首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome c was chemically coupled to cytochrome c oxidase using the reagent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) which couples amine groups to carboxyl residues. The products of this reaction were analyzed on 2.5–27% polyacrylamide gradient gels electrophoretically. Since cytochrome c binds to cytochrome oxidase electrostatically in an attraction between certain of its lysine residues and carboxyl residues on the oxidase surface, EDC is an especially appropriate reagent probe for binding-subunit studies. Coupling of polylysine to cytochrome oxidase using EDC was also performed, and the products of this reaction indicate that polylysine, an inhibitor of the cytochrome c reaction with oxidase, binds to the same oxidase subunit as does cytochrome c, subunit IV in the gel system used.  相似文献   

2.
《BBA》1986,848(1):131-136
The interaction between horse heart cytochrome c and Chromatium vinosum flavocytochrome c-552 was studied using the water-soluble reagent 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). Treatment of flavocytochrome c-552 with EDC was found to inhibit the sulfide: cytochrome c reductase activity of the enzyme. SDS gel electrophoresis studies revealed that EDC treatment led to modification of carboxyl groups in both the Mr 21000 heme peptide and the Mr 46000 flavin peptide, and also to the formation of a cross-linked heme peptide dimer with an Mr value of 42000. Both the inhibition of sulfide: cytochrome c reductase activity and the formation of the heme peptide dimer were decreased when the EDC modification was carried out in the presence of cytochrome c. In addition, two new cross-linked species with Mr values of 34000 and 59000 were formed. These were identified as cross-linked cytochrome c-heme peptide and cytochrome c-flavin peptide species, respectively. Neither of these species were formed in the presence of a cytochrome c derivative in which all of the lysine amino groups had been dimethylated, demonstrating that EDC had cross-linked lysine amino groups on native cytochrome c to carboxyl groups on the heme and flavin peptides. A complex between cytochrome c and flavocytochrome c-552 was required for cross-linking to occur, since ionic strengths above 100 mM inhibited cross-linking.  相似文献   

3.
C/57 black mice were immunized with beef heart cytochrome c oxidase, generating 48 hybrid cell lines that secrete antibodies against the different subunits of the enzyme. Immunoblot analysis showed reactions with 7 of the 13 subunits. Among the monoclonal antibodies produced, only those to subunit II gave significant inhibition; these inhibited the enzyme activity completely and prevented cytochrome c binding to the enzyme. Epitope mapping studies indicate that a peptide including residues 200-227 reacts with the antibody, suggesting that the C-terminus of the protein is essential for the binding of this antibody. The carboxyl modifying reagent 1-ethyl-3-[3-(trimethylammonio)propyl]carbodiimide (ETC) was chosen to investigate further the relationship between antibody and cytochrome c binding domains. ETC caused 50% inhibition of the enzyme activity with a first-order time during the first 20 min; a slower reaction over 3 h resulted in 90% inhibition. Cytochrome c binding to the oxidase was inhibited to a similar extent as cytochrome c oxidation, and protection against both effects was afforded by the presence of cytochrome c during ETC modification. Anion-exchange of FPLC of the modified forms of cytochrome oxidase revealed extensive inhomogeneity, indicating random derivatization of a number of different carboxyls even during the first-order reaction, and precluding identification of carboxyl residues related to a specific phase of the reaction. Cytochrome c and the subunit II-specific antibody protected against radioactive labeling of subunit II by ETC in the presence of [14C]glycine ethyl ester, demonstrating that the antibody and cytochrome c occupy significant and overlapping areas on the subunit II surface.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A water-soluble carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, has been used to cross-link horse heart cytochrome c to spinach chloroplast plastocyanin. The complex was formed in yields up to 90%, and was found to have a stoichiometry of 1 mol plastocyanin per mol cytochrome c. The cytochrome c in the complex was fully reducible by ascorbate and potassium ferrocyanide, and had a redox potential only 25 mV less than that of native cytochrome c. The complex was nearly completely inactive towards succinate-cytochrome c reductase and cytochrome c oxidase, suggesting that the heme crevice region of cytochrome c was blocked. We propose that the carbodiimide promoted the formation of amide cross-links between lysine amino groups surrounding the heme crevice of cytochrome c and complementary carboxyl groups on plastocyanin. It is of interest that the high-affinity site for cytochrome c binding on bovine heart cytochrome c oxidase has recently been found to involve a sequence of subunit II with some homology to the copper-binding sequence of plastocyanin.  相似文献   

