首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu Y  Su Y  Sun S  Wang T  Qiao X  Run X  Liang Z 《PloS one》2012,7(4):e35783
Evidence has suggested that insulin resistance (IR) or high levels of glucocorticoids (GCs) may be linked with the pathogenesis and/or progression of Alzheimer's disease (AD). Although studies have shown that a high level of GCs results in IR, little is known about the molecular details that link GCs and IR in the context of AD. Abnormal phosphorylation of tau and activation of μ-calpain are two key events in the pathology of AD. Importantly, these two events are also related with GCs and IR. We therefore speculate that tau phosphorylation and μ-calpain activation may mediate the GCs-induced IR. Akt phosphorylation at Ser-473 (pAkt) is commonly used as a marker for assessing IR. We employed two cell lines, wild-type HEK293 cells and HEK293 cells stably expressing the longest human tau isoform (tau-441; HEK293/tau441 cells). We examined whether DEX, a synthetic GCs, induces tau phosphorylation and μ-calpain activation. If so, we examined whether the DEX-induced tau phosphorylation and μ-calpain activation mediate the DEX-induced inhibition on the insulin-stimulated Akt phosphorylation. The results showed that DEX increased tau phosphorylation and induced tau-mediated μ-calpain activation. Furthermore, pre-treatment with LiCl prevented the effects of DEX on tau phosphorylation and μ-calpain activation. Finally, both LiCl pre-treatment and calpain inhibition prevented the DEX-induced inhibition on the insulin-stimulated Akt phosphorylation. In conclusion, our study suggests that the tau phosphorylation and μ-calpain activation mediate the DEX-induced inhibition on the insulin-stimulated Akt phosphorylation.  相似文献   

2.
The effects of growth factors on inositol-containing phospholipids were investigated to test the hypothesis that alterations in their metabolism are involved in mitogenic stimulation. Thrombin and EGF stimulated comparable increases in the synthesis (30-50%) and degradation (20-40%) of phosphatidylinositol 4-monophosphate (DPI) and phosphatidylinositol 4,5-bisphosphate (TPI) in a cell line which is mitogenically responsive to both growth factors. The increases in synthesis were time and dose dependent in a manner which was consistent with their involvement in mitogenesis; the increases were observed only under conditions where a mitogenic response occurred. While it has been suggested that an increased synthesis of phosphatidylinositol (PI) is coupled to the stimulation of DPI and TPI synthesis, we found that thrombin stimulated an early synthesis PI but EGF did not. To further evaluate the involvement of PI in thrombin-stimulated cell division we determined the time and dose dependence of the stimulated PI synthesis and found that it also occurred in a manner which was consistent with its involvement in thrombin-stimulated cell division. Furthermore, the stimulated PI synthesis was not observed with nonmitogenic proteases or in cell lines which were not responsive to thrombin. These results demonstrate that the metabolism of DPI and TPI appears closely related to the mitogenic response generated by EGF and thrombin. However, an early stimulation of PI synthesis is not coupled to this metabolism and is not necessary for mitogenic stimulation by EGF. Thus, a stimulation of PI synthesis is not a valid measure of alterations in inositol-containing phospholipids and what has been termed the "PI response."  相似文献   

3.
Natural killer (NK) cell-mediated cytotoxicity, as measured by the lysis of the human erythroleukemic cell line K562, is inhibited by the glucocorticosteroid dexamethasone (DEX). Kinetic analysis revealed that DEX inhibits an early event(s) in the lytic mechanism and that the inhibition is both transient and readily reversible if DEX is removed. The inhibition is not due to the production of a DEX-induced inhibitory protein or decreased target-cell binding. Attempts to counter the effects of DEX through the addition of inducers of NK activity were unsuccessful. Neither the calcium ionophore A23187 nor exogenous cyclic GMP was able to reverse the inhibition by DEX. The addition of arachidonic acid (AA), a pharmacologically active metabolite of phospholipase A-2 activation, was also unsuccessful in reversing the effects of DEX. In fact, AA itself inhibited NK activity in a dose-dependent fashion. This inhibition was not due to reduced target binding and was observed even in the presence of indomethacin. It is concluded that DEX blocks an early membrane-signaling event necessary to activate the lytic mechanism and that inhibition was not through some alternative mechanism. Inhibition of NK activity by arachidonic acid is not yet understood but most likely is not a result of enhanced prostaglandin synthesis. Hence, the study of DEX and AA inhibition provides a new approach to unravel some of the intricacies surrounding NK-mediated tumor target destruction.  相似文献   

