首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this study, autometallography and immunohistochemistry were used to localize and quantify cadmium and metallothionein (MT) levels, respectively, in cellular compartments of turbot liver on exposure to cadmium for 7 days and further depuration treatment for 14 days. Metals weakly bound to proteins (i.e. MTs) in hepatocyte lysosomes were visualized as black silver deposits (BSDs) using a light microscope. With the aid of a newly developed immunohistochemical procedure, MTs were localized and semi-quantified in both the cytosolic and the lysosomal compartments of hepatocytes. The BSD extent in the lysosomes of hepatocytes increased significantly as a result of cadmium exposure. This response was evidenced after 1h. Further, a progressive increase in the volume density of BSDs occurred up to the seventh day. Total MT immunohistochemical levels increased at a lower rate, starting after 1 day of cadmium exposure. BSD extent values recovered after depuration, whilst MT levels remain unchanged. It is possible that the detoxification rate of metals via lysosomes was diminished, whilst MT levels remained unchanged, at least after 14 days of depuration. It can be concluded that autometallography and MT immunohistochemistry are good tools for clarifying metal and metal-MT trafficking routes in hepatocytes, and also that BSD extent and MT immunohistochemical levels in the lysosomes and cytosol of fish hepatocytes can be considered to be useful biomarkers of metal exposure.  相似文献   

2.
In this study, autometallography and immunohistochemistry were used to localize and quantify cadmium and metallothionein (MT) levels, respectively, in cellular compartments of turbot liver on exposure to cadmium for 7 days and further depuration treatment for 14 days. Metals weakly bound to proteins (i.e. MTs) in hepatocyte lysosomes were visualized as black silver deposits (BSDs) using a light microscope. With the aid of a newly developed immunohistochemical procedure, MTs were localized and semi-quantified in both the cytosolic and the lysosomal compartments of hepatocytes. The BSD extent in the lysosomes of hepatocytes increased significantly as a result of cadmium exposure. This response was evidenced after 1h. Further, a progressive increase in the volume density of BSDs occurred up to the seventh day. Total MT immunohistochemical levels increased at a lower rate, starting after 1 day of cadmium exposure. BSD extent values recovered after depuration, whilst MT levels remain unchanged. It is possible that the detoxification rate of metals via lysosomes was diminished, whilst MT levels remained unchanged, at least after 14 days of depuration. It can be concluded that autometallography and MT immunohistochemistry are good tools for clarifying metal and metal-MT trafficking routes in hepatocytes, and also that BSD extent and MT immunohistochemical levels in the lysosomes and cytosol of fish hepatocytes can be considered to be useful biomarkers of metal exposure.  相似文献   

3.
A field study has been carried out to validate the measure of structural changes in the digestive lysosomal system of sentinel mussels as biomarkers of environmental stress. Previous laboratory studies demonstrated that the digestive lysosomal system of molluscs reponds to a variety of pollutants and to different stress situations by exhibiting significant changes in its structure. Mussels were collected monthly over 1 year at the Abra estuary (Bizkaia, Biscay Bay) from six sites with different degrees of pollution. The changes in the structure of the digestive lysosomes were quantified on cryostat sections of the digestive gland by means of automated image analysis. Four stereological parameters were recorded: lysosomal volume density, surface density, surface-to-volume ratio and numerical density. A seasonal pattern in the structure of the digestive lysosomes was evidenced with reduced volume, surface, size and numbers of lysosomes in winter-spring; increased volume, surface, size and numbers in summer and an intermediate situation in autumn. The structure of digestive lysosomes was also dissimilar among sites, the most significant differences being found between Plentzia (nonpolluted site) and Galea (polluted site). The digestive lysosomes of mussels collected from Galea were smaller and more abundant than in Plentzia's mussels in most sampling times. The basis of these differences are discussed to conclude that organic chemical pollution might be the cause for these specific changes which are different from the enlargement of digestive lysosomes described as a result of various sources of environmental stress. It is concluded that structural changes in the digestive lysosomes of sentinel mussels are sensitive to pollution-induced environmental stress even in the complex situation of the field where many factors may interact to affect the structure of the digestive lysosomal system.  相似文献   

