共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Within clades, most taxa are rare, whilst few are common, a general pattern for which the causes remain poorly understood. Here we investigate the relationship between thermal performance (tolerance and acclimation ability) and the size of a species’ geographical range for an assemblage of four ecologically similar European diving beetles (the Agabus brunneus group) to examine whether thermal physiology relates to latitudinal range extent, and whether Brown’s hypothesis and the environmental variability hypothesis apply to these taxa. Location Europe. Methods In order to determine the species tolerances to either low or high temperatures we measured the lethal thermal limits of adults, previously acclimated at one of two temperatures, by means of thermal ramping experiments (± 1°C min?1). These measures of upper and lower thermal tolerances (UTT and LTT respectively) were then used to estimate each species’ thermal tolerance range, as total thermal tolerance polygons and marginal UTT and LTT thermal polygons. Results Overall, widespread species have higher UTTs and lower LTTs than restricted ones. Mean upper lethal limits of the Agabus brunneus group (43 to 46°C), are similar to those of insects living at similar latitudes, whilst mean lower lethal limits (?6 to ?9°C) are relatively high, suggesting that this group is not particularly cold‐hardy compared with other mid‐temperate‐latitude insects. Widespread species possess the largest thermal tolerance ranges and have a relatively symmetrical tolerance to both high and low temperatures, when compared with range‐restricted relatives. Over the temperature range employed, adults did not acclimate to either high or low temperatures, contrasting with many insect groups, and suggesting that physiological plasticity has a limited role in shaping distribution. Main conclusions Absolute thermal niche appears to be a good predictor of latitudinal range, supporting both Brown’s hypothesis and the environmental variability hypothesis. Restricted‐range species may be more susceptible to the direct effect of climate change than widespread species, notwithstanding the possibility that even ‘thermally‐hardy’, widespread species may be influenced by the indirect effects of climate change such as reduction in habitat availability in Mediterranean areas. 相似文献
2.
Alex R. Gunderson Jonathon H. Stillman 《Proceedings. Biological sciences / The Royal Society》2015,282(1808)
Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the ‘Bogert effect’. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures. 相似文献
3.
Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot 总被引:9,自引:0,他引:9
G.F. Midgley† L. Hannah† D. Millar M.C. Rutherford L.W. Powrie 《Global Ecology and Biogeography》2002,11(6):445-451
Aim To compare theoretical approaches towards estimating risks of plant species loss to anthropogenic climate change impacts in a biodiversity hotspot, and to develop a practical method to detect signs of climate change impacts on natural populations. Location The Fynbos biome of South Africa, within the Cape Floristic Kingdom. Methods Bioclimatic modelling was used to identify environmental limits for vegetation at both biome and species scale. For the biome as a whole, and for 330 species of the endemic family Proteaceae, tolerance limits were determined for five temperature and water availability‐related parameters assumed critical for plant survival. Climate scenarios for 2050 generated by the general circulation models HadCM2 and CSM were interpolated for the region. Geographic Information Systems‐based methods were used to map current and future modelled ranges of the biome and 330 selected species. In the biome‐based approach, predictions of biome areal loss were overlayed with species richness data for the family Proteaceae to estimate extinction risk. In the species‐based approach, predictions of range dislocation (no overlap between current range and future projected range) were used as an indicator of extinction risk. A method of identifying local populations imminently threatened by climate change‐induced mortality is also described. Results A loss of Fynbos biome area of between 51% and 65% is projected by 2050 (depending on the climate scenario used), and roughly 10% of the endemic Proteaceae have ranges restricted to the area lost. Species range projections suggest that a third could suffer complete range dislocation by 2050, and only 5% could retain more than two thirds of their range. Projected changes to individual species ranges could be sufficient to detect climate change impacts within ten years. Main conclusions The biome‐level approach appears to underestimate the risk of species diversity loss from climate change impacts in the Fynbos Biome because many narrow range endemics suffer range dislocation throughout the biome, and not only in areas identified as biome contractions. We suggest that targeted vulnerable species could be monitored both for early warning signs of climate change and as empirical tests of predictions. 相似文献
4.
5.