4.
5.
Dexamethasone (DEX), a potent glucocorticoid, increased the expression of T-cell death associated gene 8 (TDAG8), a proton-sensing G protein-coupled receptor, which is associated with the enhancement of acidic pH-induced cAMP accumulation, in peritoneal macrophages. We explored the role of increased TDAG8 expression in the anti-inflammatory actions of DEX. The treatment of macrophages with either DEX or acidic pH induced the cell death of macrophages; however, the cell death was not affected by TDAG8 deficiency. While DEX inhibited lipopolysaccharide-induced production of tumor necrosis factor-α, an inflammatory cytokine, which was independent of TDAG8, at neutral pH, the glucocorticoid enhanced the acidic pH-induced inhibition of tumor necrosis factor-α production in a manner dependent on TDAG8. In conclusion, the DEX-induced increase in TDAG8 expression is in part involved in the glucocorticoid-induced anti-inflammatory actions through the inhibition of inflammatory cytokine production under the acidic pH environment. On the other hand, the role of TDAG8 in the DEX-induced cell death is questionable.  相似文献   

6.
7.
Approaches to overcome chemoresistance in cancer cells have involved targeting specific signaling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway, a stress response pathway known to be involved in the regulation of cell survival, apoptosis and growth. The present study determined the effect of PI3K inhibition on the clonogenic survival of human cancer cells following exposure to various chemotherapeutic agents. Treatment with the PI3K inhibitors LY294002 or Compound 15e resulted in increased survival of MDA-MB-231 breast carcinoma cells after exposure to doxorubicin, etoposide, 5-fluorouracil, and vincristine. Increased survival following PI3K inhibition was also observed in DU-145 prostate, HCT-116 colon and A-549 lung carcinoma cell lines exposed to doxorubicin. Increased cell survival mediated by LY294002 was correlated with a decrease in cell proliferation, which was linked to an increase in the proportion of cells in the G1 phase of the cell cycle. Inhibition of PI3K signaling also resulted in higher levels of the cyclin-dependent kinase inhibitors p21Waf1/Cip1 and p27Kip1; and knockdown of p27kip1 with siRNA attenuated resistance to doxorubicin in cells treated with LY294002. Incubation in the presence of LY294002 after exposure to doxorubicin resulted in decreased cell survival. These findings provide evidence that PI3K inhibition leads to chemoresistance in human cancer cells by causing a delay in cell cycle; however, the timing of PI3K inhibition (either before or after exposure to anti-cancer agents) may be a critical determinant of chemosensitivity.  相似文献   

8.
Long-term and high-dose glucocorticoids (GCs) supplementation has been linked to osteoporosis. In this study, we studied the protective role of plumbagin against GC-induced cell damage in MC3T3-E1 cells. The effect of dexamethasone (DEX) and plumbagin on cell viability was determined. DEX showed as IC-50 value of 95 μM. Further, 10 μM plumbagin treatment effectively ameliorated DEX-induced cell death by increasing the cell viability to 92 %. A further effect of plumbagin on DEX-induced oxidative stress was determined through reactive oxygen species (ROS) level, lipid peroxide content, and antioxidant status. Nrf-2 nuclear localization was analyzed through immunofluorescence. Protein expression of redox regulator Nrf-2 and their target genes HO-1 and NQO1 and osteogenic markers (OCN, OPN Runx-2) were determined by Western blot. Apoptotic effect was analyzed by mitochondrial membrane potential and caspase activities (3, 8, and 9). The results showed that DEX treatment showed a significant increase in oxidative stress through increased ROS levels and downregulation of cytoprotective antioxidant proteins and antioxidant enzyme activities. Further DEX treatment downregulated the osteogenic markers and upregulated apoptosis through decreased mitochondrial membrane potential and upregulation of caspase activities. Plumbagin treatment significantly reversed the levels of oxidative stress and apoptotic markers and protected against DEX-induced cell damage. Further, plumbagin treatment significantly improved the expression of osteogenic markers compared to DEX treatment. In conclusion, the present study shows that plumbagin offers significant protective role against DEX-induced cellular damage via regulating oxidative stress, apoptosis, and osteogenic markers.  相似文献   

9.
10.
The purpose of this study was to determine how dexamethasone (DEX) regulates the expression and activity of αvβ3 integrin. FACS analysis showed that DEX treatment induced expression of an activated αvβ3 integrin. Its expression remained high as long as DEX was present and continued following DEX removal. FACS analysis showed that the upregulation of αvβ3 integrin was the result of an increase in the expression of the β3 integrin subunit. By real time qPCR, DEX treatment induced a 6.2-fold increase (p < 0.04) in β3 integrin mRNA by day 2 compared to control and remained elevated for 6 days of treatment and then an additional 10 days once the DEX was removed. The increase in β3 integrin mRNA levels required only 1 day of DEX treatment to increase levels for 4 days in the absence of DEX. In contrast, DEX did not alter β1 integrin mRNA or protein levels. The DEX-induced upregulation of β3 integrin mRNA was partly due to an increase in its half-life to 60.7 h from 22.5 h in control cultures (p < 0.05) and could be inhibited by RU486 and cycloheximide, suggesting that DEX-induced de novo protein synthesis of an activation factor was needed. The calcineurin inhibitors cyclosporin A (CsA) and FK506 inhibited the DEX induced increase in β3 integrin mRNA. In summary, the DEX-induced increase in β3 integrin is a secondary glucocorticoid response that results in prolonged expression of αvβ3 integrin and the upregulation of the β3 integrin subunit through the calcineurin/NFAT pathway.  相似文献   

11.
Synthetic glucocorticoids such as dexamethasone (DEX) are used to prevent or treat respiratory disorders in prematurely born infants. Besides the short-term benefit on lung development, numerous human and animal studies have reported adverse neurodevelopmental side effects. In contrast, maternal care is known to exert a positive influence on neurodevelopmental outcome in rodents. The aim of the current study was therefore to investigate whether neonatal handling (days 1–21), known to induce maternal care, might serve as an intervention strategy modulating the adverse effects of DEX treatment (days 1–3). For this purpose we have measured the outcome of these early-life manipulations on development as well as adult endocrine and behavioral phenotype of male rats. Maternal care was observed during the first week of life and indeed enhanced in response to handling. Eye opening was accelerated and body weight reduced in DEX-treated animals. In adulthood, we report that handling ameliorated impaired spatial learning observed in DEX treated non-handled animals in the T-maze. Additionally, handling reduced susceptibility to the impact of DEX treatment in the water maze. Although DEX treatment and handling both resulted in enhanced negative feedback of the stress-induced corticosterone response and both reduced startle reactivity, the acquisition of fear was only reduced by handling, without effect of DEX. Interestingly, handling had a beneficial effect on pre-pulse inhibition, which was diminished after DEX treatment. In conclusion, these findings indicate that handling of the neonate enhances maternal care and attenuates specific DEX-induced alterations in the adult behavioral phenotype.  相似文献   

12.
Because epidermal growth factor stimulates DNA synthesis in cultured cells, five inhibitors of DNA synthesis were tested in HeLa cells to see whether the inhibition of DNA synthesis has any effect on the metabolism of the growth factor. Among these, only hydroxyurea inhibited the degradation of 125I-labeled epidermal growth factor strongly. The reversal of hydroxyurea-induced inhibition of DNA synthesis by deoxyribonucleosides did not result in a recovery from the inhibition of the degradation. From these findings, it might be concluded that the inhibitory effect of hydroxyurea on the degradation is distinct from that on DNA synthesis.  相似文献   

13.
Although Akt is known as a survival kinase, inhibitors of the phosphatidylinositol 3-kinase (PI3K)–Akt pathway do not always induce substantial apoptosis. We show that silencing Akt1 alone, or any combination of Akt isoforms, can suppress the growth of tumors established from phosphatase and tensin homologue–null human cancer cells. Although these findings indicate that Akt is essential for tumor maintenance, most tumors eventually rebound. Akt knockdown or inactivation with small molecule inhibitors did not induce significant apoptosis but rather markedly increased autophagy. Further treatment with the lysosomotropic agent chloroquine caused accumulation of abnormal autophagolysosomes and reactive oxygen species, leading to accelerated cell death in vitro and complete tumor remission in vivo. Cell death was also promoted when Akt inhibition was combined with the vacuolar H+–adenosine triphosphatase inhibitor bafilomycin A1 or with cathepsin inhibition. These results suggest that blocking lysosomal degradation can be detrimental to cancer cell survival when autophagy is activated, providing rationale for a new therapeutic approach to enhancing the anticancer efficacy of PI3K–Akt pathway inhibition.  相似文献   

14.
Cell growth of tumour ascites cell was inhibited by concanavalin A, phytohaemagglutinin and Ricinus lectin at 2–100 μg/ml. As expected, the Ricinus lectin inhibited the protein synthesis estimated by leucine incorporation and decreased thymidine incorporation, whereas concanavalin A and phytohaemagglutinin stimulate the uptake and the incorporation of both leucine and thymidine, and thus, synthesis of protein and DNA. Theses results suggest that different mechanisms are involved in the hepatoma cell growth inhibition by the lectins. This difference was not related to the kinetic characteristics of the lectin interactions with the cells whihc represent a first and necessary step. It was showed that concanavalin A and phytohaemagglutinin as well as chloroquine inhibited the 14C-labelled asialofetuin degradation. We can conclude that Ricinus lectic present a toxic effect whereas both concanavalin A and phytohaemagglutinin show an anti-protease activity.  相似文献   

15.
Synthesis of phosphatidylinositol-3-phosphate (PI3P) by Vps34, a class III phosphatidylinositol 3-kinase (PI3K), is critical for the initial steps of autophagosome (AP) biogenesis. Although Vps34 is the sole source of PI3P in budding yeast, mammalian cells can produce PI3P through alternate pathways, including direct synthesis by the class II PI3Ks; however, the physiological relevance of these alternate pathways in the context of autophagy is unknown. Here we generated Vps34 knockout mouse embryonic fibroblasts (MEFs) and using a higher affinity 4x-FYVE finger PI3P-binding probe found a Vps34-independent pool of PI3P accounting for ~35% of the total amount of this lipid species by biochemical analysis. Importantly, WIPI-1, an autophagy-relevant PI3P probe, still formed some puncta upon starvation-induced autophagy in Vps34 knockout MEFs. Additional characterization of autophagy by electron microscopy as well as protein degradation assays showed that while Vps34 is important for starvation-induced autophagy there is a significant component of functional autophagy occurring in the absence of Vps34. Given these findings, class II PI3Ks (α and β isoforms) were examined as potential positive regulators of autophagy. Depletion of class II PI3Ks reduced recruitment of WIPI-1 and LC3 to AP nucleation sites and caused an accumulation of the autophagy substrate, p62, which was exacerbated upon the concomitant ablation of Vps34. Our studies indicate that while Vps34 is the main PI3P source during autophagy, class II PI3Ks also significantly contribute to PI3P generation and regulate AP biogenesis.  相似文献   

16.
The central role of TGF-β in the development of the embryonic palate has been well characterized. TGF-β inhibits mesenchymal cell proliferation, induces medial edge epithelial cell differentiation, and modulates the expression of extracellular matrix proteins as well as the proteases that act upon them. Mechanisms by which TGF-β expression itself is regulated are less well understood. Glucocorticoids are recognized in several cellular systems as able to regulate the expression of TGF-β. This study was therefore designed to examine whether glucocorticoids affect the expression of TGF-β isoforms in embryonic palatal cells. Based on flow cytometric analysis and viability determination, confluent primary cultures of mouse embryonic palate mesenchymal (MEPM) cells exposed to up to 10−6 M dexamethasone (dex) exhibited no signs of cytotoxicity after 24 hours of exposure. Northern blot analyses revealed that dexamethasone reduced steady-state mRNA levels of TGF-β3 in a dose-dependent manner as early as 4 hours after treatment but had little effect on TGF-β1 and TGF-β2 expression up to 24 hours of dex exposure. Dex also reduced the synthesis of both latent and mature forms of TGF-β protein by approximately four-fold as determined by the mink lung epithelial cell growth inhibition bioassay. Assessment of the ratio of mature to latent protein found in conditioned medium of control compared to dex-treated cultures indicated that dexamethasone may reduce the activation of latent TGF-β to mature biologically active TGF-β. Dexamethasone inhibited the proliferation of MEPM cells despite the down-regulation of TGF-β suggesting that dex-induced growth inhibition of MEPM cells is not mediated by TGF-β. These data suggest that dex modulates TGF-β signaling pathways directly by down-regulating TGF-β expression and possibly indirectly by altering the availability of mature TGF-β necessary to exert its biological effects in the developing palate. © 1996 Wiley-Liss, Inc.  相似文献   

17.
R. J. A. Connett  D. E. Hanke 《Planta》1987,170(2):161-167
A method is described for preparing fully viable, cytokinin-starved soybean (Glycine max (L.) Merr. cv. Acme) cells from a suspension-culture of callus tissue. The cells respond to kinetin treatment by re-initiating cell division. We present evidence, from the pattern of incorporation of 32P-labelled inorganic phosphate into individual phospholipids during the first hour of this response, that the synthesis of phosphatidylinositol (PI) and of phosphatidic-acid head-groups is affected within 15 min. The polyphosphoinositide phosphatidylinositol 4-phosphate, but not phosphatidylinositol 4,5-bisphosphate, was detected in the tissue. The characteristics of cytokinin-induced PI synthesis in cytokinin-starved soybean cells appear to resemble the PI response of animal cells.Abbreviations DPG diphosphatidylglycerol - PA phosphatidic acid - PC phosphatidylcholine - PE phosphatidylethanolamine - PG phosphatidylglycerol - PI phosphatidylinositol - PIP phosphatidylinositol 4-phosphate - PIP2 phosphatidylinositol 4,5-bisphosphate - PS phosphatidylserine - Pi inorganic phosphate - TLC thin-layer chromatography  相似文献   

18.
Apoptosis is a physiological method of cell death commonly referred to as programmed cell death. However, non-apoptotic programmed cell death, such as autophagy and programmed necrosis, has been characterized by morphological criteria. In view of the human therapeutic use of DEX, and considering that no difference in the number and/or affinity of glucocorticoid receptors in activated and non-activated lymphocytes has been reported, we decided to evaluate the effect of DEX on fresh peripheral blood mononuclear cells (PBMC). Transmission electron microscopy showed that DEX can significantly induce apoptosis in non-activated PBMC. It was also observed by transmission electron microscopy that, independently of DEX treatment, PBMC also died by a process marked by extreme vacuolization and increase in cellular volume; these cells were erroneously classified as viable by flow cytometry using the 7-AAD assay. It is concluded that the DEX pro-apoptotic effect is not restricted to activated PBMC and, therefore, DEX-induced apoptosis could play either homeostatic (activated PBMC) or immunosuppressive (non-activated PBMC) roles.  相似文献   

19.
The Ca2+-activated K+ channel KCa3.1 is required for Ca2+ influx and the subsequent activation of T-cells. We previously showed that nucleoside diphosphate kinase beta (NDPK-B), a mammalian histidine kinase, directly phosphorylates and activates KCa3.1 and is required for the activation of human CD4 T lymphocytes. We now show that the class II phosphatidylinositol 3 kinase C2β (PI3K-C2β) is activated by the T-cell receptor (TCR) and functions upstream of NDPK-B to activate KCa3.1 channel activity. Decreased expression of PI3K-C2β by siRNA in human CD4 T-cells resulted in inhibition of KCa3.1 channel activity. The inhibition was due to decreased phosphatidylinositol 3-phosphate [PI(3)P] because dialyzing PI3K-C2β siRNA-treated T-cells with PI(3)P rescued KCa3.1 channel activity. Moreover, overexpression of PI3K-C2β in KCa3.1-transfected Jurkat T-cells led to increased TCR-stimulated activation of KCa3.1 and Ca2+ influx, whereas silencing of PI3K-C2β inhibited both responses. Using total internal reflection fluorescence microscopy and planar lipid bilayers, we found that PI3K-C2β colocalized with Zap70 and the TCR in peripheral microclusters in the immunological synapse. This is the first demonstration that a class II PI3K plays a critical role in T-cell activation.  相似文献   

20.

Background

Glucocorticoid has a direct catabolic effect on skeletal muscle, leading to muscle atrophy, but no effective pharmacotherapy is available. We reported that clenbuterol (CB) induced masseter muscle hypertrophy and slow-to-fast myosin heavy chain (MHC) isoform transition through direct muscle β2-adrenergic receptor stimulation. Thus, we hypothesized that CB would antagonize glucocorticoid (dexamethasone; DEX)-induced muscle atrophy and fast-to-slow MHC isoform transition.

Methodology

We examined the effect of CB on DEX-induced masseter muscle atrophy by measuring masseter muscle weight, fiber diameter, cross-sectional area, and myosin heavy chain (MHC) composition. To elucidate the mechanisms involved, we used immunoblotting to study the effects of CB on muscle hypertrophic signaling (insulin growth factor 1 (IGF1) expression, Akt/mammalian target of rapamycin (mTOR) pathway, and calcineurin pathway) and atrophic signaling (Akt/Forkhead box-O (FOXO) pathway and myostatin expression) in masseter muscle of rats treated with DEX and/or CB.

Results and Conclusion

Masseter muscle weight in the DEX-treated group was significantly lower than that in the Control group, as expected, but co-treatment with CB suppressed the DEX-induced masseter muscle atrophy, concomitantly with inhibition of fast-to-slow MHC isoforms transition. Activation of the Akt/mTOR pathway in masseter muscle of the DEX-treated group was significantly inhibited compared to that of the Control group, and CB suppressed this inhibition. DEX also suppressed expression of IGF1 (positive regulator of muscle growth), and CB attenuated this inhibition. Myostatin protein expression was unchanged. CB had no effect on activation of the Akt/FOXO pathway. These results indicate that CB antagonizes DEX-induced muscle atrophy and fast-to-slow MHC isoform transition via modulation of Akt/mTOR activity and IGF1 expression. CB might be a useful pharmacological agent for treatment of glucocorticoid-induced muscle atrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号