首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The role of the nuclear pore complex in adenovirus DNA entry.   总被引:20,自引:1,他引:19       下载免费PDF全文
Adenovirus targets its genome to the cell nucleus by a multistep process involving endocytosis, membrane penetration and cytoplasmic transport, and finally imports its DNA into the nucleus. Using an immunochemical and biochemical approach combined with inhibitors of nuclear import, we demonstrate that incoming viral DNA and DNA-associated protein VII enter the nucleus via nuclear pore complexes (NPCs). Depletion of calcium from nuclear envelope and endoplasmic reticulum cisternae by ionophores or thapsigargin blocked DNA and protein VII import into the nucleus, but had no effect on virus targeting to NPCs. Calcium-depleted cells were capable of disassembling incoming virus. In contrast, inhibitors of cytosolic O-linked glycoproteins of the NPC blocked virus attachment to the nuclear envelope, capsid disassembly and also nuclear import of protein VII. The data indicate that NPCs have multiple roles in adenovirus entry into cells: they contain a virus-binding and/or dissociation activity and provide a gateway for the incoming DNA genome into the nucleus.  相似文献   

2.
Transport of proteins into and out of the nucleus occurs through nuclear pore complexes (NPCs) and is mediated by the interaction of transport factors with nucleoporins at the NPC. Nuclear import of proteins containing classical nuclear localization signals (NLSs) is mediated by a heterodimeric protein complex, composed of karyopherin α and β1, that docks via β1 the NLS-protein to the NPC. The GTPase Ran; the RanGDP binding protein, p10; and the RanGTP binding protein, RanBP1 are involved in translocation of the docked NLS-protein into the nucleus. Recently, new distinct nuclear import and export pathways that are mediated by members of the karyopherin β family have been discovered. Karyopherin β2 mediates import of mRNA binding proteins, whereas karyopherin β3 and β4 mediate import of a set of ribosomal proteins. Two other β karyopherin family members, CRM1 and CAS, mediate export of proteins containing leucine-rich nuclear export signals (NES) and reexport of karyopherin α, respectively. This growing family contains new members that constitute potential transport factors for cargoes yet to be identified in the future. The common features of the members of karyopherin β family are the ability to bind RanGTP and the ability to interact directly with nucleoporins at the NPC. The challenge for the future will be to identify the distinct or, perhaps, overlapping cargo(es) for each member of the karyopherin β superfamily and to characterize the molecular mechanisms of translocation of karyopherins together with their cargoes through the NPC. J. Cell. Biochem. 70:231–239, 1998.© 1998 Wiley-Liss, Inc.  相似文献   

3.
Tpr is a coiled-coil protein found near the nucleoplasmic side of the pore complex. Since neither the precise localization of Tpr nor its functions are well defined, we generated antibodies to three regions of Tpr to clarify these issues. Using light and EM immunolocalization, we determined that mammalian Tpr is concentrated within the nuclear basket of the pore complex in a distribution similar to Nup153 and Nup98. Antibody localization together with imaging of GFP-Tpr in living cells revealed that Tpr is in discrete foci inside the nucleus similar to several other nucleoporins but is not present in intranuclear filamentous networks (Zimowska et al., 1997) or in long filaments extending from the pore complex (Cordes et al., 1997) as proposed. Injection of anti-Tpr antibodies into mitotic cells resulted in depletion of Tpr from the nuclear envelope without loss of other pore complex basket proteins. Whereas nuclear import mediated by a basic amino acid signal was unaffected, nuclear export mediated by a leucine-rich signal was retarded significantly. Nuclear injection of anti-Tpr antibodies in interphase cells similarly yielded inhibition of protein export but not import. These results indicate that Tpr is a nucleoporin of the nuclear basket with a role in nuclear protein export.  相似文献   