Timothy C. Bonebrake Carol L. Boggs Jeannie A. Stamberger Curtis A. Deutsch Paul R. Ehrlich 《Proceedings. Biological sciences / The Royal Society》2014,281(1793)
Difficulty in characterizing the relationship between climatic variability and climate change vulnerability arises when we consider the multiple scales at which this variation occurs, be it temporal (from minute to annual) or spatial (from centimetres to kilometres). We studied populations of a single widely distributed butterfly species, Chlosyne lacinia, to examine the physiological, morphological, thermoregulatory and biophysical underpinnings of adaptation to tropical and temperate climates. Microclimatic and morphological data along with a biophysical model documented the importance of solar radiation in predicting butterfly body temperature. We also integrated the biophysics with a physiologically based insect fitness model to quantify the influence of solar radiation, morphology and behaviour on warming impact projections. While warming is projected to have some detrimental impacts on tropical ectotherms, fitness impacts in this study are not as negative as models that assume body and air temperature equivalence would suggest. We additionally show that behavioural thermoregulation can diminish direct warming impacts, though indirect thermoregulatory consequences could further complicate predictions. With these results, at multiple spatial and temporal scales, we show the importance of biophysics and behaviour for studying biodiversity consequences of global climate change, and stress that tropical climate change impacts are likely to be context-dependent. 相似文献
6.
7.
Global climate change is impacting and will continue to impact marine and estuarine fish and fisheries. Data trends show global climate change effects ranging from increased oxygen consumption rates in fishes, to changes in foraging and migrational patterns in polar seas, to fish community changes in bleached tropical coral reefs. Projections of future conditions portend further impacts on the distribution and abundance of fishes associated with relatively small temperature changes. Changing fish distributions and abundances will undoubtedly affect communities of humans who harvest these stocks. Coastal-based harvesters (subsistence, commercial, recreational) may be impacted (negatively or positively) by changes in fish stocks due to climate change. Furthermore, marine protected area boundaries, low-lying island countries dependent on coastal economies, and disease incidence (in aquatic organisms and humans) are also affected by a relatively small increase in temperature and sea level. Our interpretations of evidence include many uncertainties about the future of affected fish species and their harvesters. Therefore, there is a need to research the physiology and ecology of marine and estuarine fishes, particularly in the tropics where comparatively little research has been conducted. As a broader and deeper information base accumulates, researchers will be able to make more accurate predictions and forge relevant solutions. 相似文献
8.
OLIVIER BROENNIMANN WILFRIED THUILLER†‡ GREG HUGHES‡§ GUY F. MIDGLEY‡ J. M. ROBERT. ALKEMADE§ ANTOINE GUISAN 《Global Change Biology》2006,12(6):1079-1093
We modelled the future distribution in 2050 of 975 endemic plant species in southern Africa distributed among seven life forms, including new methodological insights improving the accuracy and ecological realism of predictions of global changes studies by: (i) using only endemic species as a way to capture the full realized niche of species, (ii) considering the direct impact of human pressure on landscape and biodiversity jointly with climate, and (iii) taking species' migration into account. Our analysis shows important promises for predicting the impacts of climate change in conjunction with land transformation. We have shown that the endemic flora of Southern Africa on average decreases with 41% in species richness among habitats and with 39% on species distribution range for the most optimistic scenario. We also compared the patterns of species' sensitivity with global change across life forms, using ecological and geographic characteristics of species. We demonstrate here that species and life form vulnerability to global changes can be partly explained according to species' (i) geographical distribution along climatic and biogeographic gradients, like climate anomalies, (ii) niche breadth or (iii) proximity to barrier preventing migration. Our results confirm that the sensitivity of a given species to global environmental changes depends upon its geographical distribution and ecological proprieties, and makes it possible to estimate a priori its potential sensitivity to these changes. 相似文献
9.
