首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
31P NMR spectra of intact Ehrlich ascites tumor cells of high phosphorylation potential reveal a well-defined resonance peak assignable to phosphocreatine, corresponding to 2.3 μmoles/ml cell H2O in adenosine-treated cells containing 5.2 μmoles ATP/ml. The NMR spectrum of Ehrlich cells incubated with iodoacetate and glucose indicates depletion of phosphocreatine and ATP to undetectable levels and substantial accumulation of fructose-1,6-bisphosphate. From the difference between the chemical shifts of internal Pi and phosphocreatine resonances, the intracellular pH was estimated to be 7.1 ± 0.1 in protein-synthesizing cells suspended in a medium of pH 7.4 at 10°C. Ehrlich cells are unable to transfer the labeled amidine group from L-(guanidino-14C)-arginine to the large intracellular glycine pool to form labeled guanidinoacetate, the demethylated precursor of creatine. These results imply that the synthesis of phosphocreatine in ATP-rich Ehrlich cells is limited primarily by the extracellular free creatine supply, the extent of which depends upon the degree of cachectic perturbation of energy and nitrogen metabolism of the tumor-bearing host.  相似文献   

2.
The E0′ values for the conversion of horse heart cytochrome c from the oxidized to the reduced form as a function of temperature have been measured in 0.10 M NaCl, 0.10 M sodium phosphate, pH 7.0 solutions in H2O and D2O. In H2O, the decrease in the E0′ value is linear with increasing temperature up to 42°C. Above this temperature, the decrease is again linear but with a much greater slope. In D2O solutions, however, this biphasic behavior was not observed but instead a single line was obtained over the temperature range studied (25°C to 50°C). These results are interpreted in terms of the ability of NaCl to cause a destructuring of the bulk H2O above 42°C but not in the more stable D2O (Kreishman, Foss, Inoue and Leifer (1976) Biochemistry, 15, 5431–5435). This decrease in water structure results in a shift in the equilibrium to the larger oxidized form as indicated by the decrease in E0′.  相似文献   

3.
Solvent isotope effects on microtubule polymerization and depolymerization   总被引:2,自引:0,他引:2  
The initial velocity of polymerization of purified beef brain tubulin has been determined at various values of pH or pD in water and in H2O-D2O mixtures. D2O was shown to inhibit both polymerization at 37 °C and depolymerization measured at 5 °C and 37 °C. The microtubules formed in D2O were indistinguishable from those formed in H2O, by electron microscope examination. In 93% D2O the pL2versus rate of polymerization curve was displaced about one unit towards higher pL values. In certain regions of the pL versus rate curve, a stimulation in the rate of polymerization by D2O is observed. The extent of polymerization at the optimum pL value was not affected by D2O.  相似文献   

4.
Rats were fed a diet containing 1% of the creatine substrate analogue β-guanidinopropionic acid for 6–10 weeks. 31P-NMR investigation of isolated, glucose-perfused working hearts showed a 90% reduction in [phosphocreatine] from 22.2 to 2.5 μmol/g dry wt in guanidinopropionic acid-fed animals but no change in [Pi], [ATP], or intracellular pH. The unidirectional exchange flux in the creatine kinase reaction (direction phosphocreatine → ATP) was measured by saturation transfer NMR in hearts working against a perfusion pressure of 70 cm of water. This exchange was 10 μmol/g dry wt per s in control hearts and decreased 4-fold to 2.5–2.8 μmol/g dry wt per s in hearts from guanidinopropionic acid-fed animals. Oxygen consumption and cardiac performance were measured in parallel experiments at two perfusion pressures, 70 and 140 cm. No significant differences were observed in oxygen uptake or in any of the performance criteria between hearts from control and guanidinopropionic acid-fed rats at either workload. Assuming an ADP:O ratio of 3, the oxygen consumption measurements correspond to ATP turnover rates of 4.2–7.8 μmol/g dry per s. These rates are 1.5–3-times greater than the rate of the phosphocreatine → ATP exchange in hearts from guanidinopropionic acid-fed rats. These data suggest that phosphocreatine cannot be an obligate intermediate of energy transduction in the heart.  相似文献   

5.
The amino proton resonance of phosphatidyl ethanolamine in sonicated mixed phospholipid vesicles is observed 3.3 ppm downfield from H2O. Above pH ~ 5 it is broadened beyond detectability as a result of exchange with H2O protons. In low salt, resonances of amino protons inside the vesicles appear to persist as the pH is raised, while those on the outside disappear. Solvent catalized proton conduction along the surface is proposed, with an effective -NH2 to -NH3 transfer rate of about 8 × 105 sec?1 at 25°C.  相似文献   

