首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bovine heart mitochondrial F1-ATPase (MF1) is reversibly inhibited in the dark by 4-amino-1-octylquinaldinium (AOQ) with an I0.5 value of 48 μM. When irradiated in the presence of AOQ, MF1 is photoinactivated with an apparent Kd of 12 μM. About 1.1 mol of [3H]AOQ were incorporated per mol of MF1 on complete photoinactivation. Fractionation of a cyanogen bromide digest of MF1 photolabeled with [3H]AOQ followed by fractionation of peptic digests of partially purified cyanogen bromide fragments led to isolation of two CNBr/peptic fragments labeled with3H. Sequence analysis of the labeled peptides revealed that one contained residues 423–441 of the β subunit. A gap in position 2 of the sequence indicates that βPhe424 is derivatized. The phenyl side-chain of this residue is part of a pocket that binds the adenine moiety of ATP or ADP at catalytic sites. The other peptide, which was labeled to a greater extent, contained residues 342–358 of the β subunit, but in this case, no gap was found in the sequence indicating that the derivatized amino-acid side-chain might not have survived the conditions of automatic Edman degradation. This peptide contains βTyr345, the side-chain of which is also a component of the pocket that binds the adenine moiety of ATP or ADP to catalytic sites. However, for the reason stated, there is no direct evidence that βTyr345 is labeled in this peptide.  相似文献   

2.
S Mobashery  E T Kaiser 《Biochemistry》1988,27(10):3691-3696
Two peptide-based affinity inactivators Ac-Leu-(BrAc)Orn-Arg-Ala-Ser-Leu-Gly (4) and Ac-Leu-Arg-(BrAc)Orn-Ala-Ser-Leu-Gly (5) were prepared as probes for the study of the nature of the active-site residues in the catalytic subunit of cyclic AMP dependent protein kinase. Under conditions of inhibitor in excess, both peptides inactivated the catalytic subunit by an apparent biphasic process. A fast phase, which inactivated the protein by approximately 40%, was followed by a slow phase that accounted for the loss of the remaining enzyme activity. Protection experiments with the kinase substrates showed that the slow phase of inactivation was active site directed, while the fast phase was not. Studies with radioactively labeled peptides 4 and 5 indicated incorporation of two peptide residues per molecule of the catalytic subunit upon complete inactivation. This observation is consistent with the occurrence of one alkylation event in each phase of the inactivation. The protein was proteolyzed subsequent to its modification with radioactive peptides. High-performance liquid chromatography afforded two radioactive peptide fragments in each case, which were sequenced by Edman degradation. Peptide 4 alkylated Thr-197 and Glu-346, while peptide 5 modified Cys-199 and also Glu-346. Data are presented to support the conclusion that Thr-197 and Cys-199 are located at or near the active site.  相似文献   

3.
The regulatory effects of malate on chloroplast Mg2+-ATPase were investigated and the mechanism was discussed. Malate stimulated methanol-activated membrane-bound and isolated CF1 Mg2+-ATPase activity. The subunit of CF1 may be involved in malate regulation of the enzyme function. Modification of subunit at one site of the peptide by NEM may affect malate stimulation of ATPase while at another site may have no effect. The effect of malate on the Mg2+-ATPase was also controlled by the Mg2+/ATP ratio in the reaction medium. The enhancing effect of malate on Mg2+-ATPase activity depended on the presence of high concentrations of Mg2+ in the reaction mixture. Kinetic study showed that malate raised the Vmax of catalysis without affecting the Km for Mg2+ ATP. The experiments imply that the stimulation of Mg2+-ATPase by malate is probably correlated with the Pi binding site on the enzyme. The regulation of ATPase activity by malate in chloroplasts may be relevant to its function in vivo.Abbreviations CF1 chloroplast coupling factor 1 - CF1 (-) and CF1 (-) CF1 deficient in the and subunit - MF1 mitochondria coupling factor 1 - NEM N-ethylmaleimide - PMS phenazine methosulfate - OG n-octyl--d-glucopyranoside  相似文献   