5.
Cytochrome c oxidase isolated from pig liver and heart was incubated with 1-ethyl-3-[3-(dimethylamino) propyl]carbodiimide and [14C]glycine ethyl ester in the presence and absence of cytochrome c. Labelling of individual subunits was determined after separation of the enzyme complexes into 13 polypeptides by SDS-gel electrophoresis. Polypeptide II and additional but different polypeptides were labelled in the liver and in the heart enzyme. Labelling of polypeptide II and of some other polypeptides could be partially or completely suppressed by cytochrome c. From the data two conclusions can be drawn: In addition to polypeptide II, other polypeptides take part in the binding of cytochrome c to cytochrome c oxidase; the binding domain for cytochrome c is different in pig liver and heart cytochrome c oxidase.Cytochrome c oxidase isozymeCytochrome c binding domain1-Ethyl-3-(3-dimethylaminopropyl)carbodiimideTissue specificity  相似文献   

6.
The reagent 1-ethyl-3-(3-[14C]trimethylaminopropyl)carbodiimide (ETC) was used to identify specific carboxyl groups on the cytochrome bc1 complex (ubiquinol-cytochrome c reductase, EC 1.10.2.2) involved in binding cytochrome c. Treatment of the cytochrome bc1 complex with 2 mM ETC led to inhibition of the electron transfer activity with cytochrome c. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that both the cytochrome c1 heme peptide and the Mr = 9175 "hinge" peptide were radiolabeled by ETC. In addition, a new band appeared at a position consistent with a 1:1 cross-linked cytochrome c1-hinge peptide species. Treatment of a 1:1 cytochrome bc1-cytochrome c complex with ETC led to the same inhibition of electron transfer activity observed with the uncomplexed cytochrome bc1, but to decreased radiolabeling of the cytochrome c1 heme peptide. Two new cross-linked species corresponding to cytochrome c-hinge peptide and cytochrome c-cytochrome c1 were formed in place of the cytochrome c1-hinge peptide species. In order to identify the specific carboxyl groups labeled by ETC, a purified cytochrome c1 preparation containing both the heme peptide and the hinge peptide was dimethylated at all the lysines to prevent internal cross-linking. The methylated cytochrome c1 preparation was treated with ETC and digested with trypsin and chymotrypsin, and the resulting peptides were separated by high pressure liquid chromatography. ETC was found to label the cytochrome c1 peptides 63-81, 121-128, and 153-179 and the hinge peptides 1-17 and 48-65. All of these peptides are highly acidic and contain one or more regions of adjacent carboxyl groups. The only peptide consistently protected from labeling by cytochrome c binding was 63-81, demonstrating that the carboxyl groups at residues 66, 67, 76, and 77 are involved in binding cytochrome c. These residues are relatively close to the heme-binding cysteine residues 37 and 40 and indicate a possible site for electron transfer from cytochrome c1 to cytochrome c.  相似文献   