6.
Summary The exchange of protons and deuterons by phosphoglucoisomerase during the single passage conversion of D-[2-13C,1-2H]fructose 6-phosphate in H2O or D-[2-13C]fructose 6-phosphate in D2O to D-[2-13C]glucose 6-phosphate, as coupled with the further generation of 6-phospho-D-[2-13C]gluconate in the presence of excess glucose-6-phosphate dehydrogenase was investigated by 13C NMR spectroscopy of the latter metabolite. In H2O, the intramolecular deuteron transfer from the C1 of D-fructose 6-phosphate to the C2 of D-glucose 6-phosphate amounted to 65%, a value only slightly lower than the 72% intramolecular proton transfer in D2O. Both percentages, especially the latter one, were lower than those previously recorded during the single passage conversion of D-[1-13C,2-2H]glucose 6-phosphate in H2O or D-[1-13C]glucose 6-phosphate in D2O to D-fructose 6-phosphate and then to D-fructose 1,6-bisphosphate. These differences indicate that the sequence of interactions between the hexose esters and the binding sites of phosphoglucoisomerase is not strictly in mirror image during, respectively, the conversion of the aldose phosphate to ketose phosphate and the opposite process.  相似文献   

7.
The 14N nuclear relaxation times T1 and T2 in egg yolk phosphatidylcholine have been observed in single bilayer vesicles dispersed in the media of different viscosities, 1H2O and 2H2O. The lateral diffusion coefficient of lipid molecule D has been calculated according to the method reported earlier: D = 2.2 × 10?8cm2s?1 in 1H2O and 2.1 × 10?8cm2s?1 in 2H2O at 20°C. They are in excellent agreement. This result gives a strong basis of usefulness of 14N NMR method in the evaluation of D without introducing any system perturbation.  相似文献   

8.
The steady-state rate of ATP synthesis in the isolated, Langendorff-perfused rat heart was determined using a 31P NMR saturation transfer method. At 37°C and a perfusion pressure of 70 cm H2O the value is 2.8 ± 0.3 (n=5 ± S.E.M.) μmol.s?1. (g. dry wt.)?1. The activity of creatine phosphokinase measured in the same experiments was 14.6 ± 1.0 μ mol.s?1 .(g. dry wt.)?1. From the rate of ATP synthesis and the separately measured oxygen consumption we calculated an apparent mitochondrial ADP:O ratio of 3.5 ± 0.8 in the intact tissue.  相似文献   

9.
The rates of cyclization of ethyl 2-hydroxymethylbenzoate to phthalide have been measured in H2O at 30°C with μ = 0.5. There is pronounced general base catalysis in the reaction with β = 0.87. The second-order rate constant for imidazole general base catalysis is decreased in D2O as compared with H2O by a factor of 3.46. The pH-rate constant profile obtained by extrapolation to zero buffer concentration shows hydronium ion and apparent hydroxide ion catalysis. The value of the second-order rate constant kOH is 105 greater than kOH for hydrolysis of ethyl benzoate. Ethyl 2-hydroxymethyl 4-nitrobenzoate cyclizes to 5-nitrophthalide in a similar manner. The Brönsted coefficient β for general base catalysis is 0.97, within error of unity. Thus, it is probable that general base catalysis involves rate-determining proton transfer.  相似文献   

10.
The hydrolyses of p-nitrotrifluoroacetanilide catalyzed by water and imidazole were examined at 70°C. The pH-rate constant profile of the hydrolysis in H2O was examined in the pH range 0.0–11.4. The hydrolysis was independent of pH in the region from pH 1.0 to 4.5, presumably a water-catalyzed reaction. The rate constant and the D2O solvent isotope effect for this reaction were 1.0 × 10?4 sec?1 and 3.7, respectively. Both natural imidazole and imidazolium cation catalyzed hydrolysis. The rate constant of the hydrolysis catalyzed by neutral imidazole was determined to be 5.4 × 10?3M?1 sec?1 and the D2O solvent isotope effect was 1.8.  相似文献   

