首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The participation of global regulators GrrS (sensor kinase GacA/GacS-like regulatory system) and sigma S subunit of RNA polymerase in the control of phosphatase synthesis in a soil bacterium Serratia plymuthica was shown. In cells of null mutants for genes grrS and rpoS synthesis of acid and alkaline phosphatases was markedly decreased.  相似文献   

2.
3.
The EnvZ/OmpR and GrrS/GrrA systems, two widely distributed two-component systems in gamma-Proteobacteria, negatively control amylovoran biosynthesis in Erwinia amylovora, and the two systems regulate motility in an opposing manner. In this study, we examined the interplay of EnvZ/OmpR and GrrS/GrrA systems in controlling various virulence traits in E. amylovora. Results showed that amylovoran production was significantly higher when both systems were inactivated, indicating that the two systems act as negative regulators and their combined effect on amylovoran production appears to be enhanced. In contrast, reduced motility was observed when both systems were deleted as compared to that of grrA/grrS mutants and WT strain, indicating that the two systems antagonistically regulate motility in E. amylovora. In addition, glycogen accumulation was much higher in envZ/ompR and two triple mutants than that of grrS/grrA mutants and WT strain, suggesting that EnvZ/OmpR plays a dominant role in regulating glycogen accumulation, whereas levan production was significantly lower in the grrS/grrA and two triple mutants as compared with that of WT and envZ/ompR mutants, indicating that GrrS/GrrA system dominantly controls levan production. Furthermore, both systems negatively regulated expression of three type III secretion (T3SS) genes and their combined negative effect on hrp-T3SS gene expression increased when both systems were deleted. These results demonstrated that EnvZ/OmpR and GrrS/GrrA systems co-regulate various virulence factors in E. amylovora by still unknown mechanisms or through different target genes, sRNAs, or proteins, indicating that a complex regulatory network may be involved, which needs to be further explored.  相似文献   

4.
Shewanella baltica is one of the most important bacterial species contributing to spoilage of seafood. Principally, RpoS has been recognized as the central regulator of stress resistance in many bacterial species. However, little is known about the role of RpoS in S. baltica. In this study, an rpoS mutant of S. baltica was constructed and analysed for its functions. The results showed that the survival rate of rpoS mutant decreased when treated with heat, ethanol and H2O2, while increased the resistance to NaCl. Moreover RpoS promoted the biofilm formation of S. baltica at 30°C, while declined at 4°C. Interestingly, the rpoS-deficient mutant showed increased swimming motility. Furthermore, the results revealed that the production of quorum-sensing (QS) signals such as cyclo-(l -Pro-l -Leu) and cyclo-(l -Pro-l -Phe) reduced in rpoS mutant. Mainly, rpoS positively regulated QS response regulators, as the expression of all luxR genes in rpoS mutant significantly decreased relative to wild type. This study reveals that RpoS is a major regulator involved in stress responses, biofilm formation and quorum sensing system in S. baltica. The present work provides significant information for the control of microbiological spoilage of seafood.  相似文献   

5.
May T  Okabe S 《Journal of bacteriology》2008,190(22):7479-7490
It has been shown that Escherichia coli harboring the derepressed IncFI and IncFII conjugative F plasmids form complex mature biofilms by using their F-pilus connections, whereas a plasmid-free strain forms only patchy biofilms. Therefore, in this study we investigated the contribution of a natural IncF conjugative F plasmid to the formation of E. coli biofilms. Unlike the presence of a derepressed F plasmid, the presence of a natural IncF F plasmid promoted biofilm formation by generating the cell-to-cell mating F pili between pairs of F+ cells (approximately two to four pili per cell) and by stimulating the formation of colanic acid and curli meshwork. Formation of colanic acid and curli was required after the initial deposition of F-pilus connections to generate a three-dimensional mushroom-type biofilm. In addition, we demonstrated that the conjugative factor of F plasmid, rather than a pilus synthesis function, was involved in curli production during biofilm formation, which promoted cell-surface interactions. Curli played an important role in the maturation process. Microarray experiments were performed to identify the genes involved in curli biosynthesis and regulation. The results suggested that a natural F plasmid was more likely an external activator that indirectly promoted curli production via bacterial regulatory systems (the EnvZ/OmpR two-component regulators and the RpoS and HN-S global regulators). These data provided new insights into the role of a natural F plasmid during the development of E. coli biofilms.  相似文献   