4.
A method has been developed to measure the concentration of chloroquine in lysosomes isolated from the liver of rats. It employs 3H2O and [U-14C]sucrose to determine the intralysosomal water volume of purified lysosomes obtained by free flow electrophoresis. Twelve h after a single dose, the concentration of chloroquine in lysosomes was 6.3 mM and at 24 h it rose to 16.5 mM. With continued treatment, lysosomal chloroquine concentrations were 61 and 74 mM at 48 and 72 h. The lysosomal concentrations of chloroquine attained were sufficient to block intralysosomal phospholipase A1 activity. The lysosomal content of phospholipid rises 1.7-fold and 2.6-fold over that of control at 12 and 24 h, respectively. At 72 h, lysosomal phospholipid was 3.7-fold greater than that of control. Lysosomes show an increased negative surface charge with chloroquine administration which is due in part to an increased ratio of acidic to neutral phospholipids in the lysosomal membrane. The phosphatidylinositol content of lysosomes rose rapidly with chloroquine treatment and accounted for the early increase in the ratio. Bis(monoacylglycero)phosphate, an acidic phospholipid synthesized only in lysosomes, increased later in the course of chloroquine treatment and accounted for the continued increase in acidic phospholipids.  相似文献   

5.
The spectral characteristics of dextran, labeled with fluorescein, depend upon pH. We have loaded the lysosomes of mouse peritoneal macrophages with this fluorescence probe and used it to measure the intralysosomal pH under various conditions. The pH of the medium has no effect on the intralysosomal pH. Weakly basic substances in the medium cause a concentration-dependent increase in the intralysosomal pH. However, the concentration of base necessary to produce a significant change in the intralysosomal pH varies over a wide range for different bases. The active form of the base is the neutral, unprotonated form. Although most of these weak bases cause an increase in the volume of the lysosomes, increase in lysosomal volume itself causes only a minor perturbation of the intralysosomal pH. This was demonstrated in cells whose lysosomes were loaded with sucrose, and in cells vacuolated as a demonstrated in cells whose lysosomes were loaded with sucrose, and in cells vacuolated as a consequence of exposure to concanavalin A. The results of these studies are interpreted in terms of energy-dependent lysosomal acidification and leakage of protons out of the lysosomes in the form of protonated weak bases.  相似文献   

6.
Bivalve molluscs, as filter-feeding organisms, are known to accumulate metals that can produce deleterious effects on organisms. The phagocytic activity of haemocytes and lysosomal alterations in the digestive gland cells were measured in the freshwater Asian clam exposed to cadmium, in order to assess the possible use of immunocompetence and lysosomal responses as biomarkers of freshwater quality. Clams were exposed in the laboratory to nominal concentrations of 3, 10, 21.4, 46.5 and 100 µg l-1 of cadmium and sampled after 7, 15 and 30 days of exposure. The results show a decrease of phagocytic activity after only 7 days of exposure to 10 µg l-1 of cadmium. This response was also observed as the exposure time was increased. Lysosomes in the digestive cells increased in size and number after 7 days of exposure as cadmium concentration increased. After 30 days of exposure, a decrease in size and number indicated a change in the response to the metal from concentrations of 46.5 µg l-1 of cadmium. A dose and time response both in phagocytic activity of haemocytes and lysosomal structure demonstrated a possible use of these biomarkers in freshwater biomonitoring.  相似文献   

7.
Summary The marine bivalve mollusc,Mytilus edulis (blue mussel), is a noted accumulator of many environmental pollutants and is increasingly used for the chemical and biological assessment of environmental impact. The toxic effects of crude oil-derived aromatic hydrocarbons (30 g/l total hydrocarbons) on the lysosomal-vacuolar system of the digestive cells have been investigated in cryostat sections of hexane-frozen digestive glands. Exposure to aromatic hydrocarbons reduced the cytochemically determined latency of lysosomal -N-acetylhexosaminidase; lysosomal volume density and surface density increased while the numerical density decreased. Experimental exposure resulted in the formation of very large lysosomes which are believed to be largely autophagic in function and these results indicate a significant structural and functional disturbance of digestive cell lysosomes in response to hydrocarbons.  相似文献   

