首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While classically viewed as a prototypic G(s) and adenylyl cyclase-coupled G protein-coupled receptor, recent studies have indicated that some aspects of beta(2)-adrenergic receptor (beta(2)-AR) signaling are inhibited by pertussis toxin, indicating that they are mediated by G(i)/G(o) proteins. These signals include activation of ERK MAPKs and Akt activation, as well as hypertrophic and anti-apoptotic pathways in cardiac myocytes. Studies in cultured cells have suggested the hypothesis that protein kinase A (PKA)-mediated phosphorylation of the beta(2)-AR regulates its coupling specificity with respect to G(s) and G(i). Using a Chinese hamster ovary cell system, we show that mutant beta(2)-ARs with Ala substituted for Ser at consensus PKA sites stimulate robust cyclic AMP accumulation (G(s)) but are unable to activate ERK (G(i)). In contrast, Ser --> Asp mutants are dramatically impaired in their ability to activate adenylyl cyclase but are significantly more active than wild type receptor in activating ERK. Activation of adenylyl cyclase by wild type and Ser --> Ala mutant receptors is not altered by pertussis toxin, whereas adenylyl cyclase stimulated through the Ser --> Asp mutant is enhanced. Activation of ERK by wild type and Ser --> Asp receptors is inhibited by pertussis toxin. To further rigorously test the hypothesis, we utilized a completely reconstituted system of purified recombinant wild type and PKA phosphorylation site mutant beta(2)-ARs and heterotrimeric G(s) and G(i). G protein coupling was measured by receptor-mediated stimulation of GTPgammaS binding to the G protein. PKA-mediated phosphorylation of the beta(2)-AR significantly decreased its ability to couple to G(s), while simultaneously dramatically increasing its ability to couple to G(i). These results are reproduced when a purified recombinant Ser --> Asp mutant beta(2)-AR is tested, whereas the Ser --> Ala receptor resembles the unphosphorylated wild type. These results provide strong experimental support for the idea that PKA-mediated phosphorylation of the beta(2)-adrenergic receptor switches its predominant coupling from G(s) to G(i).  相似文献   

2.
We tested the hypothesis that the albumin-docking protein gp60, which is localized in caveolae, couples to the heterotrimeric GTP binding protein G(i), and thereby activates plasmalemmal vesicle formation and the directed migration of vesicles in endothelial cells (ECs). We used the water-soluble styryl pyridinium dye N-(3-triethylaminopropyl)-4-(p-dibutylaminostyryl) pyridinium dibromide (FM 1-43) to quantify vesicle trafficking by confocal and digital fluorescence microscopy. FM 1-43 and fluorescently labeled anti-gp60 antibody (Ab) were colocalized in endocytic vesicles within 5 min of gp60 activation. Vesicles migrated to the basolateral surface where they released FM 1-43, the fluid phase styryl probe. FM 1-43 fluorescence disappeared from the basolateral EC surface without the loss of anti-gp60 Ab fluorescence. Activation of cell-surface gp60 by cross-linking (using anti-gp60 Ab and secondary Ab) in EC grown on microporous filters increased transendothelial (125)I-albumin permeability without altering liquid permeability (hydraulic conductivity), thus, indicating the dissociation of hydraulic conductivity from the albumin permeability pathway. The findings that the sterol-binding agent, filipin, prevented gp60-activated vesicle formation and that caveolin-1 and gp60 were colocalized in vesicles suggest the caveolar origin of endocytic vesicles. Pertussis toxin pretreatment and expression of the dominant negative construct encoding an 11-amino acid G(alphai) carboxyl-terminal peptide inhibited endothelial (125)I-albumin endocytosis and vesicle formation induced by gp60 activation. Expression of dominant negative Src (dn-Src) and overexpression of wild-type caveolin-1 also prevented gp60-activated endocytosis. Caveolin-1 overexpression resulted in the sequestration of G(alphai) with the caveolin-1, whereas dn-Src inhibited G(alphai) binding to caveolin-1. Thus, vesicle formation induced by gp60 and migration of vesicles to the basolateral membrane requires the interaction of gp60 with caveolin-1, followed by the activation of the downstream G(i)-coupled Src kinase signaling pathway.  相似文献   