4.
A simple three-step procedure is described for the purification of a labeled peptide from a tryptic digest of the β-subunit of the F1-ATPase after the enzyme had been inactivated with p-fluorosulfonyl-[14C]benzoyl-5′-adenosine. The procedure involves: (1) anion-exchange chromatography of a tryptic digest of the labeled β-subunit on diethylaminoethyl-Sephadex; (2) treatment of the peptides in the radioactive peak from the first step with 0.1m NaOH under conditions in which the ester bond in the label is hydrolyzed; and (3) anion-exchange chromatography of the treated peptides under conditions identical to those of the first step after removal of the NaOH by gel filtration. Cleavage of the ester bond in the second step releases adenosine and specifically introduces an additional negative charge onto the labeled peptide. Thus, it is resolved from the peptides that contaminate it in the third step.  相似文献   

5.
For optimal activity the catalytic subunit of cAMP-dependent protein kinase requires a phosphate on Thr-197. This phosphate anchors the activation loop in the proper conformation and contributes to catalytic efficiency by enhancing the phosphoryl transfer rate and increasing the affinity for ATP (1). The crystal structure of the catalytic subunit bound to ATP, and the inhibitor peptide, IP20, highlights the contacts made by the Thr-197 phosphate as well as the role adjacent residues play in contacting the substrate peptide. Glu-203 and Tyr-204 interact with arginines in the consensus sequence of PKA substrates at the P-6 and P-2 positions, respectively. To assess the contribution that each residue makes to peptide recognition, the kinetic properties of three mutant proteins (E203A, Y204A, and Y204F) were monitored using multiple peptide substrates. The canonical peptide substrate, Kemptide, as well as a longer 9-residue peptide and corresponding peptides with alanine substitutions at the P-6 and P-2 positions were used. While the effect of Glu-203 is more localized to the P-6 site, Tyr-204 contributes to global peptide recognition. An aromatic hydrophobic residue is essential for optimal peptide recognition and is conserved throughout the protein kinase family.  相似文献   

6.
    
1-Bungarotoxin (1-Bgt) fromBungarus multicinctus (Taiwan banded krait) snake venom was subjected to tyrosine modification withp-nitrobenzenesulfonyl fluoride (NBSF) atpH 8.0 and the NBS derivatives were separated by high-performance liquid chromatography. The results of amino acid analysis revealed that only one Tyr residue out of 14 was modified, and the modified residue was identified to be Tyr-68 in the A chain of 1-Bgt. Spectrophotometric titration indicated that the phenolic group of Tyr-68 has apK of 10.1. Modification of Tyr-68 in the A chain caused a selective loss in lethal toxicity, but had no effect on either enzymatic or antigenic activities. The Ca2+-induced difference spectra and fluorescence study indicated that 1-Bgt possesses at least two different types of Ca2+-binding sites. However, modification of Tyr-68 in 1-Bgt did not cause any change of the Ca2+-induced difference spectra and fluorescence spectra in native toxin and the two types of Ca2+-binding sites were retained. Moreover, the affinity of Tyr-68-modified 1-Bgt for 8-anilinonaphthalene sulfonate was also unaffected in both the presence and absence of Ca2+. All of the results indicated that Tyr-68 is not involved in the Ca2+ and substrate bindings in the A chain of 1-Bgt. It is concluded that lethal toxicity is not necessarily associated with enzymatic, antigenic, and Ca2+-binding activities in 1-Bgt.  相似文献   

7.
We sought to evaluate the reproducibility of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approach to measure the stable-isotope enrichment of in vivo-labeled muscle ATP synthase β subunit (β-F1-ATPase), a protein most directly involved in ATP production, and whose abundance is reduced under a variety of circumstances. Muscle was obtained from a rat infused with stable-isotope-labeled leucine. The muscle was homogenized, β-F1-ATPase immunoprecipitated, and the protein was resolved using 1D-SDS PAGE. Following trypsin digestion of the isolated protein, the resultant peptide mixtures were subjected to analysis by HPLC-ESI-MS/MS, which resulted in the detection of multiple β-F1-ATPase peptides. There were three β-F1-ATPase unique peptides with a leucine residue in the amino acid sequence, and which were detected with high intensity relative to other peptides and assigned with >95% probability to β-F1-ATPase. These peptides were specifically targeted for fragmentation to access their stable-isotope enrichment based on MS/MS peak areas calculated from extracted ion chromatographs for selected labeled and unlabeled fragment ions. Results showed best linearity (R2 = 0.99) in the detection of MS/MS peak areas for both labeled and unlabeled fragment ions, over a wide range of amounts of injected protein, specifically for the β-F1-ATPase134-143 peptide. Measured stable-isotope enrichment was highly reproducible for the β-F1-ATPase134-143 peptide (CV = 2.9%). Further, using mixtures of synthetic labeled and unlabeled peptides we determined that there is an excellent linear relationship (R2 = 0.99) between measured and predicted enrichment for percent enrichments ranging between 0.009% and 8.185% for the β-F1-ATPase134-143 peptide. The described approach provides a reliable approach to measure the stable-isotope enrichment of in-vivo-labeled muscle β-F1-ATPase based on the determination of the enrichment of the β-F1-ATPase134-143 peptide.  相似文献   

