glucoside) and some of the other flavonoids, was detected in extracts from leaves ofPrunus x yedoensis, and it was partially purified (about 203-fold) by a combination of gel filtration and ion-exchange column chromatographies. F7OMT was isolated as a soluble enzyme with a pH optimun of 7.5 in K-phosphate buffer. The molecular mass of F7OMT, which had an isoelectric point at pH 4.1, was estimated by elution from a column of Sephadex G-100 to be about 36 kDa. The activity of F7OMT was stimulated by 14 mM 2-Co2+ and reagents that react with sulfhydryl groups. The apparentKm values for sophoricoside, its aglycone genistein (5, 7, 4′-trihydroxyisoflavone) and quercetin were 1.49, 2.19 and 1.89 μM, respectively. The apparentKm value for SAM as methyl donor was 2.08 mM. The specificity of F7OMT for methyl acceptors was not strict; flavonols, flavanones and flavanonols in addition to isoflavones served as methyl acceptor. An examination ofP. x yedoensis leaves during spring and autumn showed variations in the activities of F7OMT and UDP-glucose: isoflavone 4′-O-glucosyltransferase (I4′ GT). The activities of F7OMT and I4′GT increased in enlarging leaf tissues and then markedly declined when the leaves approached maturation. In autumn leaves F7OMT activity was scarcely detected, but a small peak of I4′GT activity was observed during autumnal reddening.  相似文献   

4.
1. Direct or indirect inhibitors of l-ornithine decarboxylase (EC 4.1.1.17), structurally related or unrelated to l-ornithine, including dl-α-difluoromethylornithine, α-methylornithine and 1,3-diaminopropane, used alone or in combination, decreased polyamine concentrations in rat hepatoma tissue culture (HTC) cells and increased S-adenosyl-l-methionine decarboxylase activity (EC 4.1.1.50). 2. Comparison of the catalytic properties of S-adenosyl-l-methionine from cells with elevated and normal activities revealed no apparent modification of the catalytic site as judged by affinity for the substrate, stimulation by di- and tri-amines and inhibition by methylglyoxal bis-(guanylhydrazone). 3. Actinomycin D and cycloheximide, and RNA and a proteinsynthesis inhibitor respectively, blocked the increase of S-adenosyl-l-methionine decarboxylase activity elicited by α-difluoromethylornithine. In polyamine-depleted cells the apparent half-life of elevated S-adenosyl-l-methionine decarboxylase activity, determined by inhibition of protein synthesis, was 2.5-fold longer than in control cells. The present results suggest that elevation of S-adenosyl-l-methionine decarboxylase activity by α-difluoromethylornithine is due to stabilization of the enzyme. 4. Restoration of the normal intracellular putrescine content, by addition of putrescine to the medium of polyamine-deficient cells, transiently increased S-adenosyl-l-methionine decarboxylase activity. Thereafter, intracellular conversion of putrescine into spermidine was accompanied by inactivation of the enzyme at a rate that was similar to that found on addition of spermidine itself. No relationship between total intracellular spermine content and S-adenosyl-l-methionine decarboxylase activity could be established. 5. Addition of 1mm-1,3-diaminopropane to polyamine-deficient cells did not cause a decrease in the activity of S-adenosyl-l-methionine decarboxylase, whereas addition of 1,5-diaminopentane (cadaverine) did. 1,3-Diamino-N-(3-aminopropyl)propane did not accumulate in cells treated with α-difluoromethylornithine and 1,3-diaminopropane, whereas addition of 1,5-diaminopentane led to the accumulation of 1,5-diamino-N-(3-aminopropyl)pentane. 1,3-Diamino-N-(3-aminopropyl)propane (10μm) was as effective as spermidine in decreasing S-adenosyl-l-methionine decarboxylase activity. Thus effectiveness of a diamine in decreasing enzyme activity is related to its capability of being converted into a closely structurally related homologue of spermidine by spermidine synthase. 6. The spermidine site of action appears to be post-translational since (a) the spermidine-induced decrease of S-adenosyl-l-methionine activity was not prevented by actinomycin D and (b) spermidine in the presence of cycloheximide led to a synergistic inactivation of the enzyme with a decay rate that progressively approached control values. Altogether these results are indirect evidence for a strict negative control of S-adenosyl-l-methionine decarboxylase by spermidine and substantiate previous findings [Mamont, Duchesne, Grove & Tardif (1978) Exp. Cell Res. 115, 387–393]. Spermidine appears to act on some processes involved in denaturation and/or degradation of the enzyme protein. Putrescine appears to decrease the rate of these processes. The physiological significance of the regulatory control of S-adenosyl-l-methionine decarboxylase is discussed.  相似文献   