7.
Bovine heart cytochrome c oxidase and rat liver mitochondria were crosslinked in the presence and absence of cytochrome c. Biimidate treatment of purified cytochrome oxidase, which results in the crosslinkage of all of the oxidase protomers except subunit I when ? 20% of the free amines are modified, inhibits ascorbate-N,N,N′,N′-tetramethyl-p-phenylene diamine oxidase activity. Intermolecular crosslinking of cytochrome oxidase molecules, which results in the formation of large enzyme aggregates displaying rotational correlation times ? 1 ms, does not affect oxidase activity. Crosslinking of mitochondria covalently binds the cytochrome bc1 and aa3 complexes to cytochrome c, and inhibits steady-state oxidase activity. Addition of cytochrome c to purified cytochrome oxidase or to cytochrome c-depleted mitoplasts increases this inhibition slightly. Cytochrome c oligomers act as competitive inhibitors of native cytochrome c; however, crosslinking of cytochrome c to cytochrome c-depleted mitoplasts or purified cytochrome oxidase results in a catalytically inactive complex. These experiments indicate that cytochrome c oxidase subunit interactions are required for activity, and that cytochrome c mobility may be essential for electron transport between cytochrome c reductase and oxidase.  相似文献   

8.
Ting Su  Lothar Esser  Di Xia  Chang-An Yu  Linda Yu 《BBA》2012,1817(2):298-305
Cytochrome bc1 complex catalyzes the reaction of electron transfer from ubiquinol to cytochrome c (or cytochrome c2) and couples this reaction to proton translocation across the membrane. Crystallization of the Rhodobacter sphaeroides bc1 complex resulted in crystals containing only three core subunits. To mitigate the problem of subunit IV being dissociated from the three-subunit core complex during crystallization, we recently engineered an R. sphaeroides mutant in which the N-terminus of subunit IV was fused to the C-terminus of cytochrome c1 with a 14-glycine linker between the two fusing subunits, and a 6-histidine tag at the C-terminus of subunit IV (c1-14Gly-IV-6His). The purified fusion mutant complex shows higher electron transfer activity, more structural stability, and less superoxide generation as compared to the wild-type enzyme. Preliminary crystallization attempts with this mutant complex yielded crystals containing four subunits and diffracting X-rays to 5.5 Å resolution.  相似文献   

9.
NADPH-cytochrome P-450 reductase (EC 1.6.2.4) purified from rat hepatic microsomal fraction was inactivated by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), a specific agent for modification of carboxyl groups in a protein. The inactivation exhibited pseudo-first order kinetics with a reaction order approximately one and a second-order-rate constant of 0.60 M-1 min-1 in a high ionic strength buffer and 0.08 M-1 min-1 in a low ionic strength buffer. By treatment of NADPH-cytochrome P-450 reductase with EDC, the pI value changed to 6.5 from 5.0 for the native enzyme, and the reductase activity for cytochrome c, proteinic substrate, was strongly inactivated. When an inorganic substrate, K3Fe(CN)6, was used for assay of the enzyme activity, however, no significant inactivation by EDC was observed. The rate of inactivation by EDC was markedly but not completely decreased by NADPH. Also, the inactivation was completely prevented by cytochrome c, but not by K3Fe(CN)6 or NADH. The sulfhydryl-blocked enzyme prepared by treatment with 5,5'-dithio-bis(2-nitrobenzoic acid), which had no activity, completely recovered its activity in the presence of dithiothreitol. When the sulfhydryl-blocked enzyme was modified by EDC, the enzyme in which the carboxyl group alone was modified was isolated, and its activity was 35% of the control after treatment with dithiothreitol. In addition, another carboxyl reagent, N-ethyl-5-phenylisoxazolium-3'-sulfonate (Woodward reagent K), decreased cytochrome c reductase activity of NADPH-cytochrome P-450 reductase. These results suggest that the carboxyl group of NADPH-cytochrome P-450 reductase from rat liver is located at or near active-site and plays a role in binding of cytochrome c.  相似文献   

