首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The expression, in Escherichia coli, of variants of the Erwinia chrysanthemi secretion genes outB and outS under the Ptac promoter is toxic to the cells. During attempts to clone E. chrysanthemi genes able to suppress this toxicity, I identified two genes, sotA and sotB, whose products are able to reduce the isopropyl-beta-D-thiogalactopyranoside (IPTG) induction of the E. coli lac promoter. SotA and SotB belong to two different families of the major facilitator superfamily. SotA is a member of the sugar efflux transporter family, while SotB belongs to the multidrug efflux family. The results presented here suggest that SotA and SotB are sugar efflux pumps. SotA reduces the intracellular concentration of IPTG, lactose, and arabinose. SotB reduces the concentration of IPTG, lactose, and melibiose. Expression of sotA and sotB is not regulated by their substrates, but sotA is activated by the cyclic AMP receptor protein (CRP), while sotB is repressed by CRP. Lactose is weakly toxic for E. chrysanthemi. This toxicity is increased in a sotB mutant which cannot efficiently efflux lactose. This first evidence for a physiological role of sugar efflux proteins suggests that their function could be to reduce the intracellular concentration of toxic sugars or sugar metabolites.  相似文献   

4.
The fumarate reductase of Escherichia coli is a bioenergetically important membrane-bound flavoenzyme consisting of four subunits. A and B comprise a membrane-extrinsic catalytic domain whereas C and D are hydrophobic polypeptides which link the catalytic centres to the electron-transport chain. The nucleotide sequence of the frd operon encoding the fumarate reductase of the distantly related bacterium, Proteus vulgaris has been determined and used to predict the primary structures of the respective subunits. Extensive amino acid sequence identity (greater than 80%) was found between the fumarate reductase A and B subunits of P. vulgaris and E. coli. In contrast, the primary structures of the P. vulgaris and E. coli C and D proteins are much less closely related (about 60% homology) although the overall hydrophobicity of their three membrane-spanning segments has been conserved. In most enteric bacteria, the frd operon is followed by genes, ampR and/or ampC, required for the genetic regulation and biosynthesis of a cephalosporinase. The corresponding region of the P. vulgaris genome is occupied by an operon (orf A'BCD) containing at least four genes which are clearly unrelated to the ampC system. Intriguingly the primary structures of the OrfA and OrfD proteins suggest that, like fumarate reductase, they may be components of a membrane-bound enzyme complex involved in energy metabolism.  相似文献   

5.
The organization of the genes involved in colicin D synthesis was studied. These are colicin, immunity and lysis genes. The nucleotide sequence of the immunity gene, its structural and regulatory regions were determined. This gene was shown to be located next to the colicin gene on the same strand and followed by the lysis gene. When colicin synthesis is induced with mitomycin C the immunity gene is transcribed from the general SOS-dependent promotor as a part of the colicin operon. However it has its own SOS-independent promotor in normal growth conditions. A high homology in amino acid sequences of Co1D lysis protein and that of Co1E1, Co1E2, Co1E3, Co1DF13, Co1A was revealed. A detailed scheme of Co1D-CA23 colicin operon structural organization is suggested.  相似文献   

6.
Lupa B  Lyon D  Gibbs MD  Reeves RA  Wiegel J 《Genomics》2005,86(3):342-351
Bacterial non-oxidative, reversible multi subunit hydroxyarylic acid decarboxylases/phenol carboxylases are encoded by the three clustered genes, B, C, and D, of approximately 0.6, 1.4, and 0.2 kb, respectively. There are more than 160 homologues in the database with significant similarity to gene B (homology to ubiX) and C (ubiD) distributed in all three microbial domains, however, homologues to gene D, are not numerous ( approximately 15). The occurrence of the entire BCD gene cluster encoding for either identified or presumptive hydroxyarylic acid decarboxylase to date has been revealed in Sedimentibacter hydroxybenzoicus (unique genes arrangement CDB), Streptomyces sp. D7, Bacillus subtilis, B. licheniformis, E. coli O157:H7, Klebsiella pneumoniae, Enterobacter cloacae, Shigella dysenteriae, Salmonella enterica, S. paratyphi, S. typhimurium, S. bongori, and S. diarizonae. The corresponding genes from S. hydroxybenzoicus, B. subtilis, Streptomyces sp. D7, E. coli O157:H7, K. pneumoniae, and S. typhimurium were cloned and expressed in E. coli DH5alpha (void of analogous genes), and shown to code for proteins exhibiting non-oxidative hydroxyarylic acid decarboxylase activity.  相似文献   