8.
The localization, expression, and transport of two lysosomal integral membrane glycoproteins of human cells, hLAMP-1 and hLAMP-2, have been studied in mucolipidosis II (I-cell disease) fibroblasts. These cells are deficient in N-acetylglucosaminylphosphotransferase, one of the enzymes required for addition of the mannose 6-phosphate recognition signal to newly synthesized lysosomal hydrolases and a prerequisite for the sorting and transport of the hydrolases to lysosomes. I-cells analyzed by immunofluorescence microscopy with monoclonal antibodies against hLAMP-1 and hLAMP-2 showed intense staining of the inclusion bodies covering most of the cytoplasm of the cells. Immunoelectron microscopy confirmed this localization and showed that the hLAMP-positive vesicles commonly contained membrane structures or electron-dense homogeneous material characteristic of secondary lysosomes. Studies of the biosynthesis of hLAMP-2 in I-cells pulse-labeled with [35S]methionine indicated that the molecule is glycosylated in the Golgi system, is transported to vesicles with the high density characteristic of lysosomes, and has chemical properties similar to those of the glycoprotein synthesized in normal cells. The concentration of the hLAMP-2 glycoprotein was three- to fourfold greater than that in normal fibroblasts, in sharp contrast to the reduced levels of lysosomal hydrolases seen in I-cells. These experiments demonstrate that the inclusion bodies in I-cells have properties of secondary lysosomes and that the transport and targeting of the lysosomal membrane glycoproteins to the inclusion bodies of these cells is not coupled to the mannose 6-phosphate system for transporting soluble acid hydrolases.  相似文献   

9.
Lipofuscin accumulates with age within secondary lysosomes of retinal pigment epithelial (RPE) cells of humans and many animals. The autofluorescent lipofuscin pigment has an excitation maximum within the range of visible blue light, while it is emitting in the yellow-orange area. This physico-chemical property of the pigment indicates that it may have a photo-oxidative capacity and, consequently, then should destabilize lysosomal membranes of blue-light exposed RPE. To test this hypothesis, being of relevance to the understanding of age-related macular degeneration, cultures of heavily lipofuscin-loaded RPE cells were blue-light–irradiated and compared with respect to lysosomal stability and cell viability to relevant controls. To rapidly convert primary cultures of RPE, obtained from neonatal rabbits, into aged, lipofuscin-loaded cells, they were allowed to phagocytize artificial lipofuscin that was prepared from outer segments of bovine rods and cones. Following blue-light irradiation, lysosomal membrane stability was measured by vital staining with the lysosomotropic weak base, and metachromatic fluorochrome, acridine orange (AO). Quantifying red (high AO concentration within intact lysosomes with preserved proton gradient over their membranes) and green fluorescence (low AO concentration in nuclei, damaged lysosomes with decreased or lost proton gradients, and in the cytosol) allowed an estimation of the lysosomal membrane stability after blue-light irradiation. Cellular viability was estimated with the delayed trypan blue dye exclusion test. Lipofuscin-loaded blue-light–exposed RPE cells showed a considerably enhanced loss of both lysosomal stability and viability when compared to control cells. It is concluded that the accumulation of lipofuscin within secondary lysosomes of RPE sensitizes these cells to blue light by inducing photo-oxidative alterations of their lysosomal membranes resulting in a presumed leakage of lysosomal contents to the cytosol with ensuing cellular degeneration of apoptotic type. The suggested mechanism may have bearings on the development of age-related macular degeneration. © 1997 Elsevier Science Inc.  相似文献   

10.
Abstract

Bivalve molluscs, as filter-feeding organisms, are known to accumulate metals that can produce deleterious effects on organisms. The phagocytic activity of haemocytes and lysosomal alterations in the digestive gland cells were measured in the freshwater Asian clam exposed to cadmium, in order to assess the possible use of immunocompetence and lysosomal responses as biomarkers of freshwater quality. Clams were exposed in the laboratory to nominal concentrations of 3, 10, 21.4, 46.5 and 100 µg l?1 of cadmium and sampled after 7, 15 and 30 days of exposure. The results show a decrease of phagocytic activity after only 7 days of exposure to 10 µg l?1 of cadmium. This response was also observed as the exposure time was increased. Lysosomes in the digestive cells increased in size and number after 7 days of exposure as cadmium concentration increased. After 30 days of exposure, a decrease in size and number indicated a change in the response to the metal from concentrations of 46.5 µg l?1 of cadmium. A dose and time response both in phagocytic activity of haemocytes and lysosomal structure demonstrated a possible use of these biomarkers in freshwater biomonitoring.  相似文献   