8.
The Mg2+ dependent asymmetry of the F1-ATPase catalytic sites leads to the differences in affinity for nucleotides and is an essential component of the binding-change mechanism. Changes in metal ligands during the catalytic cycle responsible for this asymmetry were characterized by vanadyl (V IV + O)2+, a functional surrogate for Mg2+. The 51V-hyperfine parameters derived from EPR spectra of VO2+ bound to specific sites on F1 provide a direct probe of the metal ligands. Site-directed mutations of metal ligand residues cause measurable changes in the 51V-hyperfine parameters of the bound VO2+, thereby providing a means to identification. Initial binding of the metal–nucleotide to the low-affinity catalytic site conformation results in metal coordination by hydroxyl groups from the P-loop threonine and catch-loop threonine. Upon conversion to the high-affinity conformation, carboxyl groups from the Walker homology B aspartate and MF1E197 become ligands in lieu of the hydroxyl groups.  相似文献   

9.
F1 domain of F1Fo-ATPase was initially believed to be strictly expressed in the mitochondrial membrane. Interestingly, recent reports have shown that the F1 complex can serve as a cell surface receptor for apparently unrelated ligands. Here we show for the first time the presence of the F1-ATPase at the cell surface of normal or cancerous colonic epithelial cells. Using surface plasmon resonance technology and mass spectrometry, we identified a peptide hormone product of the gastrin gene (glycine-extended gastrin (G-gly)) as a new ligand for the F1-ATPase. By molecular modeling, we identified the motif in the peptide sequence (E(E/D)XY), that directly interacts with the F1-ATPase and the amino acids in the F1-ATPase that bind this motif. Replacement of the Glu-9 residue by an alanine in the E(E/D)XY motif resulted in a strong decrease of G-gly binding to the F1-ATPase and the loss of its biological activity. In addition we demonstrated that F1-ATPase mediates the growth effects of the peptide. Indeed, blocking F1-ATPase activity decreases G-gly-induced cell growth. The mechanism likely involves ADP production by the membrane F1-ATPase, which is induced by G-gly. These results suggest an important contribution of cell surface F1-ATPase in the pro-proliferative action of this gastrointestinal peptide.  相似文献   

10.
β1-Bungarotoxin (β1-Bgt) fromBungarus multicinctus (Taiwan banded krait) snake venom was subjected to tyrosine modification withp-nitrobenzenesulfonyl fluoride (NBSF) atpH 8.0 and the NBS derivatives were separated by high-performance liquid chromatography. The results of amino acid analysis revealed that only one Tyr residue out of 14 was modified, and the modified residue was identified to be Tyr-68 in the A chain of β1-Bgt. Spectrophotometric titration indicated that the phenolic group of Tyr-68 has apK of 10.1. Modification of Tyr-68 in the A chain caused a selective loss in lethal toxicity, but had no effect on either enzymatic or antigenic activities. The Ca2+-induced difference spectra and fluorescence study indicated that β1-Bgt possesses at least two different types of Ca2+-binding sites. However, modification of Tyr-68 in β1-Bgt did not cause any change of the Ca2+-induced difference spectra and fluorescence spectra in native toxin and the two types of Ca2+-binding sites were retained. Moreover, the affinity of Tyr-68-modified β1-Bgt for 8-anilinonaphthalene sulfonate was also unaffected in both the presence and absence of Ca2+. All of the results indicated that Tyr-68 is not involved in the Ca2+ and substrate bindings in the A chain of β1-Bgt. It is concluded that lethal toxicity is not necessarily associated with enzymatic, antigenic, and Ca2+-binding activities in β1-Bgt.  相似文献   

