共查询到20条相似文献,搜索用时 15 毫秒
1.
Preliminary results of an extended X-ray absorption fine structure (e.x.a.f.s.) and X-ray absorption near edge structure study of jack bean urease have recently been reported [Hasnain & Piggott (1983) Biochem. Biophys. Res. Commun. 112, 279]. These results indicate that the environment of the nickel ion in the enzyme is similar to that in the model compounds Ni(L)2(L')1(ClO4)1 (where L is 1-n-propyl-2-alpha-hydroxybenzylbenzimidazole and L' is the deprotonated form) and Ni(HMB)3(Br)2 (where HMB is 2-hydroxymethylbenzimidazole), the closest similarity being with Ni(L)2-(L')1(ClO4)1. A detailed e.x.a.f.s. analysis has now been carried out and the crystal structures of the two model compounds solved. These results are reported here. 相似文献
2.
Inactivation of jack bean urease by allicin 总被引:1,自引:0,他引:1
Juszkiewicz A Zaborska W Sepioł J Góra M Zaborska A 《Journal of enzyme inhibition and medicinal chemistry》2003,18(5):419-424
Allicin--diallyl thiosulfinate--is the main biologically active component of freshly crushed garlic. Allicin was synthesized as described elsewhere and was tested for its inhibitory ability against jack bean urease in 20 mM phosphate buffer, pH 7.0 at 22 degrees C. The results indicate that allicin is an enzymatic inactivator. The loss of urease activity was irreversible, time- and concentration dependent and the kinetics of the inactivation was biphasic; each phase, obeyed pseudo-first-order kinetics. The rate constants for inactivation were measured for the fast and slow phases and for several concentrations of allicin. Thiol reagents, and competitive inhibitor (boric acid) protected the enzyme from loss of enzymatic activity. The studies demonstrate that urease inactivation results from the reaction between allicin and the SH-group, situated in the urease active site (Cys592). 相似文献
3.
Pyrocatechol was studied as an inhibitor of jack bean urease in 20 mM phosphate buffer, pH 7.0, 25 degrees C. The inhibition was monitored by an incubation procedure in the absence of substrate and reaction progress studies in the presence of substrate. It was found that pyrocatechol acted as a time- and concentration dependent irreversible inactivator of urease. The dependence of the residual activity of urease on the incubation time showed that the rate of inhibition increased with time until there was total loss of enzyme activity. The inactivation process followed a non-pseudo-first order reaction. The obtained reaction progress curves were found to be time-dependent. The plots showed that the rate of the enzyme reaction in the final stages reached zero. From protection experiments it appeared that thiol-compounds such as L-cysteine, 2-mercaptoethanol and dithiothreitol prevented urease from pyrocatechol inactivation as well as the substrate, urea, and the competitive inhibitor boric acid. These results proved that the urease active site was involved in the pyrocatechol inactivation. 相似文献
4.
Murafuji T Azuma T Miyoshi Y Ishibashi M Rahman AF Migita K Sugihara Y Mikata Y 《Bioorganic & medicinal chemistry letters》2006,16(6):1510-1513
Inhibitory activity of organobismuth compounds, triarylbismuthanes 1 and their dihalides 2 and 3, was examined against jack bean urease. Besides triarylbismuth dichlorides 2, triarylbismuth difluorides 3 and bismuthanes 1 exhibited the activity. Of all these compounds, triphenylbismuth difluoride 3a and tris(4-fluorophenyl)bismuth dichloride 2b showed the highest activity. These results indicate that generation of the inhibitory effect is not always governed by the Lewis acidity at the bismuth center. Such a tendency of inhibition by the organobismuth compounds is in good accord with that observed in the antibacterial activity against Helicobacter pylori, suggesting that H. pylori-produced urease may be a therapeutic target by bismuth-based drugs. 相似文献
5.
The urease proteins of the jack bean (Canavalia ensiformis) and Helicobacter pylori are similar in molecular mass when separated by non-denaturing gradient polyacrylamide gel electrophoresis, both having three main forms. The molecular mass of their major protein form is within the range 440-480 kDa with the other two lesser forms at 230-260 kDa and 660-740 kDa. These forms are all urease active; however, significant kinetic differences exist between the H. pylori and jack bean ureases. Jack bean urease has a single pH optimum at 7.4, whereas H. pylori urease has two pH optima of 4.6 and 8.2 in barbitone and phosphate buffers that were capable of spanning the pH range 3 to 10. The H. pylori Km was 0.6 mM at pH 4.6 and 1.0 mM at pH 8.2 in barbitone buffer, greater than 10.0 mM, and 1.1 mM respectively in phosphate buffer and also greater than 10.0 mM in Tris.HCl at pH 8.2. By comparison, the jack bean urease had a Km of 1.3 mM in Tris.HCl under our experimental conditions. The findings show that the urease activity of H. pylori was inhibited at the pH optimum of 4.6 in the phosphate buffer, but not in the barbitone buffer. This was shown to be due to competitive inhibition by the sodium and potassium ions in the phosphate buffer, not the phosphate ions as suggested earlier. Jack bean urease activity was similarly inhibited by phosphate buffer but again due to the effect of sodium and potassium ions. 相似文献
6.