3.
4.
The agonist-bound gonadotropin-releasing hormone (GnRH) receptor engages several distinct signaling cascades, and it has recently been proposed that coupling of a single type of receptor to multiple G proteins (G(q), G(s), and G(i)) is responsible for this behavior. GnRH-dependent signaling was studied in gonadotropic alphaT3-1 cells endogenously expressing the murine receptor and in CHO-K1 (CHO#3) and COS-7 cells transfected with the human GnRH receptor cDNA. In all cell systems studied, GnRH-induced phospholipase C activation and Ca(2+) mobilization was pertussis toxin-insensitive, as was GnRH-mediated extracellular signal-regulated kinase activation. Whereas the G(i)-coupled m2 muscarinic receptor interacted with a chimeric G(s) protein (G(s)i5) containing the C-terminal five amino acids of Galpha(i2), the human GnRH receptor was unable to activate the G protein chimera. GnRH challenge of alphaT3-1, CHO#3 and of GnRH receptor-expressing COS-7 cells did not result in agonist-dependent cAMP formation. GnRH challenge of CHO#3 cells expressing a cAMP-responsive element-driven firefly luciferase did not result in increased reporter gene expression. However, coexpression of the human GnRH receptor and adenylyl cyclase I in COS-7 cells led to clearly discernible GnRH-dependent cAMP formation subsequent to GnRH-elicited rises in [Ca(2+)](i). In alphaT3-1 and CHO#3 cell membranes, addition of [alpha-(32)P]GTP azidoanilide resulted in GnRH receptor-dependent labeling of Galpha(q/11) but not of Galpha(i), Galpha(s) or Galpha(12/13) proteins. Thus, the murine and human GnRH receptors exclusively couple to G proteins of the G(q/11) family. Multiple GnRH-dependent signaling pathways are therefore initiated downstream of the receptor/G protein interface and are not indicative of a multiple G protein coupling potential of the GnRH receptor.  相似文献   

5.
The mouse cytomegalovirus M33 protein is highly homologous to mammalian G protein-coupled receptors (GPCRs) yet functions in an agonist-independent manner to activate a number of classical GPCR signal transduction pathways. M33 is functionally similar to the human cytomegalovirus-encoded US28 GPCR in its ability to induce inositol phosphate accumulation, activate NF-kappaB, and promote smooth muscle cell migration. This ability to promote cellular migration suggests a role for viral GPCRs like M33 in viral dissemination in vivo, and accordingly, M33 is required for efficient murine cytomegalovirus replication in the mouse. Although previous studies have identified several M33-induced signaling pathways, little is known regarding the membrane-proximal events involved in signaling and regulation of this receptor. In this study, we used recombinant retroviruses to express M33 in wild-type and Galpha(q/11)(-/-) mouse embryonic fibroblasts and show that M33 couples directly to the G(q/11) signaling pathway to induce high levels of total inositol phosphates in an agonist-independent manner. Our data also show that GRK2 is a potent regulator of M33-induced G(q/11) signaling through its ability to phosphorylate M33 and sequester Galpha(q/11) proteins. Taken together, the results from this study provide the first genetic evidence of a viral GPCR coupling to a specific G protein signaling pathway as well as identify the first viral GPCR to be regulated specifically by both the catalytic activity of the GRK2 kinase domain and the Galpha(q/11) binding activity of the GRK2 RH domain.  相似文献   