11.
Abstract

1H-NMR spectra of bleomycin A2 recorded at 500 MHz in D2O and H2O at 24°C and 3°C were investigated. Resonances of the individual spin systems were identified by using two-dimensional correlated spectroscopy (COSY), two-dimensional spin echo correlated spectroscopy (SECSY) and by the application of two-dimensional Nuclear Overhauser Effect spectroscopy (NOESY). Employment of these techniques allowed the assignment of 13 exchangeable and 59 non-exchangeable protons in the 1H NMR spectrum of bleomycin A2. By means of 2D NOE spectroscopy also interresidual connectivities could be observed. Comparison of the NOESY spectra at 3°C and 24°C suggest that at low temperatures the central part of the bleomycin A2 molecule tends to adopt an extended conformation.  相似文献   

12.
Fluxes catalyzed by soluble creatine kinase (MM) in equilibrium in vitro and by the creatine kinase system in perfused rat hearts were studied by 31P-NMR saturation transfer method. It was found that in vitro both forward and reverse fluxes through creatine kinase at equilibrium were almost equal and very stable to changes in ratio (from 0.2 to 3.0) as well as to changes in pH (from 7.4 to 6.5 or 8.1), free Mg2+ concentration and 2-fold decrease of total adenine nucleotides and creatine pools (from 8.0 to 4.0 mM and from 30 to 14 mM, respectively). In the rat hearts perfused by the Langendorff method the creatine kinase-catalyzed flux from phosphocreatine to ATP was increased by 50% when oxygen consumption grew from 8 to 55 μmol/min per g of dry wt. due to transition from rest to high workload. These changes could not be exclusively explained on the basis of the equilibrium model by activation of heart creatine kinase due to some decrease in ratio (from 1.8 to 0.8) observed during transition from rest to high workload. Analysis of our data showed that an increase in the flux via creatine kinase is correlated with an increase in the rate of ATP synthesis with a linearity coefficient higher than 1.0. These data are more consistent with the concept of energy channeling by phosphocreatine shuttle than with that of the creatine kinase equilibrium in the heart.  相似文献   

13.
2-Deoxy-β-d-arabino-hexopyranose, C6H12O5, is orthorhombic, P212121, with cell dimensions at ?150° [20°], a = 6.484(2) [6.510(3)], b = 10.364(2) [10.427(4)], c = 11.134(3) [11.153(5)] Å, V = 748.2 [757.1] Å3, Z = 4, Dx = 1.457 [1.440], and Dm = [1.455] g.cm?3. The intensities of 1269 reflections were measured by using MoKα radiation. The structure was solved by direct methods, and refined by full-matrix least-squares, with anisotropic, thermal parameters for the carbon and oxygen atoms, and isotropic parameters for the hydrogen atoms. The pyranose has the 4C1(d) conformation, with puckering parameters Q = 0.563 Å, θ = 3.9°, and ? = 350.3°. The departure from ideality is very small, and less than that in β-d-glucopyranose, Q = 0.584 Å and θ = 6.9°. The β-glycosidic, CO bond is short, 1.383(4) Å, and the OCOH torsion angle is ?87°, consistent with the anomeric effect. The hydrogen-bonding scheme consists of infinite chains, with side chains terminating at a ring-oxygen atom.  相似文献   

14.
S. Ogawa  C. Shen  C.L. Castillo 《BBA》1980,590(2):159-169
31P-NMR has been used to study the increase of ΔpH in mitochondria by externally added ATP. Freshly prepared mitochondria was treated with N-ethylmaleimide to inhibit the exchange between internal and external Pi. Upon addition of ATP, phosphocreatine (30 mM) and creatine kinase to a NMR sample of mitochondria suspension (approx. 120 mg protein/ml) at 0°C, an increase of ΔpH by approx. 0.5 pH unit was observed. However the increased ΔpH could not be maintained, but slowly decayed along with the increase of external ADP/ATP ratio. Further addition of valinomycin to the suspension induced a larger ΔpH (approx. 1) which was maintained by the increased rate of internal ATP hydrolysis as seen in the growth of the internal Pi peak intensity in NMR spectra and the concomitant decrease of the external phosphocreatine peak. The external Pi and ATP peaks stayed virtually constant. When carboxyatractyloside was added to inhibit the ATP/ADP translocase, the internal Pi increase was stopped and the ΔpH decayed. These observations in conjunction with those made earlier in respiring mitochondria clearly show the reversible nature of the ATPase function in which the internal ATP hydrolysis is associated with outward pumping of protons.  相似文献   