11.
The effect of nanomolar concentrations of PBR/TSPO ligands—Ro 5-4864, PK11195, and PPIX—on Ca2+-induced permeability transition pore (PTP) opening in isolated rat brain mitochondria was investigated. PBR/TSPO agonist Ro 5-4864 (100 nM) and endogenous ligand PPIX (1 μM) were shown to stimulate PTP opening, while antagonist PK11195 (100 nM) suppressed this process. Correlation between PBR ligand action on PTP opening and phosphorylation of a 3.5 kDa polypeptide was investigated. In intact brain mitochondria, incorporation of [γ-32P]ATP into 3.5 kDa peptide was decreased in the presence of Ro 5-4864 and PPIX and increased in the presence of PK11195. At threshold Ca2+ concentrations leading to PTP opening, PBR/TSPO ligands were found to stimulate dephosphorylation of the 3.5 kDa peptide. Specific anti-PBR/TSPO antibody prevented both PTP opening and dephosphorylation of the 3.5-kDa peptide. The peptide was identified as subunit c of FoF1-ATPase by Western blot using specific anti-subunit c antibody. The results suggest that subunit c of FoF1-ATPase could be an additional target for PBR/TSPO ligands action, is subjected to Ca2+- and TSPO-dependent phosphorylation/dephosphorylation, and is involved in PTP operation in mitochondria.  相似文献   

12.
The singnificance of the zinc hydroxide–Thr-199–Glu-106 hydrogen-bond network in the active site of human carbonic anhydrase II has been examined by X-ray crystallographic analyses of site-specific mutants. Mutants with Ala-199 and Ala-106 or Gln-106 have low catalytic activities, while a mutant with Asp-106 has almost full CO2 hydration activity. The structures of these four mutants, as well as that of the bicarbonate complex of the mutant with Ala-199, have been determined at 1.7 to 2.2 Å resolution. Removal of the γ atoms of residue 199 leads to distorted tetrahedral geometry at the zine ion, and a catalytically important zinc-bound water molecule has moved towards Glu-106. In the bicarbonate complex of the mutant with Ala-199 one oxygen atom from bicarbonate binds to zinc without displacing this water molecule. Tetrahedral coordination geometries are retained in the mutants at position 106. The mutants with Ala-106 and Gln-106 have a zinc-bound sulfate ion, whereas this sulfate site is only partially occupied in the mutant with Asp-106. The hydrogen-bond network seems to be “reversed” in the mutants with Ala-106 and Gln-106. The network is preserved as in native enzyme in the mutant with Asp-106 but the side chain of Asp-106 is more extended than that of Glu-106 in the native enzyme. These results illustrate the importance of Glu-106 and Thr-199 for controlling the precise coordination geometry of the zinc ion and its ligand preferences with results in an optimal orientation of a zine-bound hydroxide ion for an attack on the CO2 substrate. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Concanavalin A (Con A) is a tetrameric lectin which is synthesized in the cotyledons of developing jack-bean (Canavalia ensiformis (L.) D.C.) seeds and accumulates in the protein bodies of storage-parenchyma cells. The polypeptides of Con A have a molecular weight of 27000 and a relative molecular mass (Mr) of 30000 when analyzed by gel electrophoresis on denaturing polyacrylamide gels. In-vitro translation of RNA isolated from immature jack-bean cotyledons shows that Con A is synthesized as a polypeptide with Mr 34000. In-vivo pulse labeling of cotyledons with radioactive amino acids or glucosamine also resulted in the formation of a 34000-Mr polypeptide. In-vivo labeling with radioactive amino acids in the presence of tunicamycin yielded an additional polypeptide of 32000 Mr. Together these results indicate that Con A is cotranslationally processed by the removal of a signal sequence and the addition of an oligosaccharide side chain of corresponding size. Analysis of the structure of the oligogosaccharide side chain was accomplished through glycosidase digestion of glycopeptides isolated from [3H]glucosamine-labeled Con A. Incubation of the labeled glycopeptides with endoglycosidase H, -mannosidase or -N-acetylglucosaminidase, followed by gel filtration, allowed us to deduce that the oligosaccharide side chain of pro-Con A is a high-mannose oligosaccharide. Pulse-chase experiments with labeled amino acids are consistent with the interpretation that the glycosylated precursor of Con A is processed to mature Con A (Mr=30000). The 4000 decrease in Mr is interpreted to result from the removal of a small glycopeptide. The implications of the conversion of a glycoprotein pro-Con A to mature Con A are discussed in the context of the unique circular permutation of the primary structure of Con A.Abbreviations Con A concanavalin A - Glc glucose - GlcNAc N-acetylglucosamine - IgG immunoglobulin G - Man mannose - Mr relative molecular mass - SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis  相似文献   

14.
    
