首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Renal cell carcinoma (RCC) remains one of the most resistant tumors to systemic chemotherapy, radiotherapy, and immunotherapy. Despite great progress in understanding the basic biology of RCC, the rate of responses in animal models and clinical trials using interferons (IFNs) has not improved significantly. It is likely that the lack of responses can be due to the tumor''s ability to develop tumor escape strategies. Currently, the use of targeted therapies has improved the clinical outcomes of patients with RCC and is associated with an increase of Th1-cytokine responses (IFNγ), indicating the importance of IFNγ in inhibiting tumor proliferation. Thus, the present study was designed to investigate a new mechanism by which IFNγ mediates direct anti-proliferative effects against murine renal cell carcinoma cell lines. When cultured RCC cell lines were exposed to murine recombinant IFNγ, a dose dependent growth inhibition in CL-2 and CL-19 cells was observed; this effect was not observed in Renca cells. Growth inhibition in CL-2 and CL-19 cell lines was associated with the intracellular induction of nitric oxide synthase (iNOS) protein, resulting in a sustained elevation of nitric oxide (NO) and citrulline, and a decrease in arginase activity. The inhibition of cell proliferation appears to be due to an arrest in the cell cycle. The results indicate that in certain RCC cell lines, IFNγ modulates L-arginine metabolism by shifting from arginase to iNOS activity, thereby developing a potent inhibitory mechanism to encumber tumor cell proliferation and survival. Elucidating the cellular events triggered by IFNγ in murine RCC cell lines will permit anti-tumor effects to be exploited in the development of new combination therapies that interfere with L-arginine metabolism to effectively combat RCC in patients.  相似文献   

2.
The present study was conducted to find out any alteration in the expression and activity of alkaline phosphatase in the brush border membrane (BBM) from renal cell carcinoma (RCC) in comparison to normal renal BBM. The specific activity of alkaline phosphatase was drastically reduced in homogenate as well as BBM from RCC kidney when compared to ALP activity in BBM of normal kidney. Kinetic studies revealed that diminished activity of alkaline phosphatase in BBM isolated from RCC was fraternized with decrease in maximal velocity (V(max)) and increase in affinity constant (K(m)) of the enzyme. SDS-PAGE studies showed that the BBM proteins having molecular weights ranging from 95 to 170 kDa were poorly expressed in RCC BBM in relative to normal kidney BBM. Incubation of SDS-PAGE gel with BCIP/NBT dye clearly showed that the expression of ALP in tumor renal BBM was markedly reduced as compared to normal kidney. Further, Western blot analysis using anti-alkaline phosphatase antibody also confirmed the reduced expression of ALP in tumor renal BBM. Lipid composition in reference to phospholipids, glycolipids and cholesterol in tumor renal BBM was altered to that of normal renal BBM, indicating alteration in membrane fluidity of tumor renal BBM.  相似文献   

3.
Renal cell carcinoma (RCC) is responsible for most cases of the kidney cancer. Previous research showed that low serum levels of cholesterol level positively correlate with poorer RCC-specific survival outcomes. However, the underlying mechanisms and functional significance of the role of cholesterol in the development of RCC remain obscure. 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) plays a pivotal role in RCC development as it is the key rate-limiting enzyme of the cholesterol biosynthetic pathway. In this study, we demonstrated that the inhibition of HMGCR could accelerate the development of RCC tumors by lactate accumulation and angiogenesis in animal models. We identified that the inhibition of HMGCR led to an increase in glycolysis via the regulated HSP90 expression levels, thus maintaining the levels of a glycolysis rate-limiting enzyme, pyruvate kinase M2 (PKM2). Based on these findings, we reversed the HMGCR inhibition-induced tumor growth acceleration in RCC xenograft mice by suppressing glycolysis. Furthermore, the coadministration of Shikonin, a potent PKM2 inhibitor, reverted the tumor development induced by the HMGCR signaling pathway.