6.
Aim: To examine the biocontrol activity of broad‐range antagonists Serratia plymuthica IC1270, Pseudomonas fluorescens Q8r1‐96 and P. fluorescens B‐4117 against tumourigenic strains of Agrobacterium tumefaciens and A. vitis. Methods and Results: Under greenhouse conditions, the antagonists, applied via root soak prior to injecting Agrobacterium strains into the wounded stems, significantly suppressed tumour development on tomato seedlings. A derivative of P. fluorescens Q8r1‐96 tagged with a gfp reporter, as well as P. fluorescens B‐4117 and S. plymuthica IC1270 marked with rifampicin resistance, stably persisted in tomato tissues for at least 1 month. Mutants of P. fluorescens Q8r1‐96 and S. plymuthica IC1270 deficient in 2,4‐diacetylphloroglucinol or pyrrolnitrin production, respectively, also proficiently suppressed the tumour development, indicating that these antibiotics are not responsible for the observed biocontrol effect on crown gall disease. The volatile organic compounds (VOCs) produced by the tested P. fluorescens and S. plymuthica strains inhibited the growth of A. tumefaciens and A. vitis strains in vitro. Solid‐phase microextraction‐gas chromatography‐mass spectrometry analysis revealed dimethyl disulfide (DMDS) as the major headspace volatile produced by S. plymuthica IC1270; it strongly suppressed Agrobacterium growth in vitro and was emitted by tomato plants treated with S. plymuthica IC1270. 1‐Undecene was the main volatile emitted by the examined P. fluorescens strains, with other volatiles, including DMDS, being detected in only relatively low quantities. Conclusions: S. plymuthica IC1270, P. fluorescens B‐4117 and P. fluorescens Q8r1‐96 can be used as novel biocontrol agents of pathogenic Agrobacterium. VOCs, and specifically DMDS, might be involved in the suppression of oncogenicity in tomato plants. However, the role of specific volatiles in the biocontrol activity remains to be elucidated. Significance and Impact of the Study: The advantage of applying these antagonists lies in their multiple activities against a number of plant pathogens, including Agrobacterium.  相似文献   

7.
Serratia plymuthica strain IC1270 isolated from the rhizosphere, possessing antagonistic activity towards a wide range of plant-pathogenic fungi, is able to hydrolyze phytate. Phytase activity was found intracellularly, while no activity was detected in the culture liquid. Optimum activity was found at pH 4-5; it completely disappeared at pH > 7.0 and 2.5. Phytase production was practically absent in the exponential phase and reached a maximum in the late stationary phase. Mutations of genes grrA and grrS, encoding GacA/GacS-like 2-component global regulatory system, or in gene rpoS encoding the sigma factor RpoS subunit of RNA polymerase, led to a deficiency in phytase production. Introduction into mutants of the respective wild-type genes cloned into the wide-range plasmid pJFF224-NX under the control of the bacteriophage T4 gene 32 promoter complemented this deficiency. This is the first report implicating the GacA/GacS global regulators and RpoS factor in phytase production in bacteria.  相似文献   

8.
9.
Streptococcus mutans, the primary etiological agent of human dental caries, is an obligate biofilm-forming bacterium. The goals of this study were to identify the gene(s) required for biofilm formation by this organism and to elucidate the role(s) that some of the known global regulators of gene expression play in controlling biofilm formation. In S. mutans UA159, the brpA gene (for biofilm regulatory protein) was found to encode a novel protein of 406 amino acid residues. A strain carrying an insertionally inactivated copy of brpA formed longer chains than did the parental strain, aggregated in liquid culture, and was unable to form biofilms as shown by an in vitro biofilm assay. A putative homologue of the enzyme responsible for synthesis of autoinducer II (AI-2) of the bacterial quorum-sensing system was also identified in S. mutans UA159, but insertional inactivation of the gene (luxSSm) did not alter colony or cell morphology or diminish the capacity of S. mutans to form biofilms. We also examined the role of the homologue of the Bacillus subtilis catabolite control protein CcpA in S. mutans in biofilm formation, and the results showed that loss of CcpA resulted in about a 60% decrease in the ability to form biofilms on an abiotic surface. From these data, we conclude that CcpA and BrpA may regulate genes that are required for stable biofilm formation by S. mutans.  相似文献   

