首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Speck C  Messer W 《The EMBO journal》2001,20(6):1469-1476
The initiator protein DnaA of Escherichia coli binds to a 9mer consensus sequence, the DnaA box (5'-TT(A/T)TNCACA). If complexed with ATP it adopts a new binding specificity for a 6mer consensus sequence, the ATP-DnaA box (5'-AGatct). Using DNase footprinting and surface plasmon resonance we show that binding to ATP-DnaA boxes in the AT-rich region of oriC of E.coli requires binding to the 9mer DnaA box R1. Cooperative binding of ATP-DnaA to the AT-rich region results in its unwinding. ATP-DnaA subsequently binds to the single-stranded region, thereby stabilizing it. This demonstrates an additional binding specificity of DnaA protein to single-stranded ATP-DnaA boxes. Binding affinities, as judged by the DnaA concentrations required for site protection in footprinting, were approximately 1 nM for DnaA box R1, 400 nM for double-stranded ATP-DnaA boxes and 40 nM for single-stranded ATP-DnaA boxes, respectively. We propose that sequential recognition of high- and low-affinity sites, and binding to single-stranded origin DNA may be general properties of initiator proteins in initiation complexes.  相似文献   

2.
3.
Escherichia coli DnaA protein, a member of the AAA+ superfamily, initiates replication from the chromosomal origin oriC in an ATP-dependent manner. Nucleoprotein complex formed on oriC with the ATP-DnaA multimer but not the ADP-DnaA multimer is competent to unwind the oriC duplex. The oriC region contains ATP-DnaA-specific binding sites termed I2 and I3, which stimulate ATP-DnaA-dependent oriC unwinding. In this study, we show that the DnaA R285A mutant is inactive for oriC replication in vivo and in vitro and that the mutation is associated with specific defects in oriC unwinding. In contrast, activities of DnaA R285A are sustained in binding to the typical DnaA boxes and to ATP and ADP, formation of multimeric complexes on oriC, and loading of the DnaB helicase onto single-stranded DNA. Footprint analysis of the DnaA-oriC complex reveals that the ATP form of DnaA R285A does not interact with ATP-DnaA-specific binding sites such as the I sites. A subgroup of DnaA molecules in the oriC complex must contain the Arg-285 residue for initiation. Sequence and structural analyses suggest that the DnaA Arg-285 residue is an arginine finger, an AAA+ family-specific motif that recognizes ATP bound to an adjacent subunit in a multimeric complex. In the context of these and previous results, the DnaA Arg-285 residue is proposed to play a unique role in the ATP-dependent conformational activation of an initial complex by recognizing ATP bound to DnaA and by modulating the structure of the DnaA multimer to allow interaction with ATP-DnaA-specific binding sites in the complex.  相似文献   

4.
In complex with ATP, but not ADP, DnaA protein multimers unwind a specific region of duplex DNA within the chromosomal replication origin, oriC, triggering a series of reactions that result in initiation of DNA replication. Following replication initiation, ATP hydrolysis, which is coupled to DNA replication, results in the generation of initiation-incompetent ADP-DnaA. Suppression of overinitiation of replication requires that ADP-DnaA complexes be stably maintained until the next round of replication. Thus, the functional and structural requirements that ensure stable nucleotide binding to DnaA are crucial for proper regulation of replication. Here, we demonstrate that Glu143 of DnaA, located within the AAA+ box II N-linker motif, is a key residue involved in stable nucleotide binding. A Glu143 substitution variant of DnaA (DnaA E143A) bound to ADP on ice with an affinity similar to wild-type DnaA, but the resultant ADP-DnaA E143A complex was more labile at 37 °C than wild-type ADP-DnaA complexes. Consistent with this, conversion of ADP-DnaA E143A to ATP-DnaA E143A was stimulated at 37°C in the presence of ATP, which also stimulated replication of a minichromosome in an in vitro reconstitution reaction. Expression of DnaA E143A in vivo inhibited cell growth in an oriC-dependent manner, suggesting that DnaA E143A caused over-initiation of replication, consistent with the in vitro results. Glu is a highly conserved residue at the corresponding position of γ-proteobacterial DnaA orthologs. Our finding of the novel role for the DnaA N-linker region may represent a conserved function of this motif among those DnaA orthologs.  相似文献   