Why do low levels of serum cholesterol positively correlate with poor renal cell carcinoma survival outcomes? This study shows that inhibition of the cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase stabilizes pyruvate kinase M2 by up-regulating HSP90 expression, enhancing glycolysis and tumor growth in renal cell carcinoma.  相似文献   

4.
Calmodulin is known to transduce Ca2+ signals by interacting with specific target proteins. In order to determine the role of calmodulin in regulating neuronal survival and death, we examined, whether calmodulin inhibitors induce caspase-dependent apoptotic cell death, and whether glycogen synthase kinase-3 is involved in calmodulin inhibitor-induced cell death in PC12 cells. W13, a calmodulin specific inhibitor increased apoptotic cell death with morphological changes characterized by cell shrinkage and nuclear condensation of fragmentation. Glycogen synthase kinase-3 inhibitors prevented calmodulin inhibitor-induced apoptosis. In addition, nerve growth factor and cycloheximide, a protein synthesis inhibitor, completely blocked cell death. Moreover, caspase-3 activation was accompanied by calmodulin inhibitor-induced cell death and inhibited by nerve growth factor. These results suggest that calmodulin inhibitors induce caspase-dependent apoptosis, and the activation of glycogen synthase kinase-3 is involved in the death of PC12 cells.  相似文献   

5.
Calmodulin levels are elevated twofold at late G1 and/or early S phases during the growth cycle of CHO-K1 cells. These levels are maintained throughout the remainder of the cell cycle until cytokinesis. The G1 daughter cells then contain half the intracellular calmodulin level found prior to cell division. Elevation of calmodulin at the G1-S boundary is independent of the length of G1, and the increase in calmodulin appears to be related to progression into S phase. The importance of calmodulin for G1-S progression is suggested by the ability of the anticalmodulin drug W13 to elicit specific and reversible progression delays into and through S phase.  相似文献   

6.
Insulin-like growth factor-I (IGF-I)-mediated signaling is thought to be involved in the regulation of multiple cellular functions in different tumors including renal cell carcinoma (RCC). Blocking IGF-I signaling by any of the several strategies abolishes or delays the progression of a variety of tumors in animal models. Herein, we demonstrate that in RCC cell lines, IGF-I-mediated signaling is found to be inhibited in the presence of wild type von Hippel-Lindau (VHL) tumor suppresser gene. Moreover, molecular modeling and biochemical approaches have revealed that beta-domain of the VHL gene product by interacting directly with protein kinase Cdelta inhibits its association with IGF-IR for downstream signaling. We also demonstrated that RCC has IGF-I-mediated invasive activity where protein kinase Cdelta is an important downstream molecule, and this invasiveness can be blocked by wild type VHL. These experiments thus elucidate a novel tumor suppresser function of VHL with its unique kinase inhibitory domain.  相似文献   

7.
PROTEOMEX, an approach which combines conventional proteome analysis with serological screening, is a powerful tool to separate proteins and identify immunogenic components in malignant diseases. By applying this approach, we characterized nine metabolic enzymes which were differentially expressed in renal cell carcinoma (RCC) cell lines and compared their expression profiles to that of normal kidney epithelium cells. Four of these proteins, superoxide dismutase (SODC), triosephosphatase isomerase (TPIS), thioredoxin (THIO) and ubiquitin carboxyl-terminal hydrolase (UBL1) were further analysed for both their constitutive and interferon (IFN)-gamma inducible protein expression pattern in cell lines or tissue specimens derived from RCC or normal kidney epithelium using Western blot analysis and immunohistochemistry, respectively. With the exception of the RCC cell line MZ1940RC, which completely lacks the expression of UBL1, a heterogeneous and variable expression pattern of the different metabolic enzymes was detected in RCC and normal renal epithelium. The highest differences in the expression levels were found for THIO in the RCC cell lines, which was 2-fold upregulated when compared to autologous normal kidney epithelium. Moreover, IFN-gamma treatment did not influence the constitutive expression of these metabolic enzymes. Thus, PROTEOMEX represents a valuable approach for the identification of metabolic enzymes which might be used as markers for the diagnosis of RCC.  相似文献   