6.
Activation of G-protein-coupled receptors (GPCRs) initiates signal transduction cascades that affect many physiological responses. The worm Caenorhabditis elegans expresses >1000 of these receptors along with their cognate heterotrimeric G proteins. Here, we report properties of 9-cis-retinal regenerated bovine opsin [(b)isoRho] and human melanopsin [(h)Mo], two light-activated, heterologously expressed GPCRs in the nervous system of C. elegans with various genetically engineered alterations. Profound transient photoactivation of G(i/o) signaling by (b)isoRho led to a sudden and transient loss of worm motility dependent on cyclic adenosine monophosphate, whereas transient photoactivation of G(q) signaling by (h)Mo enhanced worm locomotion dependent on phospholipase Cβ. These transgenic C. elegans models provide a unique way to study the consequences of G(i/o) and G(q) signaling in vivo with temporal and spatial precision and, by analogy, their relationship to human neuromotor function.  相似文献   

7.
Robatzek M  Thomas JH 《Genetics》2000,156(3):1069-1082
Caenorhabditis elegans locomotion is a complex behavior generated by a defined set of motor neurons and interneurons. Genetic analysis shows that UNC-43, the C. elegans Ca(2+)/calmodulin protein kinase II (CaMKII), controls locomotion rate. Elevated UNC-43 activity, from a gain-of-function mutation, causes severely lethargic locomotion, presumably by inappropriate phosphorylation of targets. In a genetic screen for suppressors of this phenotype, we identified multiple alleles of four genes in a G(o)/G(q) G-protein signaling network, which has been shown to regulate synaptic activity via diacylglycerol. Mutations in goa-1, dgk-1, eat-16, or eat-11 strongly or completely suppressed unc-43(gf) lethargy, but affected other mutants with reduced locomotion only weakly. We conclude that CaMKII and G(o)/G(q) pathways act in concert to regulate synaptic activity, perhaps through a direct interaction between CaMKII and G(o).  相似文献   

8.
AGS3-LONG and AGS3-SHORT contain G-protein regulatory motifs that interact with and stabilize the GDP-bound conformation of Galpha(i) > Galpha(o). AGS3 and related proteins may influence signal strength or duration as well as the adaptation of the signaling system associated with sustained stimulation. To address these issues, we determined the effect of AGS3 on the integration of stimulatory (Galpha(s)-mediated vasoactive intestinal peptide receptor) and inhibitory (Galpha(i)-mediated alpha(2)-adrenergic receptor (alpha(2)-AR)) signals to adenylyl cyclase in Chinese hamster ovary cells. AGS3-SHORT and AGS3-LONG did not alter the VIP-induced increase in cAMP or the inhibitory effect of alpha(2)-AR activation. System adaptation was addressed by determining the influence of AGS3 on the sensitization of adenylyl cyclase that occurs following prolonged activation of a Galpha(i)-coupled receptor. Incubation of cells with the alpha(2)-AR agonist UK14304 (1 microm) for 18 h resulted in a approximately 1.8-fold increase in the vasoactive intestinal peptide-induced activation of adenylyl cyclase, and this was associated with a decrease in membrane-associated Galpha(i3). Both effects were blocked by AGS3-SHORT. AGS3-SHORT also decreased the rate of Galpha(i3) decay. A mutant AGS3-SHORT incapable of binding G-protein was inactive. These data suggest that AGS3 and perhaps other G-protein regulatory motif-containing proteins increase the stability of Galpha(i) in the membrane, which influences the adaptation of the cell to prolonged activation of Galpha(i)-coupled receptors.  相似文献   