7.
An Escherichia coli strain capable of producing the potent antibiotic erythromycin C (Ery C) was developed by expressing 17 new heterologous genes in a 6-deoxyerythronolide B (6dEB) producer strain. The megalomicin gene cluster was used as the source for the construction of two artificial operons that contained the genes encoding the deoxysugar biosynthetic and tailoring enzymes necessary to convert 6dEB to Ery C. The reconstructed mycarose operon contained the seven genes coding for the enzymes that convert glucose-1-phosphate (G-1-P) to TDP-L-mycarose, a 6dEB mycarosyl transferase, and a 6dEB 6-hydroxylase. The activity of the pathway was confirmed by demonstrating conversion of exogenous 6dEB to 3-O-alpha-mycarosylerythronolide B (MEB). The reconstructed desosamine operon contained the six genes necessary to convert TDP-4-keto-6-deoxyglucose, an intermediate formed in the mycarose pathway, to TDP-D-desosamine, a desosamine transferase, a 6dEB 12-hydroxylase, and the rRNA methyltransferase ErmE; the last was required to confer resistance to the host cell upon production of mature macrolide antibiotics. The activity of this pathway was demonstrated by conversion of MEB to Ery C. When the mycarose and desosamine operons were expressed in an E. coli strain engineered to synthesize 6dEB, Ery C and Ery D were produced. The successful production of Ery C in E. coli shows the potentiality of this model microorganism to synthesize novel 6-deoxysugars and to produce bioactive glycosylated compounds and also establishes the basis for the future use of E. coli both in the production of new glycosylated polyketides and for the generation of novel bioactive compounds through combinatorial biosynthesis.  相似文献   

8.
Shigella strains are nonmotile. The master operon of flagellar synthesis, flhDC, was analyzed for genetic damage in 46 Shigella strains representing all known serotypes. In 11 strains (B1, B3, B6, B8, B10, B18, D5, F1B, D10, F3A, and F3C) the flhDC operon was completely deleted. PCR and sequence analysis of the flhDC region of the remaining 35 strains revealed many insertions or deletions associated with insertion sequences, and the majority of the strains were found to be defective in their flhDC genes. As these genes also play a role in regulation of non-flagellar genes, the loss may have other consequences or be driven by selection pressures other than those against flagellar motility. It has been suggested that Shigella strains fall mostly into three clusters within Escherichia coli, with five outlier strains, four of which are also within E. coli (G. M. Pupo, R. Lan, and P. R. Reeves, Proc. Natl. Acad. Sci. USA 97:10567-10572, 2000). The distribution of genetic changes in the flhDC region correlated very well with the three clusters and outlier strains found using housekeeping gene DNA sequences, enabling us to follow the sequence of mutational change in the flhDC locus. Two cluster 2 strains were found to have unique flhDC sequences, which are most probably due to recombination during the exchange of the adjacent O-antigen gene clusters.  相似文献   

9.
10.
11.
Random TnphoA and TnlacZ translational fusions were introduced into an Escherichia coli strain with a deletion of the multiple antibiotic resistance (mar) locus, complemented in trans by a temperature-sensitive plasmid bearing the mar locus with a constitutively expressed mar operon. Five gene fusions (two with lacZ and three with phoA) regulated by the mar operon were identified by increased or decreased marker enzyme activity following loss of the complementary plasmid at the restrictive temperature. Expression of LacZ from both lacZ fusions increased in the presence of the mar operon; expression from the three phoA fusions was represented by the mar operon. The lacZ fusions were mapped at 31.5 and 14 min on the Escherichia coli chromosome. One of the phoA fusions was located at 51.6 min while the two others mapped at 77 min. Cloning and sequencing of a portion of the fused genes showed all of them to be different. The phoA fusions at 77 min were located in a recently identified gene, slp, a lipoprotein of unknown function (D.M. Alexander and A. C. St. John, Mol. Microb. 11:1059-1071, 1994). The others showed no homology with any known genes of E. coli. The insertions caused small but reproducible changes in the antibiotic susceptibility profile. This approach has enabled the identification of new genes in E. coli which are regulated by the marRAB operon and involved in the Mar phenotype.  相似文献   