5.
The carbon catabolism of l-lysine starts in Saccharomyces cerevisiae with acetylation by an acetyl-CoA: l-lysine N6-acetyltransferase. The enzyme is strongly induced in cells grown on l-lysine as sole carbon source and has been purified about 530-fold. Its activity was specific for acetyl-CoA and, in addition to l-lysine, 5-hydroxylysine and thialysine act as acetyl acceptor. The following apparent Michaelis constants were determined: acetyl-CoA 0.8 mM, l-lysine 5.8 mM, dl-5-hydroxylysine 2.8 mM, l-thialysine 100 mM. The enzyme had a maximum activity at pH 8.5 and 37°C. Its molecular mass, estimated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, was 52 kDa. Since the native molecular mass, determined by gel filtration, was 48 kDa, the enzyme is a monomer.  相似文献   

6.
An intracellular S-adenosylmethionine synthetase (SAM-s) was purified from the fermentation broth of Pichia pastoris GS115 by a sequence chromatography column. It was purified to apparent homogeneity by (NH4)2SO4 fractionation (30–60%), anion exchange, hydrophobic interaction, anion exchange and gel filtration chromatography. HPLC showed the purity of purified SAM-s was 91.2%. The enzyme was purified up to 49.5-fold with a final yield of 20.3%. The molecular weight of the homogeneous enzyme was 43.6 KDa, as determined by electro-spray ionization mass spectrometry (ESI-MS). Its isoelectric point was approximately 4.7, indicating an acidic character. The optimum pH and temperature for the enzyme reaction were 8.5 and 35 °C, respectively. The enzyme was stable at pH 7.0–9.0 and was easy to inactivate in acid solution (pH ≤ 5.0). The temperature stability was up to 45 °C. Metal ions, such as, Mn2+ and K+ at the concentration of 5 mM had a slight activation effect on the enzyme activity and the Mg2+ activated the enzyme significantly. The enzyme activity was strongly inhibited by heavy metal ions (Cu2+ and Ag2+) and EDTA. The purified enzyme from the transformed Pichia pastoris synthesized S-adenosylmethionine (SAM) from ATP and l-methionine in vitro with a K m of 120 and 330 μM and V max of 8.1 and 23.2 μmol/mg/min for l-methionine and ATP, respectively.  相似文献   

7.
S-Adenosylmethionine (SAM) is synthesized via the metabolic reaction involving adenosine triphosphate and l-methionine that is catalyzed by the enzyme S-adenosyl-l-methionine synthetase (SAM-s) and encoded by the gene metK. In the present study, metK with the absence of introns from Saccharomyces cerevisiae was introduced into Streptomyces actuosus, a nosiheptide (Nsh) producer. Intracellular SAM levels were determined by high-pressure liquid chromatography. Through optimizing the nutrient content of the medium, it was shown that increased SAM production induced by the overexpression of SAM-s leads to an increase in the intracellular cysteine pool and overproduction of Nsh in S. actuosus. This investigation shows that increased SAM promotes the elevated production of the non-ribosomal thiopeptide Nsh in Streptomyces sp.  相似文献   