11.
Leishmania amastigotes lodge and multiply within parasitophorous vacuoles, which can fuse with secondary lysosomes of the host macrophages. This study examines the effect of infection with amastigotes of L. mexicana amazonensis on the secondary lysosomes of mouse macrophage cultures. The cultures were stained for the activities of two lysosomal enzyme markers, acid phosphatase and arylsulfatase, and the light microscopic observations were supplemented by electron microscopy. Nearly all noninfected macrophages contained numerous stained secondary lysosomes. The number of such lysosomes was markedly reduced 24 h postinfection, and the reduction persisted for at least 10 days. Stained secondary lysosomes reappeared after the amastigotes were destroyed by exposure of the cultures to phenazine methosulfate or by placing them at 37.5 degrees C. The depletion of lysosomes shown by cytochemical methods may reflect a high rate of fusion of the lysosomes with the parasitophorous vacuoles, exceeding the rate of formation of new secondary lysosomes. Alternatively, the parasites may inhibit the synthesis of lysosomal hydrolases, or the assembly or formation of primary or secondary lysosomes.  相似文献   

12.
SUMMARY. The accumulation of cadmium from an experimental medium by the freshwater amphipod Gammarus pulex is described.
Much of the uptake is internal as opposed to adsorption on the body surface, and after an apparent saturation of the exoskeleton the hepatopancreas becomes an increasingly important site of cadmium storage. The haemolymph cadmium concentration reaches a high level compared with marine crustaceans, achieving a concentration factor (ratio of internal Cd/ external Cd) of 100 after about 60 h uptake.
The cadmium uptake process is severely inhibited after exposure of experimental animals to 0.5 mM 2:4 Dinitrophenol, indicating the mediation of an active process. This fact together with the negative relationship between cadmium uptake rate and the calcium concentration of the animal suggests that cadmium accumulation by this species may be at least partially accounted for by a process of 'accidental' active cadmium uptake, with cadmium substituting for calcium on a calcium regulatory mechanism.
As yet it has not been possible to establish a true stoichiometric relationship between the two metals. Although calcium influx and cadmium uptake (influx) rates are similar over a wide range of external concentrations, calcium influx is clearly inhibited by a low external ratio of cadmium to calcium. This indicates that the relationship between the two metals is far from an equimolar one and the possibility of non-competitive inhibition of calcium influx by cadmium cannot be eliminated.  相似文献   

13.
Cadmium is a ubiquitous environmental metal contaminant with an affinity for biological membranes; it can enter cells by facilitated transport and it binds therein to various biomolecules and affects membrane system function. The relationship between cadmium exposure, dose and response was investigated in the benthic, deposit feeding, marine bivalve Tellina deltoidalis, using 28 day microcosm spiked cadmium exposures. Tissue cadmium reached steady state with the exposure concentration. Half the accumulated cadmium was detoxified and with increased exposure more was converted into metal rich granules. Most biologically active cadmium was in the mitochondrial fraction, with up to 7320-fold cadmium increases in exposed organisms. Cadmium exposed T. deltoidalis generally had reduced glutathione peroxidase enzyme activity. An increase in total glutathione concentrations, due to a build up of oxidised glutathione, was indicated by the reduced to oxidised glutathione ratio. All cadmium exposed T. deltoidalis had reduced total antioxidant capacity that corresponded with increased lipid peroxidation, lysosomal destabilisation and micronuclei frequency. Clear exposure-dose-response relationships have been demonstrated for T. deltoidalis exposed to cadmium-spiked sediments, supporting this organism's suitability for laboratory or in situ evaluation of sediment cadmium toxicity.  相似文献   

14.
HRP-anti LGP107Fab' and 125I-anti LGP107IgG were used as probes to study the movement of LGP107 in the endocytic membrane transport system in primary cultured hepatocytes of rats. Following the addition of HRP-anti LGP107Fab' to the culture medium, the transfer of the antibody conjugate from the cell surface of lysosomes was examined by cell fractionation on Percoll density gradients. The HRP tracer showed a bimodal subcellular distribution, in plasma membrane and lysosomal fractions. The amount of HRP found in the lysosomal fractions became larger as the period of cell incubation was increased. The rate of HRP accumulation in lysosomes was 0.13% of the administered load per hour per 10(6) cells. When cells were given 125I-anti LGP107 IgG, the antibody was not stored but was rapidly degraded in the lysosomes. The uptake of 125I-IgG by the cells, which was assessed by measuring the TCA-soluble radiolabeled degradation products released into the medium, increased proportionally to the administered concentration of the antibody and to the incubation time. The rate of uptake of the polyvalent 125I-IgG was comparable to that for the uptake of the monovalent HRP-Fab', and remained unchanged even after long exposure of the cells to a saturating concentration of the polyvalent IgG. This uptake process continued for many hours in the cells exposed to the protein synthesis inhibitor, cycloheximide. These results suggest that there is a continuous circulation of LGP107 between the cell surface and lysosomes in hepatocytes.  相似文献   