9.
Protease-activated receptor 1 (PAR1) is an unusual GPCR that interacts with multiple G protein subfamilies (G(q/11), G(i/o), and G(12/13)) and their linked signaling pathways to regulate a broad range of pathophysiological processes. However, the molecular mechanisms whereby PAR1 interacts with multiple G proteins are not well understood. Whether PAR1 interacts with various G proteins at the same, different, or overlapping binding sites is not known. Here we investigated the functional and specific binding interactions between PAR1 and representative members of the G(q/11), G(i/o), and G(12/13) subfamilies. We report that G(q/11) physically and functionally interacts with specific amino acids within the second intracellular (i2) loop of PAR1. We identified five amino acids within the PAR1 i2 loop that, when mutated individually, each markedly reduced PAR1 activation of linked inositol phosphate formation in transfected COS-7 cells (functional PAR1-null cells). Among these mutations, only R205A completely abolished direct G(q/11) binding to PAR1 and also PAR1-directed inositol phosphate and calcium mobilization in COS-7 cells and PAR1-/- primary astrocytes. In stark contrast, none of the PAR1 i2 loop mutations disrupted direct PAR1 binding to either G(o) or G(12), or their functional coupling to linked pertussis toxin-sensitive ERK phosphorylation and C3 toxin-sensitive Rho activation, respectively. In astrocytes, our findings suggest that PAR1-directed calcium signaling involves a newly appreciated G(q/11)-PLCε pathway. In summary, we have identified key molecular determinants for PAR1 interactions with G(q/11), and our findings support a model where G(q/11), G(i/o) or G(12/13) each bind to distinct sites within the cytoplasmic regions of PAR1.  相似文献   

10.
TRPC6 is a cation channel in the plasma membrane that plays a role in Ca(2+) entry following the stimulation of a G(q)-protein coupled or tyrosine kinase receptor. A dysregulation of TRPC6 activity causes abnormal proliferation of smooth muscle cells and glomerulosclerosis. In the present study, we investigated the regulation of TRPC6 activity by protein kinase C (PKC). We showed that inhibiting PKC with GF1 or activating it with phorbol 12-myristate 13-acetate potentiated and inhibited agonist-induced Ca(2+) entry, respectively, into cells expressing TRPC6. Similar results were obtained when TRPC6 was directly activated with 1-oleyl-2-acetyl-sn-glycerol. Activation of the cells with carbachol increased the phosphorylation of TRPC6, an effect that was prevented by the inhibition of PKC. The target residue of PKC was identified by an alanine screen of all canonical PKC sites on TRPC6. Unexpectedly, all the mutants, including TRPC6(S768A) (a residue previously proposed to be a target for PKC), displayed PKC-dependent inhibition of channel activity. Phosphorylation prediction software suggested that Ser(448), in a non-canonical PKC consensus sequence, was a potential target for PKCδ. Ba(2+) and Ca(2+) entry experiments revealed that GF1 did not potentiate TRPC6(S448A) activity. Moreover, activation of PKC did not enhance the phosphorylation state of TRPC6(S448A). Using A7r5 vascular smooth muscle cells, which endogenously express TRPC6, we observed that a novel PKC isoform is involved in the inhibition of the vasopressin-induced Ca(2+) entry. Furthermore, knocking down PKCδ in A7r5 cells potentiated vasopressin-induced Ca(2+) entry. In summary, we provide evidence that PKCδ exerts a negative feedback effect on TRPC6 through the phosphorylation of Ser(448).  相似文献   

11.
Sphingosine 1-phosphate (SPP) has been shown to inhibit chemotaxis of a variety of cells, in some cases through intracellular actions, while in others through receptor-mediated effects. Surprisingly, we found that low concentrations of SPP (10-100 nM) increased chemotaxis of HEK293 cells overexpressing the G protein-coupled SPP receptor EDG-1. In agreement with previous findings in human breast cancer cells (Wang, F., Nohara, K., Olivera, O., Thompson, E. W., and Spiegel, S. (1999) Exp. Cell Res. 247, 17-28), SPP, at micromolar concentrations, inhibited chemotaxis of both vector- and EDG-1-overexpressing HEK293 cells. Nanomolar concentrations of SPP also induced a marked increase in chemotaxis of human umbilical vein endothelial cells (HUVEC) and bovine aortic endothelial cells (BAEC), which express the SPP receptors EDG-1 and EDG-3, while higher concentrations of SPP were less effective. Treatment with pertussis toxin, which ADP-ribosylates and inactivates G(i)-coupled receptors, blocked SPP-induced chemotaxis. Checkerboard analysis indicated that SPP stimulates both chemotaxis and chemokinesis. Taken together, these data suggest that SPP stimulates cell migration by binding to EDG-1. Similar to SPP, sphinganine 1-phosphate (dihydro-SPP), which also binds to this family of SPP receptors, enhanced chemotaxis; whereas, another structurally related lysophospholipid, lysophosphatidic acid, did not compete with SPP for binding nor did it have significant effects on chemotaxis of endothelial cells. Furthermore, SPP increased proliferation of HUVEC and BAEC in a pertussis toxin-sensitive manner. SPP and dihydro-SPP also stimulated tube formation of BAEC grown on collagen gels (in vitro angiogenesis), and potentiated tube formation induced by basic fibroblast growth factor. Pertussis toxin treatment blocked SPP-, but not bFGF-stimulated in vitro angiogenesis. Our results suggest that SPP may play a role in angiogenesis through binding to endothelial cell G(i)-coupled SPP receptors.  相似文献   