8.
The levels of putrescine and spermine in mouse brain were rather constant at different times of day, as were the activities of ornithine andS-adenosyl-l-methionine decarboxylases. Contrary to an earlier report, the level of spermidine was found to be relatively constant. A possibly significant feature in the present results was the steady decline during the light period and rise during darkness of cerebral spermidine and spermine levels, the differences between maximum and minimum being about 15% for both compounds.  相似文献   

9.
10.
Studies of inhibition of rat spermidine synthase and spermine synthase   总被引:5,自引:4,他引:1  
1. S-Adenosyl-l-methionine, S-adenosyl-l-homocysteine, 5′-methylthioadenosine and a number of analogues having changes in the base, sugar or amino acid portions of the molecule were tested as potential inhibitors of spermidine synthase and spermine synthase from rat ventral prostate. 2. S-Adenosyl-l-methionine was inhibitory to these reactions, as were other nucleosides containing a sulphonium centre. The most active of these were S-adenosyl-l-ethionine, S-adenosyl-4-methylthiobutyric acid, S-adenosyl-d-methionine and S-tubercidinylmethionine, which were all comparable in activity with S-adenosylmethionine itself, producing 70–98% inhibition at 1mm concentrations. Spermine synthase was somewhat more sensitive than spermidine synthase. 3. 5′-Methylthioadenosine, 5′-ethylthioadenosine and 5′-methylthiotubercidin were all powerful inhibitors of both enzymes, giving 50% inhibition of spermine synthase at 10–15μm and 50% inhibition of spermidine synthase at 30–45μm. 4. S-Adenosyl-l-homocysteine was a weak inhibitor of spermine synthase and practically inactive against spermidine synthase. Analogues of S-adenosylhomocysteine lacking either the carboxy or the amino group of the amino acid portion were somewhat more active, as were derivatives in which the ribose ring had been opened by oxidation. The sulphoxide and sulphone derivatives of decarboxylated S-adenosyl-l-homocysteine and the sulphone of S-adenosyl-l-homocysteine were quite potent inhibitors and were particularly active against spermidine synthase (giving 50% inhibition at 380, 50 and 20μm respectively). 5. These results are discussed in terms of the possible regulation of polyamine synthesis by endogenous nucleosides and the possible value of some of the inhibitory substances in experimental manipulations of polyamine concentrations. It is suggested that 5′-methylthiotubercidin and the sulphone of S-adenosylhomocysteine or of S-adenosyl-3-thiopropylamine may be particularly valuable in this respect.  相似文献   

11.
During the biosynthesis of heme d1, the essential cofactor of cytochrome cd1 nitrite reductase, the NirE protein catalyzes the methylation of uroporphyrinogen III to precorrin-2 using S-adenosyl-l-methionine (SAM) as the methyl group donor. The crystal structure of Pseudomonas aeruginosa NirE in complex with its substrate uroporphyrinogen III and the reaction by-product S-adenosyl-l-homocysteine (SAH) was solved to 2.0 Å resolution. This represents the first enzyme-substrate complex structure for a SAM-dependent uroporphyrinogen III methyltransferase. The large substrate binds on top of the SAH in a “puckered” conformation in which the two pyrrole rings facing each other point into the same direction either upward or downward. Three arginine residues, a histidine, and a methionine are involved in the coordination of uroporphyrinogen III. Through site-directed mutagenesis of the nirE gene and biochemical characterization of the corresponding NirE variants the amino acid residues Arg-111, Glu-114, and Arg-149 were identified to be involved in NirE catalysis. Based on our structural and biochemical findings, we propose a potential catalytic mechanism for NirE in which the methyl transfer reaction is initiated by an arginine catalyzed proton abstraction from the C-20 position of the substrate.  相似文献   