8.
Human renal cell cancer (RCC) is clearly responsive to immunotherapy. Clinical responses may be mediated by non-specific (e. g. natural killer, NK, cells) or specific MHC-class-I-restricted tumor-specific CD8+ T lymphocytes. Typically RCC progresses, however, despite significant infiltration of various lymphoid cells. We examined freshly isolated RCC tumor-infiltrating lymphocytes (TIL) derived from seven RCC patients for cytokine expression by the polymerase chain reaction (PCR). Established RCC tumor cell lines derived from these RCC patients were negative for interleukin-2 (IL-2), IL-4, IL-10, and interferon and found to be positive for tumor necrosis factor (TNF), IL-6, IL-1, granulocyte/macrophage-colony-stimulating factor (GM-CSF), and transforming growth factor 1 (TGF1) message as detected by PCR. An identical pattern of cytokine mRNA expression was identified in other long-term RCC lines and in normal human kidney cells upon culture, but not in two Wilms tumor cell lines tested. Short-term-, and long-term-established RCC lines, but not Wilms tumor lines, secreted substantial levels of GM-CSF, TNF, IL-1, and IL-6 as detected by enzyme-linked immunosorbent assay. Both RCC lines and Wilms tumor lines secreted TGF1. In comparison, normal kidney cells secreted IL-6 and GM-CSF, but not IL-1, or TFG1 under identical in vitro cell culture conditions. We applied PCR-based methods to characterize the cytokine mRNA expression pattern in immune cells infiltrating into renal cell cancer without the need for expansion of such effector cells in vitro. Examining freshly collected RCC TIL by PCR from patients with primary cell cell cancer, we could demonstrate that such cells, but not lympho-mononuclear cells harvested from normal human kidney tissue, typically exhibit IL-4 and IL-10 mRNA expression.  相似文献   

9.
Calmodulin content and distribution between soluble and particulate fractions were determined by radioimmunoassay in six human melanoma cell lines exhibiting differences in tumor origin (primary or metastatic), degree of tumorigenicity and of pigmentation (amelanotic or melanotic). The results indicate that a) total, soluble and particulate calmodulin levels expressed as ng/10(6) cells or ng/micrograms of proteins remained constant for five out of six cell lines when cells grew from subconfluency to confluency. For IGR 37 line, derived from metastatic melanoma, the calmodulin content decreases from 2.39 to 1.27 ng/micrograms protein for total calmodulin, from 2.17 to 1.52 ng/micrograms protein for soluble calmodulin and from 2.61 to 1.02 ng/micrograms protein for particulate calmodulin, b) total, soluble and particulate calmodulin levels expressed as ng/microgram proteins were twofold (at confluency) to fourfold (at subconfluency) higher in the two cell lines from metastatic origin, IGR 37 and IPC 167. As for example, for total calmodulin, values in IGR 37 and IPC 167 cell lines, were, respectively at subconfluency, 2.39 and 2.31 ng/micrograms protein as compared with the four other cell lines: 0.76 to 0.96 ng/micrograms protein and at confluency: 1.27 and 1.98 ng/micrograms protein as compared with the four other cell lines: 0.76 to 0.90 ng/micrograms protein, c) ratio of calmodulin between soluble and particulate fractions was about 1 for the two autologous cell lines IGR 37 and IGR 39 and varies from 2 to 3 for the four other cell lines.  相似文献   