Assessing household livelihood vulnerability to climate change: The case of Northwest Vietnam 总被引:1,自引:0,他引:1
This study applied livelihood vulnerability index (LVI) and livelihood effect index (LEI) to assess vulnerability from climate variability and change of three agricultural and natural resources dependent commune in northwest Vietnam, a country that is expected to bear some of the most severe impacts of climate change. Based on a survey of 335 farm household data, complemented with secondary data on climate factors, a composite index was calculated and differential vulnerabilities were compared. The results of the analysis suggest that one of the communities, “Pa Vay Su,” was more vulnerable than the others, particularly in relation to housing, knowledge and skills, socio-demographics, health and water security, social networks, and livelihood strategy. “Hien Luong” commune, on the other hand, was more vulnerable in relation to other LVI indicators with the exception of food security, climate variability, and natural disasters. “Moc Chau” community was more vulnerable in relation to water security, social demographic than Hien Luong commune. Overall, the article shows that three different vulnerability assessment indices can be broadly applied in comparable setting in other areas of country and they could usefully establish the basis for a nationally applicable index to identify and prioritize adaptation and mitigation needs. 相似文献
10.
林窗模型及其在全球气候变化研究中的应用 总被引:3,自引:0,他引:3
林窗模型是基于个体的广泛应用于森林长期动态变化的模拟与预测的模型,是研究森林生态系统对气候变化响应的有效工具。本文把林窗模型的发展与演变过程概括为3个阶段:萌芽阶段、飞速发展阶段和提高阶段;展望了林窗模型的未来发展趋势;简要阐述了在全球气候变化背景下应用模型研究森林与气候间关系的可行性与必要性;对国际上相关的研究热点和前沿问题进行了探讨;综述了国内的研究现状,指出国内林窗模型的预测研究应以改进现有模型、构建新模型、耦合多模型作为未来的发展方向。 相似文献
11.
Limited potential for adaptation to climate change in a broadly distributed marine crustacean 总被引:1,自引:0,他引:1
Kelly MW Sanford E Grosberg RK 《Proceedings. Biological sciences / The Royal Society》2012,279(1727):349-356
The extent to which acclimation and genetic adaptation might buffer natural populations against climate change is largely unknown. Most models predicting biological responses to environmental change assume that species' climatic envelopes are homogeneous both in space and time. Although recent discussions have questioned this assumption, few empirical studies have characterized intraspecific patterns of genetic variation in traits directly related to environmental tolerance limits. We test the extent of such variation in the broadly distributed tidepool copepod Tigriopus californicus using laboratory rearing and selection experiments to quantify thermal tolerance and scope for adaptation in eight populations spanning more than 17° of latitude. Tigriopus californicus exhibit striking local adaptation to temperature, with less than 1 per cent of the total quantitative variance for thermal tolerance partitioned within populations. Moreover, heat-tolerant phenotypes observed in low-latitude populations cannot be achieved in high-latitude populations, either through acclimation or 10 generations of strong selection. Finally, in four populations there was no increase in thermal tolerance between generations 5 and 10 of selection, suggesting that standing variation had already been depleted. Thus, plasticity and adaptation appear to have limited capacity to buffer these isolated populations against further increases in temperature. Our results suggest that models assuming a uniform climatic envelope may greatly underestimate extinction risk in species with strong local adaptation. 相似文献
12.
13.
Forest responses to climate change will depend on demographic impacts in the context of competition. Current models used to predict species responses, termed climate envelope models (CEMs), are controversial, because (i) calibration and prediction are based on correlations in space (CIS) between species abundance and climate, rather than responses to climate change over time (COT), and (ii) they omit competition. To determine the relative importance of COT, CIS, and competition for light, we applied a longitudinal analysis of 27 000 individual trees over 6–18 years subjected to experimental and natural variation in risk factors. Sensitivities and climate and resource tracking identify which species are vulnerable to these risk factors and in what ways. Results show that responses to COT differ from those predicted based on CIS. The most important impact is the effect of spring temperature on fecundity, rather than any input variable on growth or survival. Of secondary importance is growing season moisture. Species in the genera Pinus, Ulmus, Magnolia, and Fagus are particularly vulnerable to climate variation. However, the effect of competition on growth and mortality risk exceeds the effects of climate variation in space or time for most species. Because sensitivities to COT and competition are larger than CIS, current models miss the most important effects. By directly comparing sensitivity to climate in time and space, together with competition, the approach identifies which species are sensitive to climate change and why, including the heretofore overlooked impact on fecundity. 相似文献
14.