12.
Summary In this report we describe the procedure of growing human lymphocytes with the demethylating agent S-adenosyl-l-homocysteine (SAH). After this treatment, which is not toxic for cell survival, both R-and G-banding were obtained by new experimental procedures: R-bands have been directly demonstrated with the GC-specific fluorochrome chromomycin A3 without the necessity of any AT-specific counterstaining agent; simultaneous G-banding and active nucleolar organizer regions have been obtained by silver impregnation of chromosomes and subsequent Giemsa staining. These results suggest a possible relationship between local differences in DNA methylation and the determination of the banded chromosome structure.  相似文献   

13.
The effect of various sulfur-containing amino acids on the activities of prolidase isoenzymes I and II isolated from erythrocytes of healthy individuals, and erythrocyte lysates from a patient with prolidase deficiency was investigated. The activity of prolidase I against glycylproline was strongly enhanced by d-methionine. l-Methionine and d,l-methionine slightly enhanced the activity at low concentration, but N-acetyl-l-methionine had no effect. d-Ethionine, l-ethionine, and d,l-ethionine also enhanced the activity of prolidase I. d,l-Homocysteine enhanced the activity at low concentration, but inhibited the activity at 50 mM. The activity of prolidase II against methionylproline was enhanced by d-methionine, d,l-methionine, and l-methionine, but N-acetyl-l-methionine had no effect. d-Ethionine and d,l-ethionine strongly enhanced the activity of prolidase II compared with l-ethionine; d,l-homocysteine weakly enhanced the activity. d,l-Homocysteine-thiolactone inhibited the activities of prolidase I and II in a concentration-dependent manner. The effect of various sulfur-containing amino acids on prolidase activity against methionylproline in erythrocyte lysates from a patient with prolidase deficiency was almost the same as that on prolidase II. The kinetics of the activities of prolidase I, II, and patient prolidase were also studied. Their K m values were changed by adding sulfur-containing amino acids, but V max values were unchanged.  相似文献   

14.
The final enzymatic step in the synthesis of the flavor compound vanillin (4-hydroxy-3-methoxybenzaldehyde) is believed to be methylation of 3,4-dihydroxybenzaldehyde. We have isolated and functionally characterized a cDNA that encodes a multifunctional methyltransferase from Vanilla planifolia tissue cultures that can catalyze the conversion of 3,4-dihydroxybenzaldehyde to vanillin, although 3,4-dihydroxybenzaldehyde is not the preferred substrate. The higher catalytic efficiency of the purified recombinant enzyme with the substrates caffeoyl aldehyde and 5-OH-coniferaldehyde, and its tissue distribution, suggest this methyltransferase may primarily function in lignin biosynthesis. However, since the enzyme characterized here does have 3,4-dihydroxybenzaldehyde-O-methyltransferase activity, it may be useful in engineering strategies for the synthesis of natural vanillin from alternate sources.Abbreviations COMT Caffeic acid O-methyltransferase - DOMT 3,4-Dihydroxybenzaldehyde-O-methyltransferase - OMTs O-Methyltransferases - SAM S-adenosyl-l-methionine  相似文献   