4.
5.
L1 major capsid proteins of human papillomaviruses (HPVs) enter the nuclei of host cells at two times during the viral life cycle: 1) after infection and 2) later during the productive phase, when they assemble the replicated HPV genomic DNA into infectious virions. L1 proteins are stable in two oligomeric configurations: as homopentameric capsomers, and as capsids composed of 72 capsomers. We found that intact L1 capsids of HPV type 11 cannot enter the nucleus, suggesting that capsid disassembly may be required for HPV11 L1 nuclear import. We established that HPV11 L1 is imported in a receptor-mediated manner into the nuclei of digitonin-permeabilized HeLa cells. HPV11 L1 docked at the nuclear pore complexes via karyopherin alpha2beta1 heterodimers. Anti-karyopherin-beta1 and anti-karyopherin alpha2 antibodies specifically inhibited nuclear import of HPV11 L1. Moreover, nuclear import of HPV11 L1 could be reconstituted using karyopherin alpha2, beta1, RanGDP and p10. In agreement with the docking and import data, we found that HPV11 L1 binds to karyopherin alpha2 and that this interaction is inhibited by a peptide representing the classical nuclear localization signal of SV40 T antigen. These results strongly suggest that HPV11 L1 enters the nucleus of the infected host cell via the karyopherin alpha2beta1 pathway.  相似文献   

6.
How proteins enter the nucleus   总被引:127,自引:0,他引:127  
P A Silver 《Cell》1991,64(3):489-497
Nuclear protein import is a selective process. Proteins destined for the nucleus contain NLSs. These short stretches of amino acids interact with proteins located in the cytoplasm, on the nuclear envelope, and/or at the nuclear pore complex. Following binding at the pore complex, proteins are translocated through the pore into the nucleus in a manner requiring ATP. The biochemical dissection of the nuclear pore complex has begun. Alteration of protein import into the nucleus is emerging as a new and complex form of regulation. However, we are left with the following problems: How do proteins move through the cytoplasm to reach the nuclear pore? How does the nuclear pore complex open and close in a selective manner? How is ATP utilized during import? And finally, how is bi-directional traffic of both proteins and RNA through the pore regulated?  相似文献   

7.
Many viruses depend on nuclear proteins for replication. Therefore, their viral genome must enter the nucleus of the host cell. In this review we briefly summarize the principles of nucleocytoplasmic transport, and then describe the diverse strategies used by viruses to deliver their genomes into the host nucleus. Some of the emerging mechanisms include: (1) nuclear entry during mitosis, when the nuclear envelope is disassembled, (2) viral genome release in the cytoplasm followed by entry of the genome through the nuclear pore complex (NPC), (3) capsid docking at the cytoplasmic side of the NPC, followed by genome release, (4) nuclear entry of intact capsids through the NPC, followed by genome release, and (5) nuclear entry via virus-induced disruption of the nuclear envelope. Which mechanism a particular virus uses depends on the size and structure of the virus, as well as the cellular cues used by the virus to trigger capsid disassembly and genome release. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.  相似文献   

8.
蛋白质进入细胞核是由蛋白质分子内部的核定位信号(nuclear localization signal, NLS)引导的.NLS蛋白首先与NLS受体结合,然后在多种胞浆因子及核孔复合物蛋白的作用下穿过核孔、转位入核.蛋白质上存在NLS并不一定总能够引导蛋白质入核.当NLS被修饰或遮掩时,它们便不能被核转运装置所识别.因而,NLS的遮掩被解除之前,蛋白质一直被扣留在胞浆中.以调节转录因子的入核运送来控制转录因子的活性是基因表达调节的一个新概念,也是细胞生长和分化的另一水平的调节.  相似文献   

9.
The central features of nuclear import have been conserved during evolution. In yeast the nuclear accumulation of proteins follows the same selective and active transport mechanisms known from higher eukaryotes. Yeast nuclear proteins contain nuclear localization sequences (NLS) which are presumably recognized by receptors in the cytoplasm and the nuclear envelope. Subsequent to this recognition step, nuclear proteins are translocated into the nucleus via the nuclear pore complexes. The structure of the yeast nuclear pore complex resembles that of higher eukaryotes. Recently, the first putative components of the yeast nuclear import machinery have been cloned and sequenced. The genetically amenable yeast system allows for an efficient structural and functional analysis of these components. Due to the evolutionary conservation potential insights into the nuclear import mechanisms in yeast can be transferred to higher eukaryotes. Thus, yeast can be considered as a eukaryotic model system to study nuclear transport.  相似文献   