Gunji Mamiya Kunio Takishima Mayumi Masakuni Tatsuko Kayumi Kazuko Ogawa 《Journal of Protein Chemistry》1987,6(1):55-59
The subunit structure of jack bean urease has been unresolved in spite of many investigations. Thus far, the molecular weight for the native urease seem to range from 480,000 to 590,000 and the values for the monomer range from 30,000 to 97,000. The complete amino acid sequence of jack bean urease has been determined primarily by sequencing cyanogen bromide peptides, which were aligned by overlapping peptides obtained by lysylendopeptidase digestion of the protein and tryptic digestion of the citraconylated protein. The protein contains 840 amino acid residues in a single polypeptide chain and the subunit molecular weight calculated from the sequence is 90,790. The value of 544,740 for the hexamer, consistent with the value of 580,000 determined for intact urease by centrifugal analyses, indicated that urease consists of six subunits. Thirteen of 25 histidine residues in the urease subunit are crowded in the region between residues 479 and 607. Urease is a nickel metalloenzyme and the nickel has an essential role in catalysis by this enzyme. It is noteworthy that cysteine-592, which is recognized as essential for enzymatic activity and is related to the nickel ion in the active center, is located on this histidine-rich sequence.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985. 相似文献
7.
Mirosława Kot Wiesława Zaborska 《Journal of enzyme inhibition and medicinal chemistry》2013,28(5):537-542
Tetrachloro-o-benzoquinone (TCoBQ) and tetrachloro-p-benzoquinone (TCpBQ) were studied as inhibitors of jack bean urease in 20 mM phosphate buffer, pH 7.0, 1 mM EDTA, 25°C. The mechanisms of inhibition were evaluated by analysis of the progress curves obtained with two procedures: the reaction initiated by addition of the enzyme and the reaction initiated by addition of the substrate after preincubation of the enzyme with the inhibitor. The obtained results were characteristic of slow-binding inhibition. The effects of different inhibitor concentrations on the initial and steady-state velocities obeyed the relationships of two-step enzyme-inhibitor interaction, qualified as mechanism B. It was found that TCoBQ and TCpBQ are strong urease inhibitors. TCpBQ is more effective than TCoBQ with the overall inhibition constant of Ki* = 4.5 × 10? 7 mM. The respective inhibition constant of TCoBQ was equal to: Ki* = 2.4 × 10? 6 mM. The protective experiment proved that the urease active site is involved in the tetrachlorobenzoquinone inhibition process. High effectiveness of thiol protectors against inhibition by TCoBQ and TCpBQ indicates the strategic role of the active site sulfhydryl group in the blocking process. The stability of the complexes: urease-TCoBQ and urease-TCpBQ was tested in two ways: by dilution or addition of dithiothreitol. No recovery of urease activity bound in the urease-inhibitor complexes proves that the complexes are stable and strong. 相似文献
8.
Tetrachloro-o-benzoquinone (TCoBQ) and tetrachloro-p-benzoquinone (TCpBQ) were studied as inhibitors of jack bean urease in 20 mM phosphate buffer, pH 7.0, 1 mM EDTA, 25 degrees C. The mechanisms of inhibition were evaluated by analysis of the progress curves obtained with two procedures: the reaction initiated by addition of the enzyme and the reaction initiated by addition of the substrate after preincubation of the enzyme with the inhibitor. The obtained results were characteristic of slow-binding inhibition. The effects of different inhibitor concentrations on the initial and steady-state velocities obeyed the relationships of two-step enzyme-inhibitor interaction, qualified as mechanism B. It was found that TCoBQ and TCpBQ are strong urease inhibitors. TCpBQ is more effective than TCoBQ with the overall inhibition constant of K(i)* = 4.5 x 10(-7) mM. The respective inhibition constant of TCoBQ was equal to: K(i)* = 2.4 x 10(-6) mM. The protective experiment proved that the urease active site is involved in the tetrachlorobenzoquinone inhibition process. High effectiveness of thiol protectors against inhibition by TCoBQ and TCpBQ indicates the strategic role of the active site sulfhydryl group in the blocking process. The stability of the complexes: urease-TCoBQ and urease-TCpBQ was tested in two ways: by dilution or addition of dithiothreitol. No recovery of urease activity bound in the urease-inhibitor complexes proves that the complexes are stable and strong. 相似文献
9.