15.
1. Castration of adult rats resulted in marked decreases in the amounts of putrescine, spermidine and spermine in the ventral prostate gland. Spermidine concentrations decline rapidly over the first 11 days after androgen withdrawal, reaching a value of only 12% of normal controls. Spermine concentrations diminish more slowly, reaching 24% of normal within 11 days. The spermidine/spermine molar ratio falls from 0.9 to 0.46 under these conditions. Putrescine concentrations decrease by 70% at 7 days after castration and then remain constant for some days. 2. After daily injections of testosterone propionate to rats castrated 7 days previously, prostatic spermidine and putrescine concentrations increase significantly within 24h; normal or even greater values are observed within 8 and 4 days respectively. In contrast, the spermine concentration does not increase until 5 days after commencement of androgen treatment. 3. The activities of two enzymes involved in polyamine biosynthesis (ornithine decarboxylase and a putrescine-activated S-adenosyl-l-methionine decarboxylase system) were greatly decreased soon after castration: after 7 days the respective values were 15% of normal for ornithine decarboxylase and 7% of normal for putrescine-dependent decarboxylation of S-adenosyl-l-methionine. Injection of testosterone propionate into animals castrated 7 days previously induced a rapid increase in both enzymic activities: ornithine decarboxylase was doubled in 6h, and increased three- to four-fold within 48h, whereas the putrescine-dependent decarboxylation of S-adenosyl-l-methionine doubled in 3h and increased tenfold within 48h of commencement of daily androgen treatments. 4. The activity of these enzyme systems was very low in the ventral prostates of hypophysectomized rats and was increased by administration of testosterone in a manner similar to that found in castrated rats. 5. Alterations in the activity of two ventral-prostate enzymes involved in ornithine production (arginase) and utilization (ornithine–2-oxoglutarate transaminase) that result from changes in the androgenic status of rats are described. 6. The findings presented suggest that the activities of ornithine decarboxylase and the putrescine-dependent S-adenosyl-l-methionine decarboxylase system, rather than ornithine concentrations, are rate-limiting for the formation of putrescine and polyamines in rat ventral prostate. 7. The relation of polyamines to androgen-induced prostatic growth is discussed with particular reference to the biosynthesis of proteins and nucleic acids.  相似文献   

16.
Emodin O-methyltransferase, an enzyme catalyzing methylation of the 8-hydroxy group of emodin, was identified in the mould Aspergillus terreus IMI 16043, a (+)-geodin producing strain. The enzyme catalyzed the formation of questin from emodin and S-adenosyl-l-methionine. By chromatography on DEAE-cellulose, Phenyl Sepharose, Q-Sepharose, Hydroxyapatite, and CM-cellulose, emodin O-methyltransferase was purified to apparent homogeneity. The purified protein had a molecular weight of 322 kDa as estimated by gel filtration and 53.6 kDa as estimated by gel electrophoresis under denaturing conditions, suggesting that the active enzyme was a homohexamer. The enzyme showed pI 4.4 and optimum pH 7–8. Magnesium ion or manganese ion was not an absolute requirement, nor increased the enzyme activity. The enzyme had strict substrate specificity and very low Km values for both emodin (3.4×10-7 M) and S-adenosyl-l-methionine (4.1×10-6 M).Abbreviations EOMT emodin O-methyltransferase from A. terreus - SAM S-adenosyl-l-methionine - PAGE polyacrylamide gel electrophoresis  相似文献   

17.
l-Alanine dehydrogenase was found in extracts of the antibiotic producer Streptomyces clavuligerus. The enzyme was induced by ammonia, and the level of induction was dependend on the extracellular concentration. l-Alanine was the only amino acid able to induce alanine dehydrogenase. The enzyme was characterized from a 38-fold purified preparation. Pyruvate (K m =1.1 mM), ammonia (K m =20 mM) and NADH (K m =0.14 mM) were required for the reductive amination, and l-alanine (K m =9.1 mM) and NAD (K m =0.5 mM) for the oxidative deaminating reaction. The aminating reaction was inhibited by alanine, serine and NADPH. Alanine inhibited uncompetitively with respect to NADH (K i =1.6 mM) and noncompetitively with respect to ammonia (K i =2.0 mM) and pyruvate (K i =3.0 mM). In the aminating reaction 3-hydroxypyruvate, glyoxylate and 2-oxobutyrate could partially (6–7%) substitute pyruvate. Alanine dehydrogenase from S. clavuligerus differed with respect to its molecular weight (92000) and its kinetic properties from those described for other microorganisms.Abbreviation Alanine-DH l-alanine:NAD oxidoreductase  相似文献   