Rabbit erythrocytes contain a soluble aspartyl -carboxyl methyltransferase capable of specifically carboxyl methylating the -carboxyl group of an internal aspartyl residue in the synthetic polypeptide eledoisin, a hypotensively active peptide from the cephalopodsEledone moschata andE. aldrovandi, and tetragastrin, the biologically active C-terminal tetrapeptide of human gastrin. However, the aspartyl residue in delta sleep-inducing peptide (DSIP) could not be carboxyl methylated, nor could glutamyl residues in any polypeptide tested.  相似文献   

15.
Purified lamb kidney Na+, K+-ATPase, consisting solely of the Mτ = 95,000 catalytic subunit and the Mτ~- 44,000 glycoprotein, was solubilized with Triton X-100 and incorporated into unilamellar phospholipid vesicles. Freeze-fracture electron microscopy of the vesicles showed intramembranous particles of approximately 90–100 Å in diameter, which are similar to those seen in the native Na+,K+-ATPase fraction. Digestion of the reconstituted proteins with neuraminidase indicated that the glycoprotein moiety of the Na+,K+-ATPase was asymmetrically oriented in the reconstituted vesicles, with greater than 85% of the total sialic acid directed toward the outside of the vesicles. In contrast, in the native Na+,K+-ATPase fraction, the glycoprotein was symmetrically distributed. Purified glycoprotein was also asymmetrically incorporated into phospholipid vesicles using Triton X-100 and without detergents as described by R. I. MacDonald and R. L. MacDonald (1975, J. Biol. Chem.250, 9206–9214). The glycoprotein-containing vesicles were 500–1000 Å in diameter, unilamellar, and, in contrast to the vesicles containing the Na+,K+-ATPase, did not contain the 90- to 100-Å intramembranous particles. These results indicate that the intramembranous particles observed in the native Na+,K+-ATPase and in the reconstituted Na+,K+-ATPase are not due to the glycoprotein alone, but represent either the catalytic subunit, or the catalytic plus the glycoprotein subunit.  相似文献   

16.
Two phospholipases A2 (PLA2) fromNaja naja atra andNaja nigricollis snake venoms were subjected to tyrosine modification withp-nitrobenzenesulfonyl fluoride (NBSF) atpH 8.0. Three major NBS derivatives from each PLA2 were separated by high-performance liquid chromatography. The results of amino acid analysis showed that only two Tyr residues out of nine were modified, and the modified residues were identified to be Tyr-3 and Tyr-63 (or Tyr-62) in the sequence. Spectrophotometric titration indicated that the phenolic group of Tyr-3 and Tyr-63 (or Tyr-62) had apK of 10.1 and 11.0, respectively. The reactivity of Tyr-3 toward NBSF was not affected in the presence or absence of Ca 2+; however, the reactivity of Tyr-63 (or Tyr-62) toward NBSF was greatly enhanced by Ca2+. Modification of Tyr-63 (or Tyr-62) resulted in a marked decrease in both lethality and enzymatic activity. Conversely, modification of Tyr-3 inN. naja atra PLA2 could cause more than a sixfold increase in lethal potency, in sharp contrast to the loss of enzymatic activity. Tyrosine-63-modifiedN. naja atra PLA2 exhibited the same Ca2+-induced difference spectra as that of native PLA2, indicating that the Ca2+-binding ability of Tyr-63-modifiedN. naja atra PLA2 was not impaired. However, Tyr-3-modified PLA2 and all Tyr-modifiedN. nigricollis CMS-9 were not perturbed by Ca2+, revealing that the Ca2+-binding ability have been lost after tyrosine modification. These results suggest that Tyr-62 inN. nigricollis CMS-9 and Tyr-3 in both enzymes are involved in Ca2+ binding. AtpH 8.0, both native PLA2 enzymes enhance the emission intensity of 8-anilinonaphthalene sulfonate (ANS) dramatically, while all of the Tyr-modified derivatives did not enhance the emission intensity at all either in the presence or absence of Ca2+, suggesting that the hydrophobic pocket that interacts with ANS might be the substrate binding site, in which Tyr-3 and Tyr-63 (or Tyr-62) are involved.  相似文献   