12.
Select lipid-anchored proteins such as glycosylphosphatidylinositol (GPI)-anchored proteins and nonreceptor tyrosine kinases may preferentially partition into sphingomyelin-rich and cholesterol-rich plasmalemmal microdomains, thereby acquiring resistance to detergent extraction. Two such domains, caveolae and lipid rafts, are morphologically and biochemically distinct, contain many signaling molecules, and may function in compartmentalizing cell surface signaling. Subfractionation and confocal immunofluorescence microscopy reveal that, in lung tissue and in cultured endothelial and epithelial cells, heterotrimeric G proteins (G(i), G(q), G(s), and G(betagamma)) target discrete cell surface microdomains. G(q) specifically concentrates in caveolae, whereas G(i) and G(s) concentrate much more in lipid rafts marked by GPI-anchored proteins (5' nucleotidase and folate receptor). G(q), apparently without G(betagamma) subunits, stably associates with plasmalemmal and cytosolic caveolin. G(i) and G(s) interact with G(betagamma) subunits but not caveolin. G(i) and G(s), unlike G(q), readily move out of caveolae. Thus, caveolin may function as a scaffold to trap, concentrate, and stabilize G(q) preferentially within caveolae over lipid rafts. In N2a cells lacking caveolae and caveolin, G(q), G(i), and G(s) all concentrate in lipid rafts as a complex with G(betagamma). Without effective physiological interaction with caveolin, G proteins tend by default to segregate in lipid rafts. The ramifications of the segregated microdomain distribution and the G(q)-caveolin complex without G(betagamma) for trafficking, signaling, and mechanotransduction are discussed.  相似文献   

13.
The effect of mutations (V344E and T343A/V344E) in the third intracellular loop of the serotonin 5-HT(1A) receptor expressed transiently in human embryonic kidney 293 cells have been examined in terms of receptor/G protein interaction and signaling. Serotonin, (R)-8-hydroxy-2-dipropylaminotetralin [(R)-8-OH-DPAT], and buspirone inhibited cyclic AMP production in cells expressing native and mutant 5-HT(1A) receptors. Serotonin, however, produced inverse bell-shaped cyclic AMP concentration-response curves at native and mutant 5-HT(1A) receptors, indicating coupling not only to G(i)/G(o), but also to G(s). (R)-8-OH-DPAT, however, induced stimulation of cyclic AMP production only after inactivation of G(i)/G(o) proteins by pertussis toxin and only at the mutant receptors. The partial agonist buspirone was unable to induce coupling to G(s) at any of the receptors, even after pertussis toxin treatment. The basal activities of native and mutant 5-HT(1A) receptors in suppressing cyclic AMP levels were not found to be significantly different. The receptor binding characteristics of the native and mutant receptors were investigated using the novel 5-HT(1A) receptor antagonist [(3)H]NAD-299. For other receptors, analogous mutations have produced constitutive activation. This does not occur for the 5-HT(1A) receptor, and for this receptor the mutations seem to alter receptor/G protein coupling, allowing ligand-dependent coupling of receptor to G(s) in addition to G(i)/G(o) proteins.  相似文献   