15.
The major unfolded form of ribonuclease A is known to show well-populated structural intermediates transiently during folding at 0°–10°C. We describe here how the exchange reaction between D2O and peptide NH protons can be used to trap folding intermediates. The protons protected from exchange during folding can be characterized by 1H-nmr after folding is complete. The feasibility of using 1H-nmr to resolve a set of protected peptide protons is demonstrated by using a specially prepared sample of ribonuclease S in D2O in which only the peptide protons of residues 7–14 are in the 1H-form. All eight of these protected peptide protons are H-bonded. Resonance assignments made on isolated peptides containing these residues have been used to identify the protected protons. Other sets of protected protons trapped in the 1H-form can also be isolated by differential exchange, using either ribonuclease A or S. Earlier model compound studies have indicated that H-bonded folding intermediates should be unstable in water unless stabilized by additional interactions. Nevertheless, peptides derived from ribonuclease A that contain residues 3–13 do show partial helix formation in water at low temperatures. We discuss the possibility that specific interactions between side chains can stabilize short α-helixes by nucleating the helix, and that specific interactions may also define the helix boundaries at early stages in folding.  相似文献   

16.
The rates of deuterium exchange reactions of malondialdehyde (MDA) and deuterated malondialdehyde (MDAd) have been studied as a function of acidity and the content of dimethyl sulfoxide (DMSO) in binary mixtures with D2O . MDA incorporates deuterium from D2O solutions in a first-order reaction with a rate constant (kobs) that depends on the acid concentration. From this dependence, a catalytic constant, kcat, can be derived (kcatMDA = 2.25 × 105M?s?1). Similar kinetic behavior was found for MDAd in H2O solutions, and in this case, kcatMDA = 1.56 × 105M?1s?1. Results from reactions of MDA and MDAd in identical H2OD2O mixtures show that primary and secondary isotope effects are small (kH/kD = 1.13) and that solvent isotope effects cause most of the differences found between reactions in D2O and H2O. Reactions in binary DMSOd6D2O mixtures show a six-fold rate increase as the proportion of DMSOd6 increases from 50% to 90%. These results also illustrate the relatively high reactivity of MDA at pH values well above its pKa and the importance of medium composition on its reaction rate.  相似文献   

17.
Escherichia coli nitrate reductase A (NarGHI) is a membrane-bound enzyme that couples quinol oxidation at a periplasmically oriented Q-site (QD) to proton release into the periplasm during anaerobic respiration. To elucidate the molecular mechanism underlying such a coupling, endogenous menasemiquinone-8 intermediates stabilized at the QD site (MSQD) of NarGHI have been studied by high-resolution pulsed EPR methods in combination with 1H2O/2H2O exchange experiments. One of the two non-exchangeable proton hyperfine couplings resolved in hyperfine sublevel correlation (HYSCORE) spectra of the radical displays characteristics typical from quinone methyl protons. However, its unusually small isotropic value reflects a singularly low spin density on the quinone carbon α carrying the methyl group, which is ascribed to a strong asymmetry of the MSQD binding mode and consistent with single-sided hydrogen bonding to the quinone oxygen O1. Furthermore, a single exchangeable proton hyperfine coupling is resolved, both by comparing the HYSCORE spectra of the radical in 1H2O and 2H2O samples and by selective detection of the exchanged deuterons using Q-band 2H Mims electron nuclear double resonance (ENDOR) spectroscopy. Spectral analysis reveals its peculiar characteristics, i.e. a large anisotropic hyperfine coupling together with an almost zero isotropic contribution. It is assigned to a proton involved in a short ∼1.6 Å in-plane hydrogen bond between the quinone O1 oxygen and the Nδ of the His-66 residue, an axial ligand of the distal heme bD. Structural and mechanistic implications of these results for the electron-coupled proton translocation mechanism at the QD site are discussed, in light of the unusually high thermodynamic stability of MSQD.  相似文献   