18.
Two l-threonine (l-serine) dehydratases (EC 4.2.1.16) of the thermophilic phototrophic bacterium Chloroflexus aurantiacus Ok-70-fl were purified to electrophoretic homogeneity by procedures involving anion exchange and hydrophobic interaction chromatography. Only one of the two enzymes was sensitive to inhibition by l-isoleucine (K i=2 M) and activation by l-valine. The isoleucine-insensitive dehydratase was active with l-threonine (K m=20 mM) as well as with l-serine (K m=10 mM) whereas the other enzyme, which displayed much higher affinity to l-threonine (K m=1.3 mM), was inactivated when acting on l-serine. Both dehydratases contained pyridoxal-5-phosphate as cofactor. When assayed by gel filtration techniques at 20 to 25° C, the molecular weights of both enzymes were found to be 106,000±6,000. In sodium dodecylsulfate-polyacrylamide gel electrophoresis, the two dehydratases yielded only one type of subunit with a molecular weight of 55,000±3,000. The isoleucine-insensitive enzyme was subject to a glucose-mediated catabolite repression.Abbreviations A absorbance - ile isoleucine - PLP pyridoxal-5-phosphate - SDS sodium dodecyl sulfate - TDH threonine dehydratase - U unit  相似文献   

19.
Addition of NH4Cl at low concentrations to Azotobacter chroococcum cells caused an immediate cessation of nitrate uptake activity, which was restored when the added NH 4 + was exhausted from the medium or by adding an NH 4 + assimilation inhibitor, l-methionine-dl-sulfoximine (MSX) or l-methionine sulfone (MSF). In the presence of such inhibitors the newly-reduced nitrate was released into the medium as NH 4 + . When the artificial electron donor system ascorbate/N-methylphenazinium methylsulfate (PMS), which is a respiratory substrate that was known to support nitrate uptake by A. chroococcum while inhibiting glutamine synthetase activity, was the energy source, externally added NH 4 + had no effect on nitrate uptake. It is concluded that, in A. chroococcum cells, NH 4 + must be assimilated to exert its short-term inhibitory effect on nitrate uptake. A similar proposal was previously made to explain the short-term ammonium inhibition of N2 fixation in this bacterium.Abbreviations MOPS morpholinopropanesulfonic acid - MSX l-methionine-dl-sulfoximine - PMS N-methylphenazinium methylsulfate - MSF l-methionine sulfone  相似文献   

20.
Treatment with an autoclaved culture homogenate of the yeastRhodotorula rubra induces rapid accumulation of acridone epoxides, furoquinolines and furanocoumarins in cell cultures ofRuta graveolens (L). The increased accumulation is preceeded by an induction of enzymes of the biosynthetic pathways. In the case of furanocoumarins induction was shown for phenylalanine ammonia-lyase (PAL), 4-coumarate: CoA ligase (4-CL) and S-adenosyl-l-methionine: xanthotoxol O-methyltransferase (XOMT). For PAL and 4-CL time courses of induced activity showed an early maximum, 8–12 h after treatment, whereas XOMT was found to reach its maximum later, about 36–42 h after treatment. The elicitor dose-response curve showed saturation at an elicitor concentration of 1%. At any time during the whole culturing period cells responded to elicitiation but the maximum enzyme activities induced were lower at the late stages. Experiments with different suspension culture strains, a shoot teratoma culture and hydroponically grown sterile photomixotrophic plants were performed to assess the influence of differentiation on constitutive activities of these enzymes and their inducibility by elicitation. Constitutive furanocoumarin accumulation was positively correlated with the level of differentiation. Although induction of PAL, 4-CL and XOMT activity always accompanied induced furanocoumarin accumulation no absolute correlation existed between induced enzyme activities and the induced product level or relative product increase.Abbreviations 4-CL 4-coumarate:CoA ligase - COMT S-adenosyl-l-methionine:caffeic acid 3-O-methyltransferase - PAL phenylalanine:ammonia-lyase - XOMT S-adenosyl-l-methionine:xanthotoxol O-methyltransferase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号