10.
Renal cell carcinoma (RCC) represents the most common malignant tumor in the kidney and is resistant to conventional therapies. The diagnosis of RCC is often delayed leading to progression and metastatic spread of the disease. Thus, validated markers for the early detection of the disease as well as selection of patients undergoing specific therapy is urgently needed. Using treatment with the monoclonal antibody (mAb) G250 as a model, proteome-based strategies were implemented for the identification of markers which may allow the discrimination between responders and nonresponders prior to application of G250-mediated immunotherapy. Flow cytometry revealed G250 surface expression in approximately 40% of RCC cell lines, but not in the normal kidney epithelium cell lines. G250 expression levels significantly varied thereby distinguishing between low, medium and high G250 expressing cell lines. Comparisons of two-dimensional gel electrophoresis expression profiles of untreated RCC cell lines versus RCC cell lines treated with a mAb directed against G250 and the characterization of differentially expressed proteins by mass spectrometry and/or Edman sequencing led to the identification of proteins such as chaperones, antigen processing components, transporters, metabolic enzymes, cytoskeletal proteins and unknown proteins. Moreover, some of these differentially expressed proteins matched with immunoreactive proteins previously identified by proteome analysis combined with immunoblotting using sera from healthy donors and RCC patients, a technique called PROTEOMEX. Immunohistochemical analysis of a panel of surgically removed RCC lesions and corresponding normal kidney epithelium confirmed the heterogeneous expression pattern found by proteome-based technologies. In conclusion, conventional proteome analysis as well as PROTEOMEX could be successfully employed for the identification of markers which may allow the selection of patients prior to specific immunotherapy.  相似文献   

11.
《Translational oncology》2020,13(3):100745
The increase in the life expectancy of patients with renal cell carcinoma (RCC) in the last decade is due to changes that have occurred in the area of preclinical studies. Understanding cancer pathophysiology and the emergence of new therapeutic options, including immunotherapy, would not be possible without proper research. Before new approaches to disease treatment are developed and introduced into clinical practice they must be preceded by preclinical tests, in which animal studies play a significant role. This review describes the progress in animal model development in kidney cancer research starting from the oldest syngeneic or chemically-induced models, through genetically modified mice, finally to xenograft, especially patient-derived, avatar and humanized mouse models. As there are a number of subtypes of RCC, our aim is to help to choose the right animal model for a particular kidney cancer subtype. The data on genetic backgrounds, biochemical parameters, histology, different stages of carcinogenesis and metastasis in various animal models of RCC as well as their translational relevance are summarized. Moreover, we shed some light on imaging methods, which can help define tumor microstructure, assist in the analysis of its metabolic changes and track metastasis development.  相似文献   

12.
Calmodulin levels in normal human thyroids and Graves' disease thyroids were measured by specific radioimmunoassay in the presence of ethyleneglycol-bis-(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). The calmodulin levels in tissues from patients with Graves' disease treated with thionamide drugs were significantly higher than those in normal tissues from euthyroid patients with solitary cold nodules (normal: 484 +/- 50 ng/mg protein, mean +/- SE, n = 15; Graves': 901 +/- 54 ng/mg protein, n = 48, p less than 0.001). Such a rise in calmodulin levels in Graves' disease thyroids was also present even after the administration of 50 micrograms of T3 for 5 days before operation (828 +/- 137 ng/mg protein, n = 6, p less than 0.01). Calmodulin levels in Graves' disease thyroids were closely related to the cell height of follicular epithelium. Calmodulin levels in a columnar cell predominant group were significantly higher than those in a flat cell predominant or a cuboidal cell predominant group (columnar cell predominant: 1150 +/- 118 ng/mg protein, n = 13; flat cell predominant: 561 +/- 125 ng/mg protein, n = 3, p less than 0.05; cuboidal cell predominant: 596 +/- 40 ng/mg protein, n = 25, p less than 0.001). The increase in calmodulin content in Graves' disease thyroid could therefore possibly be attributed to the stimulation of the thyroid gland by the thyroid stimulating antibody. An immunofluorescence study demonstrated the presence of calmodulin immunoreactivity in the thyroid epithelial cells, particularly enriched in the apical border in the form of a granulated structure.  相似文献   