12.
13.
Genetic Fine Structure of the Leucine Operon of Escherichia coli K-12   总被引:15,自引:10,他引:5       下载免费PDF全文
The order of mutational sites in 10 independently isolated leucine auxotrophys of Escherichia coli K-12 was determined by three-point reciprocal transductions. The sites of mutation mapped in linear sequence in a cluster; all leucine auxotrophic mutations were cotransducible with mutations in the arabinose operon. The mutations were assigned to four complementation groups by abortive transduction tests, designated D, C, B, and A, reading in a clockwise direction from the arabinose operon. Enzyme analyses showed that strains with a mutation in gene A lacked alpha-isopropylmalate synthetase activity (EC 4.1.3), and those with a mutation in gene B lacked beta-isopropylmalate dehydrogenase activity (EC 1.1.1). It is concluded that the gross structure of the leucine operon in E. coli is closely similar to, if not identical with, the gross structure of the leucine operon in Salmonella typhimurium.  相似文献   

14.
The organization of the clusters of genes encoding proteins of the botulinum neurotoxin (BoNT) progenitor complex was elucidated in a strain of Clostridium botulinum producing type B and F neurotoxins. With PCR and sequencing strategies, the type B BoNT-gene cluster was found to be composed of genes encoding BoNT/B, nontoxic nonhemagglutinin component (NTNH), P-21, and the hemagglutinins HA-33, HA-17, and HA-70, whereas the type F BoNT-gene cluster has genes encoding BoNT/F, NTNH, P-47, and P-21. Comparative sequence analysis showed that BoNT/F in type BF strain 3281 shares highest homology with BoNT/F of non-proteolytic (group II) C. botulinum whereas NTNH and P-21 in the type F cluster of strain 3281 are more similar to the corresponding proteins in proteolytic (group I) type F C. botulinum. These findings indicate diverse evolutionary origins for genes encoding BoNT/F and its associated non-toxic proteins, although the genes are contiguous. By contrast, sequence comparisons indicate that genes encoding BoNT/B and associated non-toxic proteins in strain 3281 possess a similar evolutionary origin. It was demonstrated that the genes present in the BoNT/B gene cluster of this type BF strain show exceptionally high homology with the equivalent genes in the silent BoNT/B gene cluster of C. botulinum type A(B), possibly indicating their common ancestry. Received: 30 March 1998 / Accepted: 21 May 1998  相似文献   

15.
A 10-kb region of the Bacillus subtilis genome that contains genes involved in biotin-biosynthesis was cloned and sequenced. DNA sequence analysis indicated that B. subtilis contains homologs of the Escherichia coli and Bacillus sphaericus bioA, bioB, bioD, and bioF genes. These four genes and a homolog of the B. sphaericus bioW gene are arranged in a single operon in the order bioWAFDR and are followed by two additional genes, bioI and orf2. bioI and orf2 show no similarity to any other known biotin biosynthetic genes. The bioI gene encodes a protein with similarity to cytochrome P-450s and was able to complement mutations in either bioC or bioH of E. coli. Mutations in bioI caused B. subtilis to grow poorly in the absence of biotin. The bradytroph phenotype of bioI mutants was overcome by pimelic acid, suggesting that the product of bioI functions at a step prior to pimelic acid synthesis. The B. subtilis bio operon is preceded by a putative vegetative promoter sequence and contains just downstream a region of dyad symmetry with homology to the bio regulatory region of B. sphaericus. Analysis of a bioW-lacZ translational fusion indicated that expression of the biotin operon is regulated by biotin and the B. subtilis birA gene.  相似文献   

16.
We have cloned and sequenced the promoter-proximal region of the Bacillus subtilis operon containing the pbpB gene, encoding essential penicillin-binding protein PBP2B. The first two genes in the operon, designated yllB and yllC, are significantly similar to genes of unknown function similarly positioned upstream of pbpB in Escherichia coli. Both B. subtilis genes are shown to be nonessential. The third B. subtilis gene, yllD, is essential, as is the correspondingly positioned ftsL gene of E. coli. The predicted product of yllD is similar to FtsL in size and distribution of charged residues but is not significantly related in primary amino acid sequence. The major promoter for the cluster lies upstream of the first gene, yllB, but at least one minor promoter lies within the yllC gene. The operon is transcribed throughout growth at a low level.  相似文献   