14.
A plausible determinant of the specificity of receptor signaling is the cellular compartment over which the signal is broadcast. In rat heart, stimulation of beta(1)-adrenergic receptor (beta(1)-AR), coupled to G(s)-protein, or beta(2)-AR, coupled to G(s)- and G(i)-proteins, both increase L-type Ca(2+) current, causing enhanced contractile strength. But only beta(1)-AR stimulation increases the phosphorylation of phospholamban, troponin-I, and C-protein, causing accelerated muscle relaxation and reduced myofilament sensitivity to Ca(2+). beta(2)-AR stimulation does not affect any of these intracellular proteins. We hypothesized that beta(2)-AR signaling might be localized to the cell membrane. Thus we examined the spatial range and characteristics of beta(1)-AR and beta(2)-AR signaling on their common effector, L-type Ca(2+) channels. Using the cell-attached patch-clamp technique, we show that stimulation of beta(1)-AR or beta(2)-AR in the patch membrane, by adding agonist into patch pipette, both activated the channels in the patch. But when the agonist was applied to the membrane outside the patch pipette, only beta(1)-AR stimulation activated the channels. Thus, beta(1)-AR signaling to the channels is diffusive through cytosol, whereas beta(2)-AR signaling is localized to the cell membrane. Furthermore, activation of G(i) is essential to the localization of beta(2)-AR signaling because in pertussis toxin-treated cells, beta(2)-AR signaling becomes diffusive. Our results suggest that the dual coupling of beta(2)-AR to both G(s)- and G(i)-proteins leads to a highly localized beta(2)-AR signaling pathway to modulate sarcolemmal L-type Ca(2+) channels in rat ventricular myocytes.  相似文献   

15.
16.
Sphingosine 1-phosphate (S1P) is one of several bioactive phospholipids that exert profound mitogenic and morphogenic actions. Originally characterized as a second messenger, S1P is now recognized to achieve many of its effects through cell surface, G protein-coupled receptors. We used a subunit-selective [(35)S]GTPgammaS binding assay to investigate whether the variety of actions exerted through Edg-1, a recently identified receptor for S1P, might be achieved through multiple G proteins. We found, employing both Sf9 and HEK293 cells, that Edg-1 activates only members of the G(i) family, and not G(s), G(q), G(12), or G(13). We additionally established that Edg-1 activates G(i) in response not only to S1P but also sphingosylphosphorylcholine; no effects of lysophosphatidic acid through Edg-1 were evident. Our assays further revealed a receptor(s) for S1P endogenous to HEK293 cells that mediates activation of G(13) as well as G(i). Because several of the biological actions of S1P are assumed to proceed through the G(12/13) family, we tested whether Edg-3 and H218/Edg-5, two other receptors for S1P, might have a broader coupling profile than Edg-1. Indeed, Edg-3 and H218/Edg-5 communicate not only with G(i) but also with G(q) and G(13). These studies represent the first characterization of S1P receptor activity through G proteins directly and establish fundamental differences in coupling.  相似文献   

17.
Susceptibility to autoimmune myocarditis has been associated with histamine release by mast cells during the innate immune response to coxsackievirus B3 (CVB3) infection. To investigate the contribution of histamine H(1) receptor (H(1)R) signaling to CVB3-induced myocarditis, we assessed susceptibility to the disease in C57BL/6J (B6) H(1)R(-/-) mice. No difference was observed in mortality between CVB3-infected B6 and H(1)R(-/-) mice. However, analysis of their hearts revealed a significant increase in myocarditis in H(1)R(-/-) mice that is not attributed to increased virus replication. Enhanced myocarditis susceptibility correlated with a significant expansion in pathogenic Th1 and Vγ4(+) γδ T cells in the periphery of these animals. Furthermore, an increase in regulatory T cells was observed, yet these cells were incapable of controlling myocarditis in H(1)R(-/-) mice. These data establish a critical role for histamine and H(1)R signaling in regulating T cell responses and susceptibility to CVB3-induced myocarditis in B6 mice.  相似文献   