13.
14.
Hwa JS  Kim HJ  Goo BM  Park HJ  Kim CW  Chung KH  Park HC  Chang SH  Kim YW  Kim DR  Cho GJ  Choi WS  Kang KR 《Proteomics》2006,6(3):1077-1084
For identification and targeting of tumor-associated marker proteins, the proteome of clear cell type of renal cell carcinoma (RCC) and normal kidney tissues was analyzed by 2-DE. Ketohexokinase (also called fructokinase), which catalyzes the phosphorylation of fructose to fructose 1-phosphate, was identified by MALDI-TOF MS and found to be expressed at low rates in the renal tumor tissues. We found a decreased amount of ketohexokinase mRNA in RCC compared to that observed in the normal kidney tissues by Northern blot. The activity of ketohexokinase in 20 clear cell RCC specimens and the 20 corresponding normal kidneys was investigated, and its activity was shown to be approximately 1.4-fold lower in the RCC specimens than in the normal kidney. Ketohexokinase activity in tumor stage pT3 RCC was 1.5-fold lower than in pT1 RCC. The level of ketohexokinase activity in histological grade 3 RCC was 1.8-fold lower than that in grade 1 cancer. In addition, using in situ hybridization, it was revealed that ketohexokinase in the normal kidney tissue was confined to the proximal tubular epithelial cells, while the expression of ketohexokinase in RCC tissues was extremely low. Our research results show that the expression of human ketohexokinase was diminished in clear cell RCC.  相似文献   

15.
This review focusses on the functions of intracellular and extracellular calmodulin, its target proteins and their binding proteins during the asexual life cycle of Dictyostelium discoideum. Calmodulin is a primary regulatory protein of calcium signal transduction that functions throughout all stages. During growth, it mediates autophagy, the cell cycle, folic acid chemotaxis, phagocytosis, and other functions. During mitosis, specific calmodulin‐binding proteins translocate to alternative locations. Translocation of at least one cell adhesion protein is calmodulin dependent. When starved, cells undergo calmodulin‐dependent chemotaxis to cyclic AMP generating a multicellular pseudoplasmodium. Calmodulin‐dependent signalling within the slug sets up a defined pattern and polarity that sets the stage for the final events of morphogenesis and cell differentiation. Transected slugs undergo calmodulin‐dependent transdifferentiation to re‐establish the disrupted pattern and polarity. Calmodulin function is critical for stalk cell differentiation but also functions in spore formation, events that begin in the pseudoplasmodium. The asexual life cycle restarts with the calmodulin‐dependent germination of spores. Specific calmodulin‐binding proteins as well as some of their binding partners have been linked to each of these events. The functions of extracellular calmodulin during growth and development are also discussed. This overview brings to the forefront the central role of calmodulin, working through its numerous binding proteins, as a primary downstream regulator of the critical calcium signalling pathways that have been well established in this model eukaryote. This is the first time the function of calmodulin and its target proteins have been documented through the complete life cycle of any eukaryote.  相似文献   

16.
Calmodulin was localized in Saccharomyces cerevisiae by indirect immunofluorescence using affinity-purified polyclonal antibodies. Calmodulin displays an asymmetric distribution that changes during the cell cycle. In unbudded cells, calmodulin concentrates at the presumptive site of bud formation approximately 10 min before bud emergence. In small budded cells, calmodulin accumulates throughout the bud. As the bud grows, calmodulin concentrates at the tip, then disperses, and finally concentrates in the neck region before cytokinesis. An identical staining pattern is observed when wild-type calmodulin is replaced with mutant forms of calmodulin impaired in binding Ca2+. Thus, the localization of calmodulin does not depend on its ability to bind Ca2+ with a high affinity. Double labeling of yeast cells with affinity-purified anti-calmodulin antibody and rhodamine-conjugated phalloidin indicates that calmodulin and actin concentrate in overlapping regions during the cell cycle. Furthermore, disrupting calmodulin function using a temperature-sensitive calmodulin mutant delocalizes actin, and act1-4 mutants contain a random calmodulin distribution. Thus, calmodulin and actin distributions are interdependent. Finally, calmodulin localizes to the shmoo tip in cells treated with alpha-factor. This distribution, at sites of cell growth, implicates calmodulin in polarized cell growth in yeast.  相似文献   