10.
Flavodoxin from the cyanobacterium Anabaena PCC 7119 has been shown to mediate, under illumination, the transfer of electrons from the thylakoidal membranes that were isolated from the same organism, to both the enzyme ferredoxin-NADP+ reductase and cytochrome c. Chemical cross-linking of ferredoxin or flavodoxin to the photosynthetic membranes provides a preparation that is active in cytochrome c photoreduction without the addition of external protein carrier. NADP+ photoreduction, albeit diminished, was observed only after addition of exogenous electron carrier protein. Immunoblotting analysis of the chemical adduct reveals that flavodoxin binds to a 10 kDa polypeptide subunit in the cyanobacterial Photosystem I which appears to act as its physiological partner in the electron transfer process.Abbreviations Fd ferredoxin - Fld flavodoxin - cyt c cytochrome c - EDC 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide - PS I Photosystem I  相似文献   

11.
Summary About 45% of the protein can be removed from oxidized cytochrome c oxidase by treatment with proteolytic enzymes under a variety of conditions, leading to an increased heme to protein ratio.The principal spectroscopic parameters of cytochrome c oxidase are retained in the protease-treated enzyme.Of the overall catalytic activity 20% remained after digestion; the electron-transfer reactions were impaired but the affinity for cytochrome c appeared unchanged.Proteolysis resulted in removal of the hydrophobic subunit III and most of the smaller hydrophilic subunits, leaving a core, which basically consists of the two largest subunits I and II.The subunits I and/or II carry the prosthetic groups of the enzyme and at least one of the cytochrome c binding sites. The smaller subunits, however, are essential for optimal electron transfer and possibly have other functions as well.  相似文献   

12.
The superfamily of quinol and cytochrome c terminal oxidase complexes is related by a homologous subunit containing six positionally conserved histidines that ligate a low-spin heme and a heme–copper dioxygen activating and reduction center. On the basis of the structural similarities of these enzymes, it has been postulated that all members of this superfamily catalyze proton translocation by similar mechanisms and that the CuA center found in most cytochrome c oxidase complexes serves merely as an electron conduit shuttling electrons from ferrocytochrome c into the hydrophobic core of the enzyme. The recent characterization of cytochrome c oxidase complexes and structurally similar cytochrome c:nitric oxide oxidoreductase complexes without CuA centers has strengthened this view. However, recent experimental evidence has shown that there are two ubiquinone(ol) binding sites on the Escherichia coli cytochrome bo 3 complex in dynamic equilibrium with the ubiquinone(ol) pool, thereby strengthening the argument for a Q(H2)-loop mechanism of proton translocation [Musser SM et al. (1997) Biochemistry 36:894–902]. In addition, a number of reports suggest that a Q(H2)-loop or another alternate proton translocation mechanism distinct from the mitochondrial aa 3 -type proton pump functions in Sulfolobus acidocaldarius terminal oxidase complexes. The possibility that a primitive quinol oxidase complex evolved to yield two separate complexes, the cytochrome bc 1 and cytochrome c oxidase complexes, is explored here. This idea is the basis for an evolutionary tree constructed using the notion that respiratory complexity and efficiency progressively increased throughout the evolutionary process. The analysis suggests that oxygenic respiration is quite an old process and, in fact, predates nitrogenic respiration as well as reaction-center photosynthesis. Received: 11 June 1997 / Accepted: 30 October 1997  相似文献   

13.
A novel membrane-bound sulfide-oxidizing enzyme was purified 102-fold from the neutrophilic, obligately chemolithoautotrophic Thiobacillus sp. W5 by means of a six-step procedure. Spectral analysis revealed that the enzyme contains haem c and flavin. SDS-PAGE showed the presence of two types of subunit with molecular masses of 40 and 11 kDa. The smaller subunit contains covalently bound haem c, as was shown by haem staining. A combination of spectral analysis and the pyridine haemochrome test indicated that the sulfide-oxidizing heterodimer contains one molecule of haem c and one molecule of flavin. It appeared that the sulfide-oxidizing enzyme is a member of a small class of redox proteins, the flavocytochromes c, and is structurally most related to the flavocytochrome c sulfide dehydrogenase of the green sulfur bacterium Chlorobium limicola. The pH optimum of the enzyme is 8.6. At pH 9, the V max was 2.1 ± 0.1 μmol cytochrome c (mg protein)–1 min–1, and the K m values for sulfide and cytochrome c were 1.7 ± 0.4 μM and 3.8 ± 0.8 μM, respectively. Cyanide inhibited the enzyme by the formation of an N-5 adduct with the flavin moiety of the protein. On the basis of electron transfer stoichiometry, it seems likely that sulfur is the oxidation product. Received: 15 October 1996 / Accepted: 7 January 1997  相似文献   