18.
Platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycerolphosphocholine; PAF) induces leukocyte accumulation and activation at sites of inflammation via the activation of a specific cell surface receptor (PAFR). PAFR couples to both pertussis toxin-sensitive and pertussis toxin-insensitive G proteins to activate leukocytes. To define the role(s) of G(i) and G(q) in PAF-induced leukocyte responses, two G-protein-linked receptors were generated by fusing G alpha(i3) (PAFR-G alpha(i3)) or G alpha(q) (PAFR-G alpha(q)) at the C terminus of PAFR. Rat basophilic leukemia cell line (RBL-2H3) stably expressing wild-type PAFR, PAFR-G alpha(i3), or PAFR-G alpha(q) was generated and characterized. All receptor variants bound PAF with similar affinities to mediate G-protein activation, intracellular Ca2+ mobilization, phosphoinositide (PI) hydrolysis, and secretion of beta-hexosaminidase. PAFR-G alpha(i3) and PAFR-G alpha(q) mediated greater GTPase activity in isolated membranes than PAFR but lower PI hydrolysis and secretion in whole cells. PAFR and PAFR-G alpha(i3), but not PAFR-G alpha(q), mediated chemotaxis to PAF. All three receptors underwent phosphorylation and desensitization upon exposure to PAF but only PAFR translocated beta arrestin to the cell membrane and internalized. In RBL-2H3 cells coexpressing the PAFRs along with CXCR1, IL-8 (CXCL8) cross-desensitized Ca2+ mobilization to PAF by all the receptors but only PAFR-G alpha(i3) activation cross-inhibited the response of CXCR1 to CXCL8. Altogether, the data indicate that G(i) exclusively mediates chemotactic and cross-regulatory signals of the PAFR, but both G(i) and G(q) activate PI hydrolysis and exocytosis by this receptor. Because chemotaxis and cross-desensitization are exclusively mediated by G(i), the data suggest that differential activation of both G(i) and G(q) by PAFR likely mediate specific as well as redundant signaling pathways.  相似文献   

19.
Tao J  Wang HY  Malbon CC 《The EMBO journal》2003,22(24):6419-6429
A-kinase-anchoring protein 250 (AKAP250; gravin) acts as a scaffold that binds protein kinase A (PKA), protein kinase C and protein phosphatases, associating reversibly with the beta(2)-adrenergic receptor. The receptor-binding domain of the scaffold and the regulation of the receptor-scaffold association was revealed through mutagenesis and biochemical analyses. The AKAP domain found in other members of this superfamily is essential for the scaffold-receptor interactions. Gravin constructs lacking the AKAP domain displayed no binding to the receptor. Metabolic labeling studies in vivo demonstrate agonist-stimulated phosphorylation of gravin and enhanced gravin-receptor association. Analysis of the AKAP domain revealed two canonical PKA sites phosphorylated in response to elevated cAMP, blocked by PKA inhibitor, and essential for scaffold-receptor association and for resensitization of the receptor. The AKAP appears to provide the catalytic PKA activity responsible for phosphorylation of the scaffold in response to agonist activation of the receptor as well as for the association of the scaffold with the receptor, a step critical to receptor resensitization.  相似文献   

20.
The maintenance of meiotic prophase arrest in fully grown vertebrate oocytes depends on the activity of a G(s) G-protein that activates adenylyl cyclase and elevates cAMP, and in the mouse oocyte, G(s) is activated by a constitutively active orphan receptor, GPR3. To determine whether the action of luteinizing hormone (LH) on the mouse ovarian follicle causes meiotic resumption by inhibiting GPR3-G(s) signaling, we examined the effect of LH on the localization of Galpha(s). G(s) activation in response to stimulation of an exogenously expressed beta(2)-adrenergic receptor causes Galpha(s) to move from the oocyte plasma membrane into the cytoplasm, whereas G(s) inactivation in response to inhibition of the beta(2)-adrenergic receptor causes Galpha(s) to move back to the plasma membrane. However, LH does not cause a change in Galpha(s) localization, indicating that LH does not act by terminating receptor-G(s) signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号