H Y Sung W M Lee M J Chiou C T Chang 《Proceedings of the National Science Council, Republic of China. Part B, Life sciences》1989,13(4):250-257
Urease with a purity meeting the requirements of analytical use was purified from jack bean meal through steps consisting of 20% acetone extraction, heat treatment, acid precipitation, and lyophilization. For extraction of urease, one part of bean meal was mixed with 5 parts of 20% acetone containing 1 mM EDTA and 1 mM 2-mercaptoethanol, and stirred at 20 degrees C for 5 min. Milky substances in the extract were removed by heat treatment. Urease in the clear yellow supernatant was precipitated by adjusting the pH of the solution to 5.4 with citric acid. The acid precipitated urease was neutralized by dissolving in 0.015 M phosphate buffer, pH 8.5 (final pH 6.8 to 7.0) and then lyophilized. By this procedure, the purity of the enzyme was increase 14.7 fold, the recovery of activity was 63%, and the yield was 6.75 g from 1 kg of bean seeds. The specific activity of the preparation was 411 units/mg protein (240 units/mg solid), and the free ammonia content was less than 0.01 microgram per unit. Some other proteins were present in the urease preparation as examined by gel filtration and gradient polyacrylamide gel electrophoresis. The molecular weight of the enzyme estimated by gel filtration was 480,000. However, two urease activity bands with molecular weight of 230,000 and 480,000 were observed in the polyacrylamide gel electrophoregram. From the result of determination of blood urea nitrogen (BUN), this simple purification procedure could be used for practical preparation of urease from jack bean meal for clinical analysis. 相似文献
10.
11.
The structural subunit molecular weight of jack bean urease has been determined to be 30,400 on the basis of the chemical evidence presented. Each polypeptide chain has been shown to possess four types of sulfhydryl groups. In half of the subunits the sulfhydryl group required for catalytic activity is involved in a disulfide bond. This results in a catalytic subunit of 60,800 molecular weight composed of two polypeptide chains but having only one active site. 相似文献
12.
We performed a multi-step analysis of the inhibition of jack bean urease by Hg(2+) ions that included residual activity measurements after incubation of the enzyme with the metal ion, reactivation of Hg(2+)-inhibited urease, protection of urease with thiol reagents prior to incubation with Hg(2+), progress curve analysis, and spectroscopic assay of thiol groups in urease-Hg(2+) complexes with a cysteine selective agent 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB). Hg(2+) ions were found to form stable complexes with urease that could rapidly be reversed only by the treatment with dithiotreitol, and not by dilution or dialysis. The residual activity data interpreted in terms of the Hill equation revealed the multisite Hg(2+) inhibition of urease, and along with the DTNB thiol-assay they demonstrated the involvement in the reaction with Hg(2+) of six cysteine residues per enzyme subunit, including the active-site flap cysteine. The molar ratios of the inhibitor and enzyme imply that the inhibition consists of the formation of RSHgX complexes, X being a water molecule or an anion. The time-dependent Hg(2+) inhibitory action on urease determined in the system without enzyme preincubation was best described by slow-binding mechanism with the steady-state inhibition constant K(i) = 1.9 nM (+/-10%). 相似文献
13.
N-Ethylmaleimide (NEM) was studied as an inactivator of jack bean urease at 25 °C in 20 mM phosphate buffer, pHs 6.4, 7.4, and 8.3. The inactivation was investigated by incubation procedure in the absence of a substrate. It was found that NEM acted as a time and concentration dependent inactivator of urease. The dependence of urease residual activity on the incubation time showed that the activity decreased with time until the total loss of enzyme activity. The process followed a pseudo-first-order reaction. A monophasic loss of enzyme activity was observed at pH 7.4 and 8.4, while a biphasic reaction occurred at pH 6.4. Moreover, the alkaline pH promoted the inactivation. The presence of thiol-compounds, such as L-cysteine, glutathione or dithiothreitol (DTT), in the incubation mixture significantly slowed down the rate of inactivation. The interaction test showed that the decrease of inactivation was an effect of NEM-thiol interaction that lowered NEM concentration in the incubation mixture. The reactivation of NEM-blocked urease by DTT application and multidilution did not result in an effective activity regain. The applied DTT reacted with the remaining inactivator and could stop the progress of enzyme activity loss but did not cause the reactivation. This confirmed the irreversibility of inactivation. Similar results obtained at pH 6.4, 7.4 and 8.4 indicated that the mechanism of urease inactivation by NEM was pH-independent. However, the pH value significantly influenced the process rate. 相似文献
14.