17.
C Parsot 《The EMBO journal》1986,5(11):3013-3019
The Bacillus subtilis genes encoding threonine synthase (thrC) and homoserine kinase (thrB) have been cloned via complementation of Escherichia coli thr mutants. Determination of their nucleotide sequences indicates that the thrC stop codon overlaps the thrB start codon; this genetic organization suggests that the two genes belong to the same operon, as in E. coli. However, the gene order is thrC-thrB in B. subtilis whereas it is thrB-thrC in the thr operon of E. coli. This inversion of the thrC and thrB genes between E. coli and B. subtilis is indicative of a possible independent construction of the thr operon in these two organisms. In other respects, comparison of the predicted amino acid sequences of the B. subtilis and E. coli threonine synthases with that of Saccharomyces cerevisiae threonine dehydratase and that of E. coli D-serine dehydratase revealed extensive homologies between these pyridoxal phosphate-dependent enzymes. This sequence homology, which correlates with similarities in the catalytic mechanisms of these enzymes, indicates that these proteins, catalyzing different reactions in different metabolic pathways, may have evolved from a common ancestor.  相似文献   

18.
Although the mechanisms for regulation of ribosomal protein gene expression have been established for gram-negative bacteria such as Escherichia coli, the regulation of these genes in gram-positive bacteria such as Bacillus subtilis has not yet been characterized. In this study, the B. subtilis rpsD gene, encoding ribosomal protein S4, was found to be subject to autogenous control. In E. coli, rpsD is located in the alpha operon, and S4 acts as the translational regulator for alpha operon expression, binding to a target site in the alpha operon mRNA. The target site for repression of B. subtilis rpsD by protein S4 was localized by deletion and oligonucleotide-directed mutagenesis to the leader region of the monocistronic rpsD gene. The B. subtilis rpsD leader exhibits little sequence homology to the E. coli alpha operon leader but may be able to form a pseudoknotlike structure similar to that found in E. coli.  相似文献   

19.
The nucleotide sequence of a 2.4 kb Dral-EcoRV fragment of pColD-CA23 DNA was determined. The segment of DNA contained the colicin D structural gene (cda) and the colicin D immunity gene (cdi). From the nucleotide sequence it was deduced that colicin D had a molecular weight of 74683D and that the immunity protein had a molecular weight of 10057D. The amino-terminal portion of colicin D was found to be 96% homologous with the same region of colicin B. Both colicins share the same cell-surface receptor, FepA, and require the TonB protein for uptake. A putative TonB box pentapeptide sequence was identified in the amino terminus of the colicin D protein sequence. Since colicin D inhibits protein synthesis, it was unexpected that no homology was found between the carboxy-terminal part of this colicin and that of the protein synthesis inhibiting colicin E3 and cloacin DF13. This could indicate that colicin D does not function in the same manner as the latter two bacteriocins. The observed homology with colicin B supports the domain structure concept of colicin organization. The structural organization of the colicin operon is discussed. The extensive amino-terminal homology between colicins D and B, and the strong carboxy-terminal homology between colicins B, A, and N suggest an evolutionary assembly of colicin genes from a few DNA fragments which encode the functional domains responsible for colicin activity and uptake.  相似文献   

20.
Coenzyme A (CoA)-transferase (acetoacetyl-CoA:acetate/butyrate:CoA-transferase [butyrate-acetoacetate CoA-transferase] [EC 2.8.3.9]) of Clostridium acetobutylicum ATCC 824 is an important enzyme in the metabolic shift between the acid-producing and solvent-forming states of this organism. The purification and properties of the enzyme have recently been described (D. P. Weisenborn, F. B. Rudolph, and E. T. Papoutsakis, Appl. Environ. Microbiol. 55:323-329, 1989). The genes encoding the two subunits of this enzyme have been cloned by using synthetic oligodeoxynucleotide probes designed from amino-terminal sequencing data from each subunit of the CoA-transferase. A bacteriophage lambda EMBL3 library of C. acetobutylicum DNA was prepared and screened by using these probes. Subsequent subcloning experiments established the position of the structural genes for CoA-transferase. Complementation of Escherichia coli ato mutants with the recombinant plasmid pCoAT4 (pUC19 carrying a 1.8-kilobase insert of C. acetobutylicum DNA encoding CoA-transferase activity) enabled the transformants to grow on butyrate as a sole carbon source. Despite the ability of CoA-transferase to complement the ato defect in E. coli mutants, Southern blot and Western blot (immunoblot) analyses showed that neither the C. acetobutylicum genes encoding CoA-transferase nor the enzyme itself shared any apparent homology with its E. coli counterpart. Polypeptides of Mr of the purified CoA-transferase subunits were observed by Western blot and maxicell analysis of whole-cell extracts of E. coli harboring pCoAT4. The proximity and orientation of the genes suggest that the genes encoding the two subunits of CoA-transferase may form an operon similar to that found in E. coli.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号