10.
The importin α/β transport machinery mediates the nuclear import of cargo proteins that bear a classical nuclear localization sequence (cNLS). These cargo proteins are linked to the major nuclear protein import factor, importin‐β, by the importin‐α adapter, after which cargo/carrier complexes enter the nucleus through nuclear pores. In the nucleus, cargo is released by the action of RanGTP and the nuclear pore protein Nup2, after which the importins are recycled to the cytoplasm for further transport cycles. The nuclear export of importin‐α is mediated by Cse1/CAS. Here, we exploit structures of functionally important complexes to identify residues that are critical for these interactions and provide insight into how cycles of protein import and recycling of importin‐α occur in vivo using a Saccharomyces cerevisiae model. We examine how these molecular interactions impact protein localization, cargo import, function and complex formation. We show that reversing the charge of key residues in importin‐α (Arg44) or Cse1 (Asp220) results in loss of function of the respective proteins and impairs complex formation both in vitro and in vivo. To extend these results, we show that basic residues in the Nup2 N‐terminus are required for both Nup2 interaction with importin‐α and Nup2 function. These results provide a more comprehensive mechanistic model of how Cse1, RanGTP and Nup2 function in concert to mediate cNLS‐cargo release in the nucleus.  相似文献   

11.
Nuclear pore complexes are constitutive structures of the nuclear envelope in eukaryotic cells and represent the sites where transport of molecules between nucleus and cytoplasm takes place. However, pore complexes of similar structure, but with largely unknown functional properties, are long known to occur also in certain cytoplasmic cisternae that have been termed annulate lamellae (AL). To analyze the capability of the AL pore complex to interact with the soluble mediators of nuclear protein import and their karyophilic protein substrates, we have performed a microinjection study in stage VI oocytes ofXenopus laevis.In these cells AL are especially abundant and can easily be identified by light and electron microscopy. Following injection into the cytoplasm, fluorochrome-labeled mediators of two different nuclear import pathways, importin β and transportin, not only associate with the nuclear envelope but also with AL. Likewise, nuclear localization signals (NLS) of the basic and M9 type, but not nuclear export signals, confer targeting and transient binding of fluorochrome-labeled proteins to cytoplasmic AL. Mutation or deletion of the NLS signals prevents these interactions. Furthermore, binding to AL is abolished by dominant negative inhibitors of nuclear protein import. Microinjections of gold-coupled NLS-bearing proteins reveal specific gold decoration at distinct sites within the AL pore complex. These include such at the peripheral pore complex-attached fibrils and at the central “transporter” and closely resemble those of “transport intermediates” found in electron microscopic studies of the nuclear pore complex (NPC). These data demonstrate that AL can represent distinct sites within the cytoplasm of transient accumulation of nuclear proteins and that the AL pore complex shares functional binding properties with the NPC.  相似文献   

12.
The objective of this investigation was to characterize intranuclear accumulation of oligonucleotides and their adducts with non-karyophilic compounds in cultured animal cells and thus to present a model system for nucleic acid-mediated nuclear import. In digitonin-permeabilized cells, nuclear uptake of 3′-FITC-labeled, single-stranded 25-mer oligodeoxyribonucleotides was independent of added cytosolic protein, largely energy-dependent, inhibitable by wheat germ agglutinin but not by N-ethylmaleimide, and a function of their base composition. When coupled to FITC-labeled streptavidin or streptavidin-bovine serum albumin conjugates, the oligonucleotides delivered the proteins to the nuclear interior with rates roughly proportional to their karyophilicity as free molecules. Transport activity was also demonstrated for single-stranded oligoribonucleotides. The transport was energy-dependent, inhibited by GMP-PNP and wheat germ agglutinin, but unaffected by N-ethylmaleimide. Nuclear import of oligo(dG)25/protein adducts needed 3 to 4 oligonucleotide signals per complex and the signal had to be at least 15 nucleotides long. Micro-injection experiments showed that the results obtained with digitonin-permeabilized cells are not artifacts of a quasi-intact cellular system. These data were confirmed by electron microscopy employing complexes of oligodeoxyribonucleotides with streptavidin-peroxidase-bovine serum albumin-1 nm gold. In permeabilized cells, the complexes docked to the cytoplasmic face of the nuclear pore complexes, were translocated through the central pore channel and accumulated in large quantities in the nuclear baskets before they were released into the nucleoplasm. These results demonstrate that nuclear uptake of oligonucleotides and their complexes is an active process mediated by nuclear pore complexes, which, at least regarding its cytoplasmic component, is different from the pathway requiring classical nuclear localization signals.  相似文献   