5.
In Escherichia coli, ATP-bound DnaA protein can initiate chromosomal replication. After initiation, DnaA-ATP is hydrolyzed by interactions with a complex containing a replicase subunit to yield the inactive ADP-DnaA. However, the mechanisms which regenerate ATP-DnaA from ADP-DnaA are not well understood. We report here that a 70-bp DNA segment promotes exchange of the DnaA-bound nucleotide in a sequence-specific manner, thus reactivating the initiation function of DnaA in vitro. This segment contains a typical DnaA-binding 9-mer motif, the DnaA box, and two DnaA box-like sequences. The presence and precise composition of these three motifs are required for the DnaA-reactivating activity, which suggests that a highly ordered complex which includes multimeric DnaA molecules is formed for isomerization of DnaA. We named this DNA segment DARS, for DnaA-reactivating sequence. The role of DARS in regulation of DnaA function in vivo is discussed.  相似文献   

6.
In Escherichia coli, regulatory inactivation of the replication initiator DnaA occurs after initiation as a result of hydrolysis of bound ATP to ADP, but it has been unknown how DnaA is controlled to coordinate cell growth and chromosomal replication in Gram-positive bacteria such as Staphylococcus aureus. This study examined the roles of ATP binding and its hydrolysis in the regulation of the S. aureus DnaA activity. In vitro, S. aureus DnaA melted S. aureus oriC in the presence of ATP but not ADP by a mechanism independent of ATP hydrolysis. Unlike E. coli DnaA, binding of ADP to S. aureus DnaA was unstable. As a result, at physiological concentrations of ATP, ADP bound to S. aureus DnaA was rapidly exchanged for ATP, thereby regenerating the ability of DnaA to form the open complex in vitro. Therefore, we examined whether formation of ADP-DnaA participates in suppression of replication initiation in vivo. Induction of the R318H mutant of the AAA+ sensor 2 protein, which has decreased intrinsic ATPase activity, caused over-initiation of chromosome replication in S. aureus, suggesting that formation of ADP-DnaA suppresses the initiation step in S. aureus. Together with the biochemical features of S. aureus DnaA, the weak ability to convert ATP-DnaA into ADP-DnaA and the instability of ADP-DnaA, these results suggest that there may be unidentified system(s) for reducing the cellular ratio of ATP-DnaA to ADP-DnaA in S. aureus and thereby delaying the re-initiation of DNA replication.  相似文献   

7.
The ATP-bound but not the ADP-bound form of DnaA protein is active for replication initiation at the Escherichia coli chromosomal origin. The hydrolysis of ATP bound to DnaA is accelerated by the sliding clamp of DNA polymerase III loaded on DNA. Using a culture of randomly dividing cells, we now have evidence that the cellular level of ATP-DnaA is repressed to only approximately 20% of the total DnaA molecules, in a manner depending on DNA replication. In a synchronized culture, the ATP-DnaA level showed oscillation that has a temporal increase around the time of initiation, and decreases rapidly after initiation. Production of ATP-DnaA depended on concomitant protein synthesis, but not on SOS response, Dam or SeqA. Regeneration of ATP-DnaA from ADP-DnaA was also observed. These results indicate that the nucleotide form shifts of DnaA are tightly linked with an epistatic cell cycle event and with the chromosomal replication system.  相似文献   

8.
The initiator protein DnaA has several unique DNA-binding features. It binds with high affinity as a monomer to the nonamer DnaA box. In the ATP form, DnaA binds cooperatively to the low-affinity ATP-DnaA boxes, and to single-stranded DNA in the 13mer region of the origin. We have carried out an extensive mutational analysis of the DNA-binding domain of the Escherichia coli DnaA protein using mutagenic PCR. We analyzed mutants exhibiting more or less partial activity by selecting for complementation of a dnaA(Ts) mutant strain at different expression levels of the new mutant proteins. The selection gave rise to 30 single amino acid substitutions and, including double substitutions, more than 100 mutants functional in initiation of chromosome replication were characterized. The analysis indicated that all regions of the DNA-binding domain are involved in DNA binding, but the most important amino acid residues are located between positions 30 and 80 of the 94 residue domain. Residues where substitutions with non-closely related amino acids have very little effect on protein function are located primarily on the periphery of the 3D structure. By comparison of the effect of substitutions on the activity for initiation of replication with the activity for repression of the mioC promoter, we identified residues that might be involved specifically in the cooperative interaction with ATP-DnaA boxes.  相似文献   