N-Ethylmaleimide (NEM) was studied as an inactivator of jack bean urease at 25 degrees C in 20 mM phosphate buffer, pHs 6.4, 7.4, and 8.3. The inactivation was investigated by incubation procedure in the absence of a substrate. It was found that NEM acted as a time and concentration dependent inactivator of urease. The dependence of urease residual activity on the incubation time showed that the activity decreased with time until the total loss of enzyme activity. The process followed a pseudo-first-order reaction. A monophasic loss of enzyme activity was observed at pH 7.4 and 8.4, while a biphasic reaction occurred at pH 6.4. Moreover, the alkaline pH promoted the inactivation. The presence of thiol-compounds, such as L-cysteine, glutathione or dithiothreitol (DTT), in the incubation mixture significantly slowed down the rate of inactivation. The interaction test showed that the decrease of inactivation was an effect of NEM-thiol interaction that lowered NEM concentration in the incubation mixture. The reactivation of NEM-blocked urease by DTT application and multidilution did not result in an effective activity regain. The applied DTT reacted with the remaining inactivator and could stop the progress of enzyme activity loss but did not cause the reactivation. This confirmed the irreversibility of inactivation. Similar results obtained at pH 6.4, 7.4 and 8.4 indicated that the mechanism of urease inactivation by NEM was pH-independent. However, the pH value significantly influenced the process rate. 相似文献
15.
16.
At low ionic strength urease has been found to dissociate at protein concentrations below 1 × 108m. The inhibition of enzyme activity by Ag+ has been used to demonstrate this. The inhibition by Ag+ has been shown to be independent of dissociation but, at dilutions where dissociation occurs, silver ion modifies the process. Urease is aggregated by Ag+ at high Ag+:protein ratios. Such inactive aggregates can be solubilized and reactivated by dithiothreitol. Further evidence has been obtained indicating the similarity of the (8n) and (16n) forms of urease. The phenomena of inhibition and aggregation in the presence of the heavy metal ion have been shown to be separate processes. 相似文献
17.
Ureases from both jack bean (Canavalia ensiformis) seeds and Klebsiella aerogenes have been crystallized by the hanging drop method. The plant-derived urease crystals are regular octahedra analogous to those obtained by Sumner. Preliminary X-ray diffraction studies show that the crystals belong to the cubic space group F4(1)32, with a = 364 A, and appear to contain one or two subunits in the asymmetric unit. Using a synchrotron source, the crystals diffract to near 3.5 A resolution. Crystals of urease from K. aerogenes belong to the cubic space group I23 or I2(1)3, with a = 170.8 A and appear to contain a single catalytic unit per asymmetric unit. The crystals diffract to better than 2.0 A resolution and are well suited for structural analysis. 相似文献
18.
Multiple kinetic isotope effects have been measured for the urease-catalyzed hydrolysis of formamide at pH 6.0 and 25 degrees C. These kinetic isotope effects include the carbonyl-C ((13)k = 1.0241 +/- 0.0009), the carbonyl-O ((18)k = 0.9960 +/- 0.0009), the formyl-H ((D)k = 0.95 +/- 0.01), the leaving-N ((15)k= 1.0327 +/- 0.0006), and the nucleophile-O ((18)k = 0.9778 +/- 0.0005). In addition, the enzyme does not catalyze the exchange of oxygen from the solvent into the carbonyl-O of formamide or the product, formate ion. The isotope effects are consistent with the rate-determining collapse of the tetrahedral intermediate (i.e., C-N bond cleavage). The pH optimum for formamide is at pH 5.3, whereas for urea, it is near 8.0. This is best accommodated by the mechanism proposed by Hausinger and Karplus, in which an active site cysteine binds to the nonleaving nitrogen in urea. For urea, the preference is for the anionic form of the sulfhydryl; for formamide, the neutral form is preferred, leading to the lower pH optimum. 相似文献
19.
Zaborska W Krajewska B Olech Z 《Journal of enzyme inhibition and medicinal chemistry》2004,19(1):65-69
The kinetics of heavy metal ions inhibition of jack bean urease was studied by progress curve analysis in a reaction system without enzyme-inhibitor preincubation. The inhibition was found to be biphasic with an initial, small inhibitory phase changing over the time course of 5-10 min into a final linear steady state with a lower velocity. This time-dependent pattern was best described by mechanism B of slow-binding inhibition, involving the rapid formation of an EI complex that subsequently undergoes slow conversion to a more stable EI* complex. The kinetic parameters of the process, the inhibition constants Ki and Ki* and the forward k5 and reverse k6 rate constants for the conversion, were evaluated from the reaction progress curves by nonlinear regression treatment. Based on the values of the overall inhibition constant Ki*, the heavy metal ions were found to inhibit urease in the following decreasing order: Hg2+ > Cu2+ > Zn2+ > Cd2+ > Ni2+ > Pb2+ > Co2+ > Fe3+ > As3+. With the Ki* values as low as 1.9 nM for Hg2+ and 7.1 nM for Cu2+, 100-1000 times lower than those of the other ions, urease may be utilized as a bioindicator of the trace levels of these ions in environmental monitoring, bioprocess control or pharmaceutical analysis. 相似文献