17.
钙调素作为真核细胞的重要信号蛋白,在真核生物正常及逆境条件下的生长发育中发挥着重要作用.研究报道钙调素可促进离体培养的高等动植物细胞的增殖,但有关钙调素蛋白在植物体内的细胞增殖功能尚未见报道.特别是拟南芥基因组中存在7个编码经典钙调素亚型的基因,多数编码基因的功能有待进一步探究.首先借助常用的钙调素拮抗剂W7进行药理学实验,结果表明,野生型拟南芥幼苗根的生长受到了明显的抑制,根尖分生区的面积变小、细胞数目明显减少,根尖分生区中细胞分裂标记基因CYCB1;1的表达受到了明显抑制,这表明在根尖分生区W7可能通过对活性钙调素的抑制作用影响了根尖分生区域的细胞增殖,而根尖分生区正常的细胞增殖需要一定量活性钙调素蛋白的存在.脱落酸(ABA)是植物逆境下的重要激素,在植物种子萌发及幼苗生长发育中发挥着重要作用,W7存在下的拟南芥幼苗对ABA的敏感性下降.借助反向遗传学手段获得了拟南芥中三个编码典型钙调素蛋白基因的三重缺失突变体cam234,蛋白质印迹结果表明三重缺失突变体中钙调素蛋白的含量明显降低.相同培养条件下与野生型相比,三重突变体幼苗根长变短,并且幼苗对ABA敏感性也表现下降趋势,暗示着这三个基因编码的钙调素蛋白可能参与了根分生区域细胞增殖过程及幼苗对脱落酸的敏感性反应,讨论了钙调素的细胞增殖功能及与幼苗对脱落酸的敏感性反应间的关系.  相似文献   

18.
《The Journal of cell biology》1984,99(4):1221-1226
Membranes isolated from normal spleen cells or lymphoid tumor cells were found to inhibit in vitro growth of several murine tumor cell lines including a B cell hybridoma, a thymoma, and a mastocytoma. 50% inhibition occurred at membrane protein concentrations of 60-100 micrograms/ml. A similar concentration dependence was found for inhibition of [3H]-thymidine incorporation by tumor cells and for the lipopolysaccharide-induced mitogenic response of normal spleen cells. The inhibitory activity co-purified with the plasma membrane upon fractionation of crude membranes. Membrane solubilization with deoxycholate followed by dialysis to remove the detergent gave good recovery of inhibitory activity in the resulting reconstituted membranes. Membrane-mediated growth inhibition resulted from a decreased rate of proliferation and not from increased cell death. A toxic effect of the membranes was further ruled out by the finding that increasing the fetal calf serum content of the medium could substantially reverse the growth inhibition. Thus, the plasma membrane of lymphoid cells contains a component that can slow or stop the growth of cells in culture. This membrane component may have a role in cell contact-mediated regulation of growth.  相似文献   

19.
Density dependent chain elongation of neutral glycosphingolipids (NGSL) is associated with contact inhibition of mitosis in several normal cultured cell lines. Transformed non-neural cell lines which have impaired contact inhibition frequently lose this biochemical response. To determine if either of these phenomena occur in human neural cells we determined NGSL compositions of cultured glioblastoma multiforme and normal fetal brain cells. Fetal cells generally had more total NGSL than the tumor cells. As a percentage of total NGSL, both cell lines at higher cell densities had larger proportions of ceramide trihexoside and globoside, but smaller proportions of cerebroside. This decrease was mainly in nonhydroxy fatty acid cerebroside of glioma cells, but in hydroxy fatty acid cerebroside of normal fetal brain cells. These results demonstrate that although glioblastoma multiforme cells have markedly impaired growth control, they still preserve density dependent chain elongation of NGSL. A role for this phenomenon in normal cellular growth control has yet to be established.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号