9.
DnaA protein (the initiator protein) binds and clusters at the four DnaA boxes of the Escherichia coli chromosomal origin (oriC) to promote the strand opening for DNA replication. DnaA protein activity depends on the tight binding of ATP; the ADP form of DnaA protein, generated by hydrolysis of the bound ATP, is inactive. Rejuvenation of ADP-DnaA protein, by replacement with ATP, is catalyzed by acidic phospholipids in a highly fluid bilayer. We find that interaction of DnaA protein with oriC DNA is needed to stabilize DnaA protein during this rejuvenation process. Whereas DnaA protein bound to oriC DNA responds to phospholipids, free DnaA protein is inactivated by phospholipids and then fails to bind oriC. Furthermore, oriC DNA facilitates the high affinity binding of ATP to DnaA protein during treatment with phospholipids. A significant portion of the DnaA protein associated with oriC DNA can be replaced by the ADP form of the protein, suggesting that all of the DnaA protein bound to oriC DNA need not be rejuvenated between rounds of replication.  相似文献   

10.
11.
The origin recognition complex (ORC), a possible initiator of chromosomal DNA replication in eukaryotes, binds to ATP through its subunits Orc1p and Orc5p. Orc1p possesses ATPase activity. As for DnaA, the Escherichia coli initiator, the ATP-DnaA complex is active but the ADP-DnaA complex is inactive for DNA replication and, therefore, the ATPase activity of DnaA inactivates the ATP-DnaA complex to suppress the re-initiation of chromosomal DNA replication. We investigated ADP-binding to ORC by a filter-binding assay. The K(d) values for ADP-binding to wild-type ORC and to ORC-1A (ORC containing Orc1p with a defective Walker A motif) were less than 10nM, showing that Orc5p can bind to ADP with a high affinity, similar to ATP. ORC-5A (ORC containing Orc5p with a defective Walker A motif) did not bind to ADP, suggesting that the ADP-Orc1p complex is too unstable to be detected by the filter-binding assay. ADP dissociated more rapidly than ATP from wild-type ORC and ORC-1A. Origin DNA fragments did not stimulate ADP-binding to any type of ORC. In the presence of ADP, ORC could not bind to origin DNA in a sequence-specific manner. Thus, in eukaryotes, the ADP-ORC complex may be unable to initiate chromosomal DNA replication, and in this it resembles the ADP-DnaA complex in prokaryotes. However, overall control may be different. In eukaryotes, the ADP-ORC complex is unstable, suggesting that the ADP-ORC complex might rapidly become an ATP-ORC complex; whereas in prokaryotes, ADP remains bound to DnaA, keeping DnaA inactive, and preventing re-initiation for some periods.  相似文献   

12.
J L Kitchen  Z Li  E Crooke 《Biochemistry》1999,38(19):6213-6221
The initiation of Escherichia coli chromosomal replication by DnaA protein is strongly influenced by the tight binding of the nucleotides ATP and ADP. Anionic phospholipids in a fluid bilayer promote the conversion of inactive ADP-DnaA protein to replicatively active ATP-DnaA protein in vitro, and thus likely play a key role in regulating DnaA activity. Previous studies have revealed that, during this reactivation, a specific region of DnaA protein inserts into the hydrophobic portion of the lipid bilayer in an acidic phospholipid-dependent manner. To elucidate the requirement for acidic phospholipids in the reactivation process, the contribution of electrostatic forces in the interaction of DnaA and lipid was examined. DnaA-lipid binding required anionic phospholipids, and DnaA-lipid binding as well as lipid-mediated release of DnaA-bound nucleotide were inhibited by increased ionic strength, suggesting the involvement of electrostatic interactions in these processes. As the vesicular content of acidic phospholipids was increased, both nucleotide release and DnaA-lipid binding increased in a linear, parallel manner. Given that DnaA-membrane binding, the insertion of DnaA into the membrane, and the consequent nucleotide release all require anionic phospholipids, the acidic headgroup may be necessary to recruit DnaA protein to the membrane for insertion and subsequent reactivation for replication.  相似文献   