14.
A cytochrome aa 3-type oxidase was isolated with and without a c-type cytochrome (cytochrome c-557) from Methylococcus capsulatus Bath by ion-exchange and hydrophobic chromatography in the presence of Triton X-100. Although cytochrome c-557 was not a constitutive component of the terminal oxidase, the cytochrome c ascorbate-TMPD oxidase activity of the enzyme decreased dramatically when the ratio of cytochrome c-557 to heme a dropped below 1:3. On denaturing gels, the purified enzyme dissociated into three subunits with molecular weights of 46,000, 28,000 and 20,000. The enzyme contains two heme groups (a and a 3), absorption maximum at 422 nm in the resting state, at 445 and 601 nm in the dithionite reduced form and at 434 and 598 nm in the dithionite reduced plus CO form. Denaturing gels of the cytochrome aa 3-cytochrome c-557 complex showed the polypeptides associated with cytochrome aa 3 plus a heme c-staining subunit with a molecular weight of 37,000. The complex contains approximately two heme a, one heme c, absorption maximum at 420 nm in the resting state and at 421, 445, 522, 557 and 601 nm in the dithionite reduced form. The specific activity of the purified enzyme was 130 mol O2/min · mol heme a compared to 753 mol O2/min · mol heme a when isolated with cytochrome c-557.Abbreviations MMO methan monooxygenase - sMMO soluble methane monooxygenase - pMMO particulate methane monooxygenase - TMPD N,N,N,N-tetramethyl-p-phenylenediamine dihydrochloride - Na2EDTA disodium ethylenediamine-tetraacetic acid  相似文献   

15.
The aryl azide, 2,4-dinitro-5-fluorophenylazide, was reacted with horse heart cytochrome c to give a photoaffinity-labeled derivative of this heme protein. The modified cytochrome c, with one to two dinitroazidophenyl groups per mole of the enzyme, has a half-reduction potential the same (± 10 mV) as native cytochrome c. The dissociation constant for the modified cytochrome c from cytochrome c-depleted mitochondrial membranes and the apparent Km for the reaction with cytochrome c oxidase were each five to six times greater than the values for native cytochrome c. Irradiation of cytochrome c-depleted mitochondrial membranes supplemented with an excess of photoaffinity-labeled cytochrome c resulted in covalent binding of the derivative to the mitochondrial membranes. Fractionation of the irradiated mitochondria in the presence of detergents and salts followed by chromatography on agarose, Bio-Gel A, showed that labeled cytochrome c was bound covalently to cytochrome c oxidase in a 1:1 molar complex. The covalently linked cytochrome c-cytochrome c oxidase complex was active in mediating the electron transfer between N,N,N′,N′-tetramethyl-p-phenylenediamine/ascorbate and the oxidase.  相似文献   

16.
The active site of isomalto-dextranase from Arthrobacter globiformis was investigated by kinetic and chemical-modification methods. The ionization constants, pKe1 and pKe2, of the essential ionizable groups 1 and 2 of the free enzyme were 3.3 and 6.3 for dextran T2000 and 3.5 and 6.1 for isomaltotriose. The pKel and pKe2 both shifted to higher pH when the dielectric constant of the reaction mixture decreased. The heats of ionization for groups 1 and 2 were 0 kcal/mol or less with both substrates. These kinetic results suggested that the ionizable groups essential for the enzyme activity were carboxyl and carboxylate. Modification with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, modifying carboxyl residues specifically, resulted in inactivation of the enzyme, and isomaltotriose protected the enzyme against such inactivation. These findings also indicated that the carboxyl groups were essential to the enzyme activity.  相似文献   