Charles C. Davis Charles G. Willis Richard B. Primack Abraham J. Miller-Rushing 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1555):3201-3213
Climate change has resulted in major changes in the phenology—i.e. the timing of seasonal activities, such as flowering and bird migration—of some species but not others. These differential responses have been shown to result in ecological mismatches that can have negative fitness consequences. However, the ways in which climate change has shaped changes in biodiversity within and across communities are not well understood. Here, we build on our previous results that established a link between plant species'' phenological response to climate change and a phylogenetic bias in species'' decline in the eastern United States. We extend a similar approach to plant and bird communities in the United States and the UK that further demonstrates that climate change has differentially impacted species based on their phylogenetic relatedness and shared phenological responses. In plants, phenological responses to climate change are often shared among closely related species (i.e. clades), even between geographically disjunct communities. And in some cases, this has resulted in a phylogenetically biased pattern of non-native species success. In birds, the pattern of decline is phylogenetically biased but is not solely explained by phenological response, which suggests that other traits may better explain this pattern. These results illustrate the ways in which phylogenetic thinking can aid in making generalizations of practical importance and enhance efforts to predict species'' responses to future climate change. 相似文献
15.
WISDOM DLAMINI 《Global Change Biology》2011,17(3):1425-1441
In a spatially explicit climate change impact assessment, a Bayesian network (BN) model was implemented to probabilistically simulate future response of the four major vegetation types in Swaziland. Two emission scenarios (A2 and B2) from an ensemble of three statistically downscaled coupled atmosphere‐ocean global circulation models (CSIRO‐Mk3, CCCma‐CGCM3 and UKMO‐HadCM3) were used to simulate possible changes in BN‐based environmental envelopes of major vegetation communities. Both physiographic and climatic data were used as predictors representing the 2020s, 2050s and the 2080s periods. A comparison of simulated vegetation distribution and the expert vegetation map under baseline conditions showed an overall correspondence of 97.7% and a Kappa coefficient of 0.966. Although the ensemble projections showed comparable trends during the 2020s, the results from the A2 storyline were more drastic indicating that grassland and the Lebombo bushveld will be impacted negatively as early as the 2020s with about 1 °C temperature increase. The bioclimatically suitable areas of all but one vegetation type decline drastically after about 2 °C warming, more so under the more severe A2 scenario and in particular during the 2080s. The sour bushveld is the only vegetation type that initially responds positively to warming by possibly encroaching to the highly vulnerable grassland areas. Vulnerability of vegetation is increased by the limited ability to migrate into suitable climates due to close affinity to certain geological formations and the fragmentation of the landscape by agriculture and other land uses. This is expected to have serious impacts on biodiversity in the country. Under warmer climates, the likely vegetation types to emerge are uncertain due to future novel combinations of climate and bedrock lithology. The strengths and limitations of the BN approach are also discussed. 相似文献
16.
SARAH KIMBALL AMY L. ANGERT TRAVIS E. HUXMAN D. LAWRENCE VENABLE 《Global Change Biology》2010,16(5):1555-1565
Impacts of long‐term climate shifts on the dynamics of intact communities within species ranges are not well understood. Here, we show that warming and drying of the Southwestern United States over the last 25 years has corresponded to a shift in the species composition of Sonoran Desert winter annuals, paradoxically favoring species that germinate and grow best in cold temperatures. Winter rains have been arriving later in the season, during December rather than October, leading to the unexpected result that plants are germinating under colder temperatures, shifting community composition to favor slow growing, water‐use efficient, cold‐adapted species. Our results demonstrate how detailed ecophysiological knowledge of individual species, combined with long‐term demographic data, can reveal complex and sometimes unexpected shifts in community composition in response to climate change. Further, these results highlight the potentially overwhelming impact of changes in phenology on the response of biota to a changing climate. 相似文献
17.