13.
We developed a modified ChIP-chip method, designated ChAP-chip (Chromatin Affinity Precipitation coupled with tiling chip). The binding sites of Bacillus subtilis Spo0J determined using this technique were consistent with previous findings. A DNA replication initiator protein, DnaA, formed stable complexes at eight intergenic regions on the B. subtilis genome. Characterization of the binding sequences suggested that two factors -- the local density of DnaA boxes and their affinities for DnaA -- are critical for stable binding. We further showed that in addition to autoregulation, DnaA directly modulate the expression of sda in a positive, and ywlC and yydA in a negative manner. Examination of possible stable DnaA-binding sequences in other Bacillus species suggested that DnaA-dependent regulation of those genes is maintained in most bacteria examined, supporting their biological significance. In addition, a possible stable DnaA-binding site downstream of gcp is also suggested to be conserved. Furthermore, potential DnaA-binding sequences specific for each bacterium have been identified, generally in close proximity to oriC. These findings suggest that DnaA plays several additional roles, such as control of the level of effective initiator, ATP-DnaA, and/or stabilization of the domain structure of the genome around oriC for the proper initiation of chromosome replication.  相似文献   

14.
Regulatory inactivation of DnaA helps ensure that the Escherichia coli chromosome is replicated only once per cell cycle, through accelerated hydrolysis of active replication initiator ATP-DnaA to inactive ADP-DnaA. Analysis of deltahda strains revealed that the regulatory inactivation of DnaA component Hda is necessary for maintaining controlled initiation but not for cell growth or viability.  相似文献   

15.
Plasmids carrying the mioC promoter region with its two DnaA boxes are as efficient in titration of DnaA protein as plasmids carrying a replication-inactivated oriC region with its five DnaA boxes. The two DnaA boxes upstream of the mioC promoter were mutated in various ways to study the cooperativity between the DnaA boxes, and to study in vivo the in vitro-defined 9mer DnaA box consensus sequence (TT(A)/(T)TNCACA). The quality and cooperativity of the DnaA boxes were determined in two complementary ways: as titration of DnaA protein leading to derepression of the dnaA promoter, and as repression of the mioC promoter caused by the DnaA protein binding to the DnaA boxes. Titration of DnaA protein correlated with repression of the mioC promoter. The level of titration and repression with the normal promoter-proximal box (TTTTCCACA) depends strongly on the presence and the quality of a DnaA box in the promoter-distal position, whereas a promoter-proximal DnaA box with the sequence TTATCCACA titrated DnaA protein and caused significant repression of the mioC promoter without a promoter-distal DnaA box. The quality of the eight different consensus DnaA boxes located in the promoter-proximal position was determined: TTATCCACA had the highest affinity for DnaA protein. In the third position, A was better than T, and the four possibilities in the fifth position could be ranked as C >A >or=G >T. Parallel in vitro experiments using a purified DNA-binding domain of DnaA protein gave the same ranking of the binding affinities of the eight DnaA boxes.  相似文献   

16.
The Escherichia coli chromosomal origin contains several bindings sites for factor for inversion stimulation (FIS), a protein originally identified to be required for DNA inversion by the Hin and Gin recombinases. The primary FIS binding site is close to two central DnaA boxes that are bound by DnaA protein to initiate chromosomal replication. Because of the close proximity of this FIS site to the two DnaA boxes, we performed in situ footprinting with 1, 10-phenanthroline-copper of complexes formed with FIS and DnaA protein that were separated by native gel electrophoresis. These studies show that the binding of FIS to the primary FIS site did not block the binding of DnaA protein to DnaA boxes R2 and R3. Also, FIS appeared to be bound more stably to oriC than DnaA protein, as deduced by its reduced rate of dissociation from a restriction fragment containing oriC . Under conditions in which FIS was stably bound to the primary FIS site, it did not inhibit oriC plasmid replication in reconstituted replication systems. Inhibition, observed only at high levels of FIS, was due to absorption by FIS binding of the negative superhelicity of the oriC plasmid that is essential for the initiation process.  相似文献   

