首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

Background  

Cyclamen is a popular and economically significant pot plant crop in several countries. Molecular breeding technologies provide opportunities to metabolically engineer the well-characterized flavonoid biosynthetic pathway for altered anthocyanin profile and hence the colour of the flower. Previously we reported on a genetic transformation system for cyclamen. Our aim in this study was to change pigment profiles and flower colours in cyclamen through the suppression of flavonoid 3', 5'-hydroxylase, an enzyme in the flavonoid pathway that plays a determining role in the colour of anthocyanin pigments.  相似文献   

15.
16.
17.
Genes up-regulated during red coloration in UV-B irradiated lettuce leaves   总被引:4,自引:0,他引:4  
Molecular analysis of gene expression differences between green and red lettuce leaves was performed using the SSH method. BlastX comparisons of subtractive expressed sequence tags (ESTs) indicated that 7.6% of clones encoded enzymes involved in secondary metabolism. Such clones had a particularly high abundance of flavonoid-metabolism proteins (6.5%). Following SSH, 566 clones were rescreened for differential gene expression using dot-blot hybridization. Of these, 53 were found to overexpressed during red coloration. The up-regulated expression of six genes was confirmed by Northern blot analyses. The expression of chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), and dihydroflavonol 4-reductase (DFR) genes showed a positive correlation with anthocyanin accumulation in UV-B-irradiated lettuce leaves; flavonoid 3′,5′-hydroxylase (F3′,5′H) and anthocyanidin synthase (ANS) were expressed continuously in both samples. These results indicated that the genes CHS, F3H, and DFR coincided with increases in anthocyanin accumulation during the red coloration of lettuce leaves. This study show a relationship between red coloration and the expression of up-regulated genes in lettuce. The subtractive cDNA library and EST database described in this study represent a valuable resource for further research for secondary metabolism in the vegetable crops.  相似文献   

18.
19.
20.
Allopolyploidy is known to induce novel patterns of gene expression and often gives rise to new phenotypes. Here we report on the first attempt to relate phenotypic inheritance in an allotetraploid somatic hybrid with gene expression. Carotenoid compounds in the fruit pulp of the two parental species and the hybrid were evaluated quantitatively by HPLC. Only very low levels of β-carotene and β-cryptoxanthin were observed in Citrus limon, while β-cryptoxanthin was a major component of C. reticulata, which also displayed high levels of phytoene, phytofluene, β-carotene, lutein, zeaxantin and violaxanthin. Total carotenoid content in mandarin juice sacs was 60 times greater than that in lemon. The allotetraploid hybrid produced all the same compounds as mandarin but at very low levels. Transgressive concentration of abscisic acid (ABA) was observed in the somatic hybrid. Real-time RT-PCR of total RNA from juice sacs was used to study expression of seven genes (CitDxs, CitPsy, CitPds, CitZds, CitLcy-b, CitChx-b, and CitZep) of the carotenoid biosynthetic pathway and two genes (CitNced1 and CitNced2) involved in abscisic acid synthesis from carotenoid. Gene expression was significantly higher for mandarin than lemon for seven of the nine genes analyzed. Lemon under expression was partially dominant in the somatic hybrid for three upstream steps of the biosynthetic pathway, particularly for CitDxs. Transgressive over expression was observed for the two CitNced genes. A limitation of the upstream steps of the pathway and a downstream higher consumption of carotenoids may explain the phenotype of the somatic hybrid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号