13.
Adenovirus, a respiratory virus with a double-stranded DNA genome, replicates in the nuclei of mammalian cells. We have developed a cytosol-dependent in vitro assay utilizing adenovirus nucleocapsids to examine the requirements for adenovirus docking to the nuclear pore complex and for DNA import into the nucleus. Our assay reveals that adenovirus DNA import is blocked by a competitive excess of classical protein nuclear localization sequences and other inhibitors of nuclear protein import and indicates that this process is dependent on hsc70. Previous work revealed that the hexon (coat) protein of adenovirus is the only major protein on the surface of the adenovirus nucleocapsid that docks at the nuclear pore complex. This, together with our finding that in vitro nuclear import of hexon is inhibited by an excess of classical nuclear localization sequences, suggests a role for the hexon protein in adenovirus DNA import. However, recombinant transport factors that are sufficient for hexon import in permeabilized cells do not support DNA import, indicating that there are other as yet unidentified factors required for this process.  相似文献   

14.
Many viruses deliver their genomes into the host cell nucleus for replication. However, the size restrictions of the nuclear pore complex (NPC), which regulates the passage of proteins, nucleic acids, and solutes through the nuclear envelope, require virus capsid uncoating before viral DNA can access the nucleus. We report a microtubule motor kinesin-1-mediated and NPC-supported mechanism of adenovirus uncoating. The capsid binds to the NPC filament protein Nup214 and kinesin-1 light-chain Klc1/2. The nucleoporin Nup358, which is bound to Nup214/Nup88, interacts with the kinesin-1 heavy-chain Kif5c to indirectly link the capsid to the kinesin motor. Kinesin-1 disrupts capsids docked at Nup214, which compromises the NPC and dislocates nucleoporins and capsid fragments into the cytoplasm. NPC disruption increases nuclear envelope permeability as indicated by the nuclear influx of large cytoplasmic?dextran polymers. Thus, kinesin-1 uncoats viral DNA?and compromises NPC integrity, allowing viral genomes nuclear access to promote infection.  相似文献   

15.
Although many viruses replicate in the nucleus, little is known about the processes involved in the nuclear import of viral genomes. We show here that in vitro generated core particles of human hepatitis B virus bind to nuclear pore complexes (NPCs) in digitonin-permeabilized mammalian cells. This only occurred if the cores contained phosphorylated core proteins. Binding was inhibited by wheat germ agglutinin, by antinuclear pore complex antibodies, and by peptides corresponding either to classical nuclear localization signals (NLS) or to COOH-terminal sequences of the core protein. Binding was dependent on the nuclear transport factors importins (karyopherins) alpha and beta. The results suggested that phosphorylation induces exposure of NLS in the COOH-terminal portion of the core protein that allows core binding to the NPCs by the importin- (karyopherin-) mediated pathway. Thus, phosphorylation of the core protein emerged as an important step in the viral replication cycle necessary for transport of the viral genome to the nucleus.  相似文献   