10.
11.
Verticillium wilt is an important disease in oilseed rape with an increasing importance worldwide. Currently, there are no methods available to suppress the pathogen. A biological protection strategy on the basis of the plant-beneficial bacterium Serratia plymuthica HRO-C48 to control Verticillium dahliae in oilseed rape was developed. Three different techniques to apply the biocontrol agent to seeds, namely pelleting, film coating and bio-priming, were evaluated considering the influence on the control activity, cell stability during storage and practical feasibility. Neither the treatment nor the inoculum density was found to influence the abundances of HRO-C48 in the rhizosphere after 30 days. Serratia treatment using bio-priming and pelleting resulted in a statistically significant biocontrol in comparison to the non-bacterized controls. Additionally, survival of HRO-C48 differed between treatments, and was the highest using bio-priming at 20°C, and pelleting at 4°C. In conclusion, the procedure of bio-priming, which was developed in line with this study, resulted in a stable and efficient formulation of S. plymuthica on rape seed. This technology opens a possibility to develop a commercial Serratia formulation to protect oilseed against V. dahliae.  相似文献   

12.
Streptococcus mutans (S. mutans) uses a quorum sensing (QS) signaling system, which is dependent on competence stimulating peptide (CSP), to regulate diverse physiological activities including bacteriocin production, genetic transformation, and biofilm formation. However, the mechanism of the QS system-induced biofilm formation remains unclear. Here, we demonstrated that the late-stage biofilm formation was increased by the addition of exogenous CSP in S. mutans. The numbers of dead cells in biofilms formed in presence of CSP was 64.5% higher than that without CSP after 12 h (p < 0.05) and 76.3% higher after 24 h (p < 0.05), the numbers of live cells in biofilms formed in presence of CSP were 89.3% higher than that without CSP after 24 h (p < 0.01). The expression of QS-associated genes was increased 3.4-5.3-fold by CSP in biofilms. Our results revealed that cell viability of S. mutans grown in biofilms is affected by the CSP-dependent QS system.  相似文献   

13.
14.
Vibrio parahaemolyticus is one of the leading foodborne pathogens causing seafood contamination. Here, 22 V. parahaemolyticus strains were analyzed for biofilm formation to determine whether there is a correlation between biofilm formation and quorum sensing (QS), swimming motility, or hydrophobicity. The results indicate that the biofilm formation ability of V. parahaemolyticus is positively correlated with cell surface hydrophobicity, autoinducer (AI-2) production, and protease activity. Field emission scanning electron microscopy (FESEM) showed that strong-biofilm-forming strains established thick 3-D structures, whereas poor-biofilm-forming strains produced thin inconsistent biofilms. In addition, the distribution of the genes encoding pandemic clone factors, type VI secretion systems (T6SS), biofilm functions, and the type I pilus in the V. parahaemolyticus seafood isolates were examined. Biofilm-associated genes were present in almost all the strains, irrespective of other phenotypes. These results indicate that biofilm formation on/in seafood may constitute a major factor in the dissemination of V. parahaemolyticus and the ensuing diseases.  相似文献   

15.
Protozoan grazing is a major mortality factor faced by bacteria in the environment. Vibrio cholerae, the causative agent of the disease cholera, is a natural inhabitant of aquatic ecosystems, and its survival depends on its ability to respond to stresses, such as predation by heterotrophic protists. Previous results show that grazing pressure induces biofilm formation and enhances a smooth to rugose morphotypic shift, due to increased expression of Vibrio polysaccharide (VPS). In addition to negatively controlling vps genes, the global quorum sensing (QS) regulator, HapR, plays a role in grazing resistance as the ΔhapR strain is efficiently consumed while the wild type (WT) is not. Here, the relative and combined contributions of VPS and QS to grazing resistance were investigated by exposing VPS and HapR mutants and double mutants in VPS and HapR encoding genes at different phases of biofilm development to amoeboid and flagellate grazers. Data show that the WT biofilms were grazing resistant, the VPS mutants were less resistant than the WT strain, but more resistant than the QS mutant strain, and that QS contributes to grazing resistance mainly in mature biofilms. In addition, grazing effects on biofilms of mixed WT and QS mutant strains were investigated. The competitive fitness of each strain in mixed biofilms was determined by CFU and microscopy. Data show that protozoa selectively grazed the QS mutant in mixed biofilms, resulting in changes in the composition of the mixed community. A small proportion of QS mutant cells which comprised 4% of the mixed biofilm biovolume were embedded in grazing resistant WT microcolonies and shielded from predation, indicating the existence of associational protection in mixed biofilms.  相似文献   