17.
Summary Mutations (base changes) were introduced into the four DnaA binding sites (DnaA boxes) of theEscherichia coli replication origin,oriC. Mutations in a single DnaA box did not impair the ability of these origins to replicate in vivo and in vitro. A combination of mutations in two DnaA boxes, R1 and R4, resulted in slower growth of theoriC plasmid-bearing host cells. DnaA protein interaction with mutant and wild-type DnaA boxes was analyzed by DNase I footprinting. Binding of DnaA protein to a mutated DnaA box R1 was not affected by a mutation in DnaA box R4 and vice versa. Mutations in DnaA boxes R1 and R4 did not modify the ability of the DnaA protein to bind to other DnaA boxes inoriC.  相似文献   

18.
P Hughes  A Landoulsi  M Kohiyama 《Cell》1988,55(2):343-350
DnaA protein interacts with cAMP with a KD of 1 microM. This interaction stimulates DnaA protein binding to the chromosome replication origin (oriC) and the mioC promoter region, protects DnaA protein from thermal inactivation, releases ADP but not ATP bound to DnaA protein, and restores normal DNA replication activity and ATPase activity in inactive ADP-DnaA protein preparations. A model is proposed in which cellular cAMP levels govern the replication activity of DnaA protein by promoting the recycling of the inactive ADP-DnaA protein form into the active ATP form.  相似文献   

19.
Escherichia coli cells with a point mutation in the dnaN gene causing the amino acid change Gly157 to Cys, were found to underinitiate replication and grow with a reduced origin and DNA concentration. The mutant β clamp also caused excessive conversion of ATP-DnaA to ADP-DnaA. The DnaA protein was, however, not the element limiting initiation of replication. Overproduction of DnaA protein, which in wild-type cells leads to over-replication, had no effect in the dnaN(G157C) mutant. Origins already opened by DnaA seemed to remain open for a prolonged period, with a stage of initiation involving β clamp loading, presumably limiting the initiation process. The existence of opened origins led to a moderate SOS response. Lagging strand synthesis, which also requires loading of the β clamp, was apparently unaffected. The result indicates that some aspects of β clamp activity are specific to the origin. It is possible that the origin specific activities of β contribute to regulation of initiation frequency.  相似文献   

20.
We probed the complex between the replication origin, oriC , and the initiator protein DnaA using different types of mutations in the five binding sites for DnaA, DnaA boxes R1–R4 and M: (i) point mutations in individual DnaA boxes and combinations of them; (ii) replacement of the DnaA boxes by a scrambled 9 bp non-box motif; (iii) positional exchange; and (iv) inversion of the DnaA boxes. For each of the five DnaA boxes we found at least one type of mutation that resulted in a phenotype. This demonstrates that all DnaA boxes in oriC have a function in the initiation process. Most mutants with point mutations retained some origin activity, and the in vitro DnaA-binding capacity of these origins correlated well with their replication proficiency. Inversion or scrambling of DnaA boxes R1 or M inactivated oriC -dependent replication of joint replicons or minichromosomes under all conditions, demonstrating the importance of these sites. In contrast, mutants with inverted or scrambled DnaA boxes R2 or R4 could not replicate in wild-type hosts but gave transformants in host strains with deleted or compromised chromosomal oriC at elevated DnaA concentrations. We conclude that these origins require more DnaA per origin for initiation than does wild-type oriC . Mutants in DnaA box R3 behaved essentially like wild-type oriC , except for those in which the low-affinity box R3 was replaced by the high-affinity box R1. Apparently, initiation is possible without DnaA binding to box R3, but high-affinity DnaA binding to DnaA box R3 upsets the regulation. Taken together, these results demonstrate that there are finely tuned DnaA binding requirements for each of the individual DnaA boxes for optimal build-up of the initiation complex and replication initiation in vivo  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号