16.
Adenoviruses target their double-stranded DNA genome and its associated core proteins to the interphase nucleus; this core structure then enters through the nuclear pore complex. We have used digitonin permeabilized cell import assays to study the cellular import factors involved in nuclear entry of virus DNA and the core proteins, protein V and protein VII. We show that inhibition of transportin results in aberrant localization of protein V and that transportin is necessary for protein V to accumulate in the nucleolus. Furthermore, inhibition of transportin results in inhibition of protein VII and DNA import, whereas disruption of the classical importin alpha-importin beta import pathway has little effect. We show that mature protein VII has different import preferences from the precursor protein, preVII from which it is derived by proteolytic processing. While bacterially expressed glutathione S-transferase (GST)-preVII primarily utilizes the pathway mediated by importin alpha-importin beta, bacterially expressed GST-VII favours the transportin pathway. This is significant because while preVII is important during viral replication and assembly only mature VII is available during viral DNA import to a newly infected cell. Our results implicate transportin as a key import receptor for the nuclear localization of adenovirus core.  相似文献   

17.
18.
Specific and efficient recognition of import cargoes is essential to ensure nucleocytoplasmic transport. To this end, the prototypical karyopherin importin β associates with import cargoes directly or, more commonly, through import adaptors, such as importin α and snurportin. Adaptor proteins bind the nuclear localization sequence (NLS) of import cargoes while recruiting importin β via an N-terminal importin β binding (IBB) domain. The use of adaptors greatly expands and amplifies the repertoire of cellular cargoes that importin β can efficiently import into the cell nucleus and allows for fine regulation of nuclear import. Accordingly, the IBB domain is a dedicated NLS, unique to adaptor proteins that functions as a molecular liaison between importin β and import cargoes. This review provides an overview of the molecular role played by the IBB domain in orchestrating nucleocytoplasmic transport. Recent work has determined that the IBB domain has specialized functions at every step of the import and export pathway. Unexpectedly, this stretch of ~ 40 amino acids plays an essential role in regulating processes such as formation of the import complex, docking and translocation through the nuclear pore complex (NPC), release of import cargoes into the cell nucleus and finally recycling of import adaptors and importin β into the cytoplasm. Thus, the IBB domain is a master regulator of nucleocytoplasmic transport, whose complex molecular function is only recently beginning to emerge. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.  相似文献   

19.
Baculoviruses are one of the largest viruses that replicate in the nucleus of their host cells. During an infection the capsid, containing the DNA viral genome, is released into the cytoplasm and delivers the genome into the nucleus by a mechanism that is largely unknown. Here, we used capsids of the baculovirus Autographa californica multiple nucleopolyhedrovirus in combination with electron microscopy and discovered this capsid crosses the NPC and enters into the nucleus intact, where it releases its genome. To better illustrate the existence of this capsid through the NPC in its native conformation, we reconstructed the nuclear import event using electron tomography. In addition, using different experimental conditions, we were able to visualize the intact capsid interacting with NPC cytoplasmic filaments, as an initial docking site, and midway through the NPC. Our data suggests the NPC central channel undergoes large-scale rearrangements to allow translocation of the intact 250-nm long baculovirus capsid. We discuss our results in the light of the hypothetical models of NPC function.  相似文献   

20.
DNA-tumor viruses comprise enveloped and non-enveloped agents that cause malignancies in a large variety of cell types and tissues by interfering with cell cycle control and immortalization. Those DNA-tumor viruses that replicate in the nucleus use cellular mechanisms to transport their genome and newly synthesized viral proteins into the nucleus. This requires cytoplasmic transport and nuclear import of their genome. Agents that employ this strategy include adenoviruses, hepadnaviruses, herpesviruses, and likely also papillomaviruses, and polyomaviruses, but not poxviruses which replicate in the cytoplasm. Here, we discuss how DNA-tumor viruses enter cells, take advantage of cytoplasmic transport, and import their DNA genome through the nuclear pore complex into the nucleus. Remarkably, nuclear import of incoming genomes does not necessarily follow the same pathways used by the structural proteins of the viruses during the replication and assembly phases of the viral life cycle. Understanding the mechanisms of DNA nuclear import can identify new pathways of cell regulation and anti-viral therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号