16.
The otherwise harmless skin inhabitant Staphylococcus epidermidis is a major cause of healthcare‐associated medical device infections. The species' selective pathogenic potential depends on its production of surface adherent biofilms. The Cell wall‐anchored protein Aap promotes biofilm formation in S. epidermidis, independently from the polysaccharide intercellular adhesin PIA. Aap requires proteolytic cleavage to act as an intercellular adhesin. Whether and which staphylococcal proteases account for Aap processing is yet unknown. Here, evidence is provided that in PIA‐negative S. epidermidis 1457Δica, the metalloprotease SepA is required for Aap‐dependent S. epidermidis biofilm formation in static and dynamic biofilm models. qRT‐PCR and protease activity assays demonstrated that under standard growth conditions, sepA is repressed by the global regulator SarA. Inactivation of sarA increased SepA production, and in turn augmented biofilm formation. Genetic and biochemical analyses demonstrated that SepA‐related induction of biofilm accumulation resulted from enhanced Aap processing. Studies using recombinant proteins demonstrated that SepA is able to cleave the A domain of Aap at residue 335 and between the A and B domains at residue 601. This study identifies the mechanism behind Aap‐mediated biofilm maturation, and also demonstrates a novel role for a secreted staphylococcal protease as a requirement for the development of a biofilm.  相似文献   

17.
18.
Bacterial biofilm development is conditioned by complex processes involving bacterial attachment to surfaces, growth, mobility, and exoproduct production. The marine bacterium Pseudoalteromonas sp. strain D41 is able to attach strongly onto a wide variety of substrates, which promotes subsequent biofilm development. Study of the outer‐membrane and total soluble proteomes showed ten spots with significant intensity variations when this bacterium was grown in biofilm compared to planktonic cultures. MS/MS de novo sequencing analysis allowed the identification of four outer‐membrane proteins of particular interest since they were strongly induced in biofilms. These proteins are homologous to a TonB‐dependent receptor (TBDR), to the OmpW and OmpA porins, and to a type IV pilus biogenesis protein (PilF). Gene expression assays by quantitative RT‐PCR showed that the four corresponding genes were upregulated during biofilm development on hydrophobic and hydrophilic surfaces. The Pseudomonas aeruginosa mutants unable to produce any of the OmpW, OmpA, and PilF homologues yielded biofilms with lower biovolumes and altered architectures, confirming the involvement of these proteins in the biofilm formation process. Our results indicate that Pseudoalteromonas sp. D41 shares biofilm formation mechanisms with human pathogenic bacteria, but also relies on TBDR, which might be more specific to the marine environment.  相似文献   

19.
An autolysin gene, atlh, was identified and sequenced from Streptococcus downei MFe28 using degenerate polymerase chain reaction (PCR) and the gene-walking method. Atlh protein encoded by atlh is composed of 879 amino acids, with a molecular weight of 95,902.26. Atlh possesses four 15-amino-acid residue repeats in the putative cell-wall-binding domain and has a catalytic domain in the C-terminus. The deduced amino acid sequence of atlh showed homology to S. mutans autolysin AtlA (68.4% similarity). Inactivation of atlh resulted in elongated chain formation compared to the parent strain. Recombinant proteins Atlh and its derivatives were constructed and analyzed by zymography. Zymographic analysis revealed that the Asp-771 residue of Atlh was essential for lytic activity and that lytic activity was not diminished by the deletion of repetitive regions in the putative cell-wall-binding domain of Atlh. Biofilm assay showed that the wild-type strain formed glucose- and sucrose-dependent biofilms, the atlh mutant diminished this ability. These results suggest that Atlh is associated with cell separation and biofilm formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号