Davies TJ Buckley LB Grenyer R Gittleman JL 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1577):2526-2535
Within most terrestrial groups of animals, including mammals, species richness varies along two axes of environmental variation, representing energy availability and plant productivity. This relationship has led to a search for mechanistic links between climate and diversity. Explanations have traditionally focused on single mechanisms, such as variation in environmental carrying capacity or evolutionary rates. Consensus, though, has proved difficult to achieve and there is growing appreciation that geographical patterns of species richness are a product of many interacting factors including biogeographic history and biological traits. Here, we review some current hypotheses on the causes of gradients in mammal richness and range sizes since the two quantities are intimately linked. We then present novel analyses using recent datasets to explore the structure of the environment-richness relationship for mammals. Specifically, we consider the impact of glaciation on present day mammalian diversity gradients. We conclude that not only are multiple processes important in structuring diversity gradients, but also that different processes predominate in different places. 相似文献
18.
Gian-Reto Walther 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1549):2019-2024
There is ample evidence for ecological responses to recent climate change. Most studies to date have concentrated on the effects of climate change on individuals and species, with particular emphasis on the effects on phenology and physiology of organisms as well as changes in the distribution and range shifts of species. However, responses by individual species to climate change are not isolated; they are connected through interactions with others at the same or adjacent trophic levels. Also from this more complex perspective, recent case studies have emphasized evidence on the effects of climate change on biotic interactions and ecosystem services. This review highlights the ‘knowns’ but also ‘unknowns’ resulting from recent climate impact studies and reveals limitations of (linear) extrapolations from recent climate-induced responses of species to expected trends and magnitudes of future climate change. Hence, there is need not only to continue to focus on the impacts of climate change on the actors in ecological networks but also and more intensively to focus on the linkages between them, and to acknowledge that biotic interactions and feedback processes lead to highly complex, nonlinear and sometimes abrupt responses. 相似文献
19.
SAPNA SHARMA DONALD A. JACKSON CHARLES K. MINNS † BRIAN J. SHUTER ‡ 《Global Change Biology》2007,13(10):2052-2064
Predicted increases in water temperature in response to climate change will have large implications for aquatic ecosystems, such as altering thermal habitat and potential range expansion of fish species. Warmwater fish species, such as smallmouth bass, Micropterus dolomieu , may have access to additional favourable thermal habitat under increased surface-water temperatures, thereby shifting the northern limit of the distribution of the species further north in Canada and potentially negatively impacting native fish communities. We assembled a database of summer surface-water temperatures for over 13 000 lakes across Canada. The database consists of lakes with a variety of physical, chemical and biological properties. We used general linear models to develop a nation-wide maximum lake surface-water temperature model. The model was extended to predict surface-water temperatures suitable to smallmouth bass and under climate-change scenarios. Air temperature, latitude, longitude and sampling time were good predictors of present-day maximum surface-water temperature. We predicted lake surface-water temperatures for July 2100 using three climate-change scenarios. Water temperatures were predicted to increase by as much as 18 °C by 2100, with the greatest increase in northern Canada. Lakes with maximum surface-water temperatures suitable for smallmouth bass populations were spatially identified. Under several climate-change scenarios, we were able to identify lakes that will contain suitable thermal habitat and, therefore, are vulnerable to invasion by smallmouth bass in 2100. This included lakes in the Arctic that were predicted to have suitable thermal habitat by 2100. 相似文献
20.
Collin Storlie Andres Merino-Viteri Ben Phillips Jeremy VanDerWal Justin Welbergen Stephen Williams 《Biology letters》2014,10(9)
To assess a species'' vulnerability to climate change, we commonly use mapped environmental data that are coarsely resolved in time and space. Coarsely resolved temperature data are typically inaccurate at predicting temperatures in microhabitats used by an organism and may also exhibit spatial bias in topographically complex areas. One consequence of these inaccuracies is that coarsely resolved layers may predict thermal regimes at a site that exceed species'' known thermal limits. In this study, we use statistical downscaling to account for environmental factors and develop high-resolution estimates of daily maximum temperatures for a 36 000 km2 study area over a 38-year period. We then demonstrate that this statistical downscaling provides temperature estimates that consistently place focal species within their fundamental thermal niche, whereas coarsely resolved layers do not. Our results highlight the need for incorporation of fine-scale weather data into species'' vulnerability analyses and demonstrate that a statistical downscaling approach can yield biologically relevant estimates of thermal regimes. 相似文献