18.
The voltage-activated H+ selective conductance of rat alveolar epithelial cells was studied using whole-cell and excised-patch voltage-clamp techniques. The effects of substituting deuterium oxide, D2O, for water, H2O, on both the conductance and the pH dependence of gating were explored. D+ was able to permeate proton channels, but with a conductance only about 50% that of H+. The conductance in D2O was reduced more than could be accounted for by bulk solvent isotope effects (i.e., the lower mobility of D+ than H+), suggesting that D+ interacts specifically with the channel during permeation. Evidently the H+ or D+ current is not diffusion limited, and the H+ channel does not behave like a water-filled pore. This result indirectly strengthens the hypothesis that H+ (or D+) and not OH is the ionic species carrying current. The voltage dependence of H+ channel gating characteristically is sensitive to pHo and pHi and was regulated by pDo and pDi in an analogous manner, shifting 40 mV/U change in the pD gradient. The time constant of H+ current activation was about three times slower (τact was larger) in D2O than in H2O. The size of the isotope effect is consistent with deuterium isotope effects for proton abstraction reactions, suggesting that H+ channel activation requires deprotonation of the channel. In contrast, deactivation (τtail) was slowed only by a factor ≤1.5 in D2O. The results are interpreted within the context of a model for the regulation of H+ channel gating by mutually exclusive protonation at internal and external sites (Cherny, V.V., V.S. Markin, and T.E. DeCoursey. 1995. J. Gen. Physiol. 105:861–896). Most of the kinetic effects of D2O can be explained if the pK a of the external regulatory site is ∼0.5 pH U higher in D2O.  相似文献   

19.
Amide solvent exchange rates are regarded as a valuable source of information on structure/dynamics of unfolded (disordered) proteins. Proton-based saturation transfer experiments, normally used to measure solvent exchange, are known to meet some serious difficulties. The problems mainly arise from the need to (1) manipulate water magnetization and (2) discriminate between multiple magnetization transfer pathways that occur within the proton pool. Some of these issues are specific to unfolded proteins. For example, the compensation scheme used to cancel the Overhauser effect in the popular CLEANEX experiment is not designed for use with unfolded proteins. In this report we describe an alternative experimental strategy, where amide 15N is used as a probe of solvent exchange. The experiment is performed in 50% H2O–50% D2O solvent and is based on the (HACACO)NH pulse sequence. The resulting spectral map is fully equivalent to the conventional HSQC. To fulfill its purpose, the experiment monitors the conversion of deuterated species, 15ND, into protonated species, 15NH, as effected by the solvent exchange. Conceptually, this experiment is similar to EXSY which prompted the name of 15NH/D-SOLEXSY (SOLvent EXchange SpectroscopY). Of note, our experimental scheme, which relies on nitrogen rather than proton to monitor solvent exchange, is free of the complications described above. The developed pulse sequence was used to measure solvent exchange rates in the chemically denatured state of the drkN SH3 domain. The results were found to correlate well with the CLEANEX-PM data, r = 0.97, thus providing a measure of validation for both techniques. When the experimentally measured exchange rates are converted into protection factors, most of the values fall in the range 0.5–2, consistent with random-coil behavior. However, elevated values, ca. 5, are obtained for residues R38 and A39, as well as the side-chain indole of W36. This is surprising, given that high protection factors imply hydrogen bonding or hydrophobic burial not expected to occur in a chemically denatured state of a protein. We, therefore, hypothesized that elevated protection factors are an artefact arising from the calculation of the reference (random-coil) exchange rates. To confirm this hypothesis, we prepared samples of several short peptides derived from the sequence of the drkN SH3 domain; these samples were used to directly measure the reference exchange rates. The revised protection factors obtained in this manner proved to be close to 1.0. These results also have implications for the more compact unfolded state of drkN SH3, which appears to be fully permeable to water as well, with no manifestations of hydrophobic burial.  相似文献   

20.
Fluxes catalyzed by soluble creatine kinase (MM) in equilibrium in vitro and by the creatine kinase system in perfused rat hearts were studied by 31P-NMR saturation transfer method. It was found that in vitro both forward and reverse fluxes through creatine kinase at equilibrium were almost equal and very stable to changes in phosphocreatinecreatine ratio (from 0.2 to 3.0) as well as to changes in pH (from 7.4 to 6.5 or 8.1), free Mg2+ concentration and 2-fold decrease of total adenine nucleotides and creatine pools (from 8.0 to 4.0 mM and from 30 to 14 mM, respectively). In the rat hearts perfused by the Langendorff method the creatine kinase-catalyzed flux from phosphocreatine to ATP was increased by 50% when oxygen consumption grew from 8 to 55 μmol/min per g of dry wt. due to transition from rest to high workload. These changes could not be exclusively explained on the basis of the equilibrium model by activation of heart creatine kinase due to some decrease in [phosphocreatine][creatine] ratio (from 1.8 to 0.8) observed during transition from rest to high workload. Analysis of our data showed that an increase in the flux via creatine kinase is correlated with an increase in the rate of ATP synthesis with a linearity coefficient higher than 1.0. These data are more consistent with the concept of energy channeling by phosphocreatine shuttle than with that of the creatine kinase equilibrium in the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号