17.
1-Ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), a water-soluble carbodiimide, inhibited ECF1-F0 ATPase activity and proton translocation through F0 when reacted with Escherichia coli membrane vesicles. The site of modification was found to be in subunit c of the F0 portion of the enzyme but did not involve Asp-61, the site labeled by the hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD). EDC was not covalently incorporated into subunit c in contrast to DCCD. Instead, EDC promoted a cross-link between the C-terminal carboxyl group (Ala-79) and a near-neighbor phosphatidylethanolamine as evidenced by fragmentation of subunit c with cyanogen bromide followed by high-pressure liquid chromatography and thin-layer chromatography.  相似文献   

18.
The essential carboxyl group in restriction endonuclease EcoRI   总被引:1,自引:0,他引:1  
We have carried out studies on type II restriction endonuclease EcoRI, which cleaves the DNA sequence 5'd(-G-A-A-T-T-C-)3', as indicated. The active form of the enzyme consists of two subunits, each 31063 molecular weight. A water-soluble reagent, 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-sulphonate, which reacts with carboxyl groups and also with tyrosine and cysteine residues, has been found to inactivate this enzyme. Results are presented which show the following. (1) This specific inactivation is not due to modification of tyrosine or cysteine residues. (2) There is one carboxyl group per subunit which, when modified with carbodiimide, inactivates the enzyme. (3) phi X174 DNA (which does not contain EcoRI sites) partially protects the enzyme from the carbodiimide; protection is unaffected by the additional presence of Mg2+, but significantly greater with Co2+ and phi X174 DNA.  相似文献   

19.
Cytochrome c peroxidase forms an electron transfer complex with cytochrome c. The complex is governed by ionic bonds between side chain amino groups of cytochrome c and carboxyl groups of peroxidase. To localize the binding site for cytochrome c on the peroxidase, we have used the method of differential chemical modification. By this method the chemical reactivity of carboxyl groups (toward carbodiimide/aminoethane sulfonate) was compared in free and in complexed peroxidase. When ferricytochrome c was bound to cytochrome c peroxidase, acidic residues 33, 34, 35, 37, 221, 224, and 1 to 3 carboxyls at the C terminus became less reactive by a factor of approximately 4, relative to the remaining 39 carboxylates of peroxidase. Of the less reactive residues those in the 30-40 region and the 221/224 pair are on opposite sides of the surface area which contains the heme propionates. We, therefore, propose that the binding site for cytochrome c on cytochrome c peroxidase spans the area where one heme edge comes close to the molecular surface. The results are in very good agreement with chemical cross-linking studies (Waldmeyer, B., and Bosshard, H.R. (1985) J. Biol. Chem. 260, 5184-5190); they also support a hypothetical model predicted on the basis of the known crystal structures of cytochrome c and peroxidase (Poulos, T.L., and Kraut, J. (1980) J. Biol. Chem. 255, 10322-10330).  相似文献   

20.
The sequence of the N-terminal end of the deduced ctaC gene product of Bacillus species has the features of a bacterial lipoprotein. CtaC is the subunit II of cytochrome caa3, which is a cytochrome c oxidase. Using Bacillus subtilis mutants blocked in lipoprotein synthesis, we show that CtaC is a lipoprotein and that synthesis of the membrane-bound protein and covalent binding of heme to the cytochrome c domain is not dependent on processing at the N-terminal part of the protein. Mutants blocked in prolipoprotein diacylglyceryl transferase (Lgt) or signal peptidase type II (Lsp) are, however, deficient in cytochrome caa3 enzyme activity. Removal of the signal peptide from the CtaC polypeptide, but not lipid modification, is seemingly required for formation of functional enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号