15.
Membrane flow during pinocytosis. A stereologic analysis   总被引:103,自引:55,他引:48       下载免费PDF全文
HRP has been used as a cytochemical marker for a sterelogic analysis of pinocytic vesicles and secondary lysosomes in cultivated macrophages and L cells. Evidence is presented that the diaminobenzidine technique (a) detects all vaculoes containing encyme and (b) distinguishes between incoming pinocytic vesicles and those which have fused with pre-existing lysosomes to form secondary lososomes. The HRP reactive pinocytic vesicle spaces fills completely within 5 min after exposure to enzyme, while the secondary lysosome compartment is saturated in 45--60 min. The size distribution of sectioned (profile) vaculoe diameters was measured at equilibrium and converted to actual (spherical) dimensions using a technique modified from Dr. S. D. Wicksell. The most important findings in this study have to do with the rate at which pinocytosed fluid and surface membrane move into the cell and on their subsequent fate. Each minute macrophages form at least 125 pinocytic vesicles having a fractional vol of 0.43% of the cell's volume and a fractional area of 3.1% of the cell's surface area. The fractional volume and surface area flux rates for L cells were 0.05% and 0.8% per minute respectively. Macrophages and L cells thus interiorize the equivalent of their cell surface area every 33 and 125 min. During a 3-period, the size of the secondary lysosome compartment remains constant and represents 2.5% of the cell volume and 18% of the surface area. Each hour, therefore, the volume and surface area of incoming vesicles is 10 times greater than the dimensions of the secondary lysosomes in both macrophages and L cells. This implies a rapid reduction in vesicle size during the formation of the secondary lysosome and the egress of pinocytosed fluid from the vacuole and the cell. In addition, we postulate that membrane components of the vacuole are subsequently recycled back to the cell surface.  相似文献   

16.
Summary The crinophagic and autophagic lysosomal systems were studied in mammotropes (prolactin secreting cells) of the adenohypophysis throughout the estrous cycle of the rat. By means of morphometric analysis, it was found that the volume of secondary autophagic lysosomes was usually greater than that of the crinophagic type. Although the volumes of both secondary autophagic and crinophagic lysosomes were minimal throughout proestrus and diestrus 2, the autophagic lysosomal volume per mammotrope was elevated during the estrous period. The volume of secondary crinophagic lysosomes per mammotrope increased during late estrus and remained elevated throughout early diestrus 1. Furthermore, there was an inverse relationship between the volume of mature secretory granules per cell and of the crinophagic system. These data suggest a role for lysosomes in the regulation of synthesis and secretion of prolactin by the adenohypophysis of the rat.Supported by grant HD 11571 from the National Institutes of Health  相似文献   

17.
A novel technique involving the Percoll density gradient and 0.01M phosphate buffer has been employed for the first time on aortic tissue for isolation of lysosomes. The purity of the lysosomes has been established by marker-enzymes, acid phosphatase and N-acetyl-beta-D-glucosaminidase and latent activities of lysosomal hydrolases. The heavier fraction (density 1.08) obtained after Percoll density gradient centrifugation showed high specific activities of lysosomal hydrolases and these enzymes were markedly latent. Moreover this heavier (lysosome rich) fraction has been noted to be free of other sub-cellular contaminants.  相似文献   

18.
The marine environment is subjected to contamination by a complex mixture of metals from various anthropogenic sources. Measuring the biological responses of organisms to a complex mixture of metals allows for examination of metal-specific responses in an environmentally realistic exposure scenario. To address this issue, the sea anemone, Aiptasia pallida was exposed to a control and a metal mixture (copper, zinc, nickel, and cadmium) at three exposure levels (10, 