17.
The linear arrangement of the three fragments of Ca2+-ATPase from rabbit skeletal muscle sarcoplasmic reticulum with molecular weights of 20,000, 30,000, and 45,000 obtained by limited tryptic hydrolysis was determined by locating the NH2-terminal acetylated methionyl residue of the original peptide in the Mr = 20,000 fragment. Since both the Mr = 20,000 and 30,000 polypeptides originate from a Mr = 55,000 fragment which is distinct from the Mr = 45,000 polypeptide, the sequence of these three fragments was determined to be 20,000, 30,000, and 45,000. The Mr = 20,000 fragment was further cleaved by cyanogen bromide to yield a Mr = 7,000 COOH-terminal fragment which is relatively hydrophilic. The NH2-terminal portion is rich in glutamyl residues. The COOH-terminus of the Mr = 30,000 fragment was determined by both digestion with carboxypeptidases and cyanogen bromide cleavage. Using the partial amino acid sequence of the Ca2+-ATPase, it was deduced that the active site phosphoaspartyl residue is 154 amino acids from the COOH-terminus of the Mr = 30,000 fragment and hence approximately 35,000 Mr from the NH2-terminus of the original Ca2+-ATPase molecule. Furthermore, it was shown that the two tryptic cleavages of the Ca2+-ATPase generating these three large fragments were both single hydrolyses of arginylalanine peptide bonds.  相似文献   

18.
The two protected tetradecapeptides Z·Ser·Cys[Bzl(OMe)]·Val·Ser·Cys[Bzl(OMe]·Gly·Ala·Cys[Bzl(OMe)]·Ala·Gly·Glu(OBut)· Cys[Bzl(OMe)]·Pro·Val·NH·NH·Boc and Z·Ser·Ala·Ile·Thr·Gln·Gly·Asp(OBut)·Thr(But)·Gln·Phe·Val·Ile·Asp(OBut)·Ala·NH·NH·Boc, corresponding to residues 7–20 and 21–34 in the amino acid sequence of Clostridium butyricum apoferredoxin have been synthesized as a first stage in a total synthesis of the apoferredoxin. The former peptide has been deprotected to the tetra-thiol peptide H·Ser·Cys·Val·Ser·Cys·Gly·Ala·Cys·Ala·Gly·Glu·Cys·Pro·Val·NH·NH2, and two tri-thiol and three di-thiol peptide components of this have also been synthesized for iron-sulfur complexing studies.  相似文献   

19.

Background

Optical imaging (OI) techniques such as bioluminescence and fluorescence imaging have been widely used to track diseases in a non-invasive manner within living subjects. These techniques generally require bioluminescent and fluorescent probes. Here we demonstrate the feasibility of using radioactive probes for in vivo molecular OI.

Methodology/Principal Findings

By taking the advantages of low energy window of light (1.2–3.1 eV, 400–1000 nm) resulting from radiation, radionuclides that emit charged particles such as β+ and β can be successfully imaged with an OI instrument. In vivo optical images can be obtained for several radioactive probes including 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG), Na18F, Na131I, 90YCl3 and a 90Y labeled peptide that specifically target tumors.

Conclusions/Significance

These studies demonstrate generalizability of radioactive OI technique. It provides a new molecular imaging strategy and will likely have significant impact on both small animal and clinical imaging.  相似文献   

20.
The administration of 3α-tigloyl-[1-14C]-oxytropane-[3β-3H] (3H/14C = 11·0 to Datura innoxia plants for 7 days led to the formation of radioactive meteloidine (3H/14C = 11·6). Degradation of the meteloidine indicated that the alkaloid was labeled specifically with 3H at C-3 of its teloidine moiety, and on the carbonyl group of its tigloyl residue with 14C. These results strongly favor the hypothesis that hydroxylation of tropine occurs after formation of its tigloyl ester.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号