首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have previously reported that exogenous methionine inhibits production of the β-subunit of the 7S storage protein in cultured soybean cotyledons, and that this inhibition involves lack of functional mRNA for the β-subunit. Analogs of methionine were used to study this inhibition. Cycloleucine, norleucine, norvaline and S-ethylcysteine treatments prevented accumulation of the β-subunit. The effects of cycloleucine and norleucine on β-subunit synthesis might have been indirect, since these compounds inhibited growth and caused a 2- to 3-fold increase in free methionine concentration. Norvaline did not affect free methionine concentration, but it did inhibit growth. Treatment with a combination of S-ethylcysteine and aminoethoxyvinylglycine prevented appearance of the β-subunit without inhibiting growth or raising the S-adenosylmethionine concentration. Thus, accumulation of S-adenosylmethionine does not appear to mediate the effect of exogenous methionine on β-subunit production. Treatment with S-ethylcysteine raised free methionine concentration only 34%, so S-ethylcysteine was probably acting directly to inhibit β-subunit production. Measurements of free methionine concentrations in seeds of different sizes, taken from intact plants, suggested that the relatively late appearance of the β-subunit in normal soybean seed development may be due to the presence of high levels of free methionine in very young seeds.  相似文献   

3.
The accumulation of α- and β-globin mRNA sequences in murine erythroleukemia cells (MELC) treated with various inducers has been studied using specific α- and β-globin complementary DNAs (cDNAs). In cells cultured with dimethylsulfoxide (Me2SO), hexamethylene bisacetamide (HMBA) or butyric acid, accumulation of α-globin mRNA is detectable after 16, 12 and 8 hr of culture, respectively. An increase in β-globin mRNA sequences is not detected until 20–24 hr after culture. In cells exposed to hemin, both α- and β-globin mRNAs are detectable by 6 hr of culture, and a constant ratio of αβ-mRNA is maintained during induction. In maximally induced cells, the αβ-globin mRNA ratios are approximately 1 in cells induced by Me2SO and HMBA, and 0.66 and 0.3–0.50 in cells induced by butyric acid and hemin, respectively. Thus different inducers of erythroid differentiation in MELC lead to different times of onset of the expression of α- and β-like genes. In addition, the relative accumulation of α- and β-globin mRNAs in induced cells differs with various types of inducers.  相似文献   

4.
《Annals of botany》1997,79(5):547-552
Thein vitroculture of immature soybean cotyledons (in direct contact with the medium) and immature fruit explants (stem dipping into the medium) on a defined medium containing glutamine and sulphate as sole sources of N and S for 7 d led to rates of growth and reserve protein accumulation close to, or greater than, those occurringin situ. Supplementation of the medium with 8.4 mMmethionine had little effect on growth and protein accumulation of the cotyledons in the explant system, but did result in significant increases in the isolated cotyledon system. Methionine suppressed the synthesis of the 7S β-subunit in both systems. The free amino pool of the cotyledons increased more than three-fold when methionine was present in the explant medium. In the isolated cotyledon system, the basal medium alone caused a large increase (over 30-fold) in the free amino acid fraction, but methionine resulted in an even greater increase (over 50-fold). In both systems the expansion involved a very large increase in the methionine pool, but many other amino acids also showed large increases. Specific effects of methionine on individual amino acids were more clear in the explant system, where its presence resulted in marked increases in serine, alanine and asparagine. The data show that an abnormal situation arises on feeding with methionine, a fact to be considered before attributing effects on growth and protein synthesis directly to methionine.  相似文献   

5.
Supplemental methionine in a complete culture medium increased the methionine content of the protein fraction of cultured soybean (Glycine max L. Merrill) cotyledons (Thompson, Madison, Muenster 1981 Phytochemistry 20: 941-945). To explain the observed increase in protein methionine, we have measured the amounts and subunit compositions of 7S and 11S storage proteins and determined the amino acid compositions of the three major protein fractions (2-5S, 7S, 11S) of seeds developed on plants and of cultured cotyledons grown in the presence or absence of supplemental l-methionine. Development of cultured cotyledons was representative of development of seeds on plants. The ratios of 11S to 7S proteins, the subunit contents, and amino acid compositions of their storage protein fractions were similar, but not identical. Supplemental methionine increased the mole percent methionine in each of the three protein fractions of cultured cotyledons and changed the amounts of several other amino acids. Supplemental methionine inhibited expression of the 7S β-subunit gene. Concomitant with the absence of the β-subunit, which contains no methionine, was an increase in the ratio of 11S to 7S proteins, and an increase in the methionine content of the subunits composing these fractions. Inhibition of β-subunit gene expression by methionine in cultured cotyledons provides a reproducible, easily controlled system for the study of eucaryotic gene expression.  相似文献   

6.
β-hexosaminidase A (β-N-acetyl-d-hexosaminidase, EC 3.2.1.52) is a lysosomal hydrolase composed of an α- and a β-subunit. It is responsible for the degradation of GM2 ganglioside. Mutations in the HEXB gene encoded β-subunit cause a form of GM2 gangliosidosis known as Sandhoff disease. Although this is a rare disease population, several geographically isolated groups have a high carrier frequency. Most notably, a 1 in 16–29 carrier frequency has been reported for an Argentinean population living in an area contained within a 375-km radius from Córdoba. Analysis of the genomic DNA of two patients from this region revealed that one was homozygous for a G to A substitution at the 5′ donor splice site of intron 2. This mutation completely abolishes normal mRNA splicing. The other patient was a compound of the intron 2 G → A susbtitution and a second allele due to a 4-bp deletion in exon 7. The β-subunit mRNA of this allele is unstable, presumably as a result of an early stop codon introduced by the deletion. Two novel PCR-based assays were developed to detect these mutations. We suggest that one of these assays could be modified and used as a rapid procedure for 5′ donor splice site defects in other genes. These results provide a further example of the genetic heterogeneity that can exist even in a small geographically isolated population.  相似文献   

7.
Four enzymes necessary for the metabolism of methione by the transsulfuration pathway, methionine adenosyltransferase (EC 2.5.1.6), adenosyl-homocysteinase (EC 3.3.1.1), cystathionine β-synthase (EC 4.2.1.22) and cystathionine γ-lyase (EC 4.4.1.1) were identified in Tetrahymean pyriformis. The ability of these cells to transfer 35S from [35S] methionine to form [35S] - cysteine was also observed and taken as direct evidence for the functional existence of this pathway in Tetrahymena. An intermediate in the pathway and an active methyl donor, S-adenosylmethionine, was qualitatively identified in Tetrahymena and its concentration was found to be greater in late stationary phase cells than in early stationary phase cells.  相似文献   

8.
Methionine had been observed to interact with two principal transport systems for amino acids in mammalian cells, the A and L systems. The present study of methionine transport and of exchange processes through system A arose in the course of a study to define the specificity of a transinhibition effect caused by cysteine.Methionine uptake through two transport systems in the S37 cell was confirmed by the occurrence of a biphasic double-reciprocal plot for labeled methionine uptake. Preloading cells with methionine stimulated labeled histidine uptake through both systems A and L. Efflux of labeled methionine from cells was stimulated by histidine in a biphasic manner, so that both systems A and L can be used for exchange when methionine is the intracellular amino acid. Aminocycloheptanecarboxylic acid elicited exchange efflux of labeled methionine only through system L. α-Aminoisobutyric acid and N-methyl-α-aminoisobutyric acid both stimulated efflux of labeled N-methyl-α-aminoisobutyric acid from S37 cells. These findings are interpreted a showing that transport system A is capable of functioning as an exchange system depending upon the identity of intracellular and extracellular substrates available.  相似文献   

9.
The influence of chronic morphine exposure in vitro on the biotransformation of β-endorphin (βE) was investigated using the myenteric plexus-longitudinal muscle of guinea-pig ileum. A membrane preparation was incubated with βE and the degradation of βE as well as the accumulation of several βE fragments in the incubation medium were followed with time. The levels of peptides were determined by specific radioimmunoassays after separation by high-pressure liquid chromatography. It was found that exposure to morphine did not affect the disappearance of βE, but altered the time course of accumulation of βE fragments. In fact, the accumulation of γ-endorphin, α-endorphin and des-tyrosine1-α-endorphin was enhanced, while that of des-tyrosine1-γ-endorphin was not changed. Additionally, the disappearance of γ-endorphin appeared to be stimulated by morphine exposure. These data provide evidence that the fragmentation of βE is changed by chronic morphine exposure in such a way that the turn-over of γ-endorphin is increased.  相似文献   

10.
11.
Repeated Biogel P6 chromatography of the urine from a patient with fucosidosis yielded several fractions containing fucosyloligosaccharides and glycopeptides. Two of these were shown by 1H nuclear magnetic resonance (1H-n.m.r.) spectroscopy and permethylation analysis to have the following structures respectively: (I) αfuc (1→3) [βgal (1→4)] βglcNAc (1→2) αman (1→36) βman (1→4) glcNAc and (II) αfuc (1→3) [βgal (1→4)] βglcNAc (1→2) αman (1→36) βman (1→4) βglcNAc (1→4) [αfuc (1→36)] βglcNAc-Asn.  相似文献   

12.
The regulation of cotyledon-specific gene expression by exogenously applied abscisic acid (ABA) was studied in developing cultured cotyledons of soybean (Glycine max L. Merr. cv Provar). When immature cotyledons were cultured in modified Thompson's medium, the addition of ABA resulted in an increased concentration of the β-subunit of β-conglycinin, one of the major storage proteins of soybean seeds. The amount of the α′-and α-subunits of β-conglycinin was relatively unaffected by the ABA treatment. When fluridone, an inhibitor of carotenoid biosynthesis that has been shown to decrease ABA levels in plant tissues, was added to the medium the level of ABA and the β-subunit decreased in the cotyledons. Increasing the concentration of sucrose in the culture medium caused an increase in the concentration of ABA and β-subunit in the cotyledons. When in vitro translation products from RNA isolated from cotyledons cultured with ABA were immunoprecipitated with antiserum against β-conglycinin, there was an increased amount of pre-β-subunit polypetide compared to the translation products from RNA isolated from control cotyledons. The pre-β-subunit polypeptide was not detected in translation products from RNA isolated from fluridone-treated cotyledons. Nucleic acid hybridization reactions showed that the level of β-subunit mRNA was higher in ABA-treated cotyledons compared to the control, and was lower in the fluridone-treated cotyledons. We have shown that exogenous ABA is able to modulate the accumulation of the β-subunit of β-conglycinin in developing cultured soybean cotyledons.  相似文献   

13.
Bacteriophage T4 α-glucosyl transferase mRNA is made as a polycistronic 21S molecule that is processed during normal infection to the commonly found 14.5S species. By using antibiotic inhibitors of protein synthesis, it is possible to distinguish two steps involved in the processing of the 21S polycistronic α-gt mRNA in T4-infected Escherichia coli. There is an initial cleavage to an 18S molecule that does not require protein synthesis. However, the next step, the conversion of the 18S into the 14.5S molecule, requires simultaneous protein synthesis.  相似文献   

14.
In the present investigation, an approach toward defining the role of ribosomes in stabilizing functional messenger RNA in cell-free extracts is described. The data presented show that initiation of protein synthesis is necessary for maximal functional stability of bacteriophage T4 deoxynucleotide kinase mRNA in vitro and suggest that much of the stability is attained by interaction of the deoxynucleotide kinase mRNA initiation site with a 30S ribosomal subunit. Data is also presented which suggest that any of several E. coli ribonucleases could serve as a messenger ribonuclease in vivo.  相似文献   

15.
The ability of a series of tetrahydroisoquinoline (THIQ) alkaloids to inhibit the binding of radioligands to catecholamine receptors in the CNS has been examined. (+) THP was the most potent inhibitor of [3H] dihydroalprenolol binding to β-adrenergic receptors and of [3H] haloperidol to dopaminergic receptors and was the least potent inhibitor of [3H] WB-4101 binding to α-adrenergic receptors. Other THIQ alkaloids examined such as salsoline, salsolinol, and reticuline were less potent than (+) THP in inhibiting radioligand binding to β-adrenergic and dopaminergic receptors, and more potent than (+) THP in inhibiting radioligand to α-adrenergic receptors. The marked potency of (+) THP in inhibiting radioligand binding to β-adrenergic receptors (IC50 ~ 10?7 M) was confirmed by the potency of this compound in inhibiting (?) isoproternol elicited accumulations of cyclic AMP in brain slice preparations. These data indicate that, if formed invivo during alcohol consumption, THIQ derivatives such as THP may affect catecholamine neurons in the CNS.  相似文献   

16.
D S King  E P Marks 《Life sciences》1974,15(1):147-154
Hemolymph β-ecdysone levels are high (~1.6 μg/ml) in late last instar cockroach (Leucophaeamaderae) nymphs; the level of α-ecdysone (~0.1 μg/ml) is evidently subphysiological. Cultured leg regenerates, target organs of ecdysone, are capable of slowly converting α- to β-ecdysone. Cultured prothoracic glands secrete α-ecdysone, which was identified by complete mass spectrometry. These results are consistent with the view that α-ecdysone, secreted by the prothoracic gland, functions as a prohormone which is converted into the active moulting hormone, β-ecdysone, in other tissues.  相似文献   

17.
Translation initiation is down-regulated in eukaryotes by phosphorylation of the α-subunit of eIF2 (eukaryotic initiation factor 2), which inhibits its guanine nucleotide exchange factor, eIF2B. The N-terminal S1 domain of phosphorylated eIF2α interacts with a subcomplex of eIF2B formed by the three regulatory subunits α/GCN3, β/GCD7, and δ/GCD2, blocking the GDP-GTP exchange activity of the catalytic ?-subunit of eIF2B. These regulatory subunits have related sequences and have sequences in common with many archaeal proteins, some of which are involved in methionine salvage and CO2 fixation. Our sequence analyses however predicted that members of one phylogenetically distinct and coherent group of these archaeal proteins [designated aIF2Bs (archaeal initiation factor 2Bs)] are functional homologs of the α, β, and δ subunits of eIF2B. Three of these proteins, from different archaea, have been shown to bind in vitro to the α-subunit of the archaeal aIF2 from the cognate archaeon. In one case, the aIF2B protein was shown further to bind to the S1 domain of the α-subunit of yeast eIF2 in vitro and to interact with eIF2Bα/GCN3 in vivo in yeast. The aIF2B-eIF2α interaction was however independent of eIF2α phosphorylation. Mass spectrometry has identified several proteins that co-purify with aIF2B from Thermococcus kodakaraensis, and these include aIF2α, a sugar-phosphate nucleotidyltransferase with sequence similarity to eIF2B?, and several large-subunit (50S) ribosomal proteins. Based on this evidence that aIF2B has functions in common with eIF2B, the crystal structure established for an aIF2B was used to construct a model of the eIF2B regulatory subcomplex. In this model, the evolutionarily conserved regions and sites of regulatory mutations in the three eIF2B subunits in yeast are juxtaposed in one continuous binding surface for phosphorylated eIF2α.  相似文献   

18.
The effects of differemt S and methionine regimes on growthof developing Vicia faba cotyledons in vitro were studied. Basalmedium (containing adequate S) supplemented with 05 mM methioninemarginally increased d. wt and uncombined amino acid accumulationbut adding 1–5 mM methionine inhibited both growth andprotein accumulation. Sulphur deficiency reduced both d. wtand protein accumulation but incresed accumulation of uncombinedamino acids. Adding 1 mM methionine to the S-deficient mediumrestored growth, normal protein and uncombined amino acid acnunulation.High sulphate medium (7.5 mM ) decreased d. wt, protein anduncombined amino acid accumulation. High sulphate medium or basal medium+methionine (05 mM) changedthe proportions of the seed proteins; legumin increased butvicilin decreased. Sulphur deficiency caused a relative increasein vicilin but a decrease in legumin. The different S and methionineregimes markedly changed the composition of the uncombined aminoacids, especially those derived from aspartic acid but not thecomposition of the protein fraction, except during S deficiency. The data presented indicates a flexibility in the storage proteincomposition of developing cotyledons grown in vitro, with theS and methionine status having a regulatory effect. Vicia faba L., field bean, cotyledon, growth, in vitro culture, uncombined amino acids, protein composition, legumin, vicilin, methionine, sulphur  相似文献   

19.
β-hexosaminidase is an essential lysosomal enzyme whose absence in man results in a group of disorders, the GM2 gangliosidoses. β-hexosaminidase activity is many times higher in the epididymis than in other tissues, is present in sperm, and is postulated to be required for mammalian fertilization. To better understand which cells are responsible for β-hexosaminidase expression and how it is regulated in the male reproductive system, we quantitated the mRNA expression of the α- and β-subunits of β-hexosaminidase and carried out immunocytochemical localization studies of the enzyme in the rat testis and epididymis. β-hexosaminidase α-subunit mRNA was abundant and differentially expressed in the adult rat testis and epididymis, at 13- and 2-fold brain levels, respectively. In contrast, β-subunit mRNA levels in the testis and epididymis were 0.3- and 5-fold brain levels. During testis development from 7–91 postnatal days of age, testis levels of α-subunit mRNA increased 10-fold and coincided with the appearance of spermatocytes and spermatids in the epithelium; in contrast, β-subunit mRNA was expressed at low levels throughout testis development. In isolated male germ cells, β-hexosaminidase α-subunit expression was most abundant in haploid round spermatids, whereas the β-subunit mRNA was not detected in germ cells. Within the epididymis both α- and β-subunit mRNA concentrations were highest in the corpus, with 1.5-fold and 9-fold initial segment values, respectively. Light microscopic immunocytochemistry revealed that β-hexosaminidase was localized to Sertoli cells and interstitial macrophages in the testis. In the epididymis, β-hexosaminidase staining was most intense in narrow cells in the initial segment, principal cells in the caput, and proximal corpus, and clear cells throughout the duct. Electron microscopic immunocytochemistry revealed that β-hexosaminidase was predominantly present in lysosomes in Sertoli and epididymal cells. The cellular and regional specificity of β-hexosaminidase immunolocalization suggest an important role for the enzyme in testicular and epididymal functions. Mol. Reprod. Dev. 46:227–242, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
The effect of the protein structure of (Na+ + K+)-ATPase on its incorporation into liposome membranes was investigated as follows: the catalytic α-subunit of (Na+ + K+)-ATPase was split into low-molecular weight fragments by trypsin treatment and the digested enzyme was reconstituted at the same protein concentration as intact control enzyme. The reconstitution process was quantified by the average number of intramembrane particles appearing on concave and convex fracture faces after freeze-fracture of the (Na+ + K+)-ATPase liposomes. The number of intramembrane particles as well as their distribution on concave and convex fracture faces is not modified by the proteolysis. In contrast, the ATPase activity and the transport capacity of the (Na+ + K+)-ATPase decrease progessively with increasing incubation times in the presence of trypsin and are abolished when the original 100 000 molecular weight α-subunit is no longer visible by sodium dodecylsulfate gel electrophoresis. Apparently, functional (Na+ + K+)-ATPase with intact protein structure and digested, non functional enzyme consisting of fragments of the α-subunit reconstitute in the same manner and to the same extent as judged by freeze-fracture analysis. We conclude that, while trypsin treatment modifies the (Na+ + K+)-ATPase molecule in a functional sense, it appears not to modify its interaction with the bilayer in producing intramembrane particles. On the basis of our results, we propose a lipid-lipid interaction mechanism for reconstitution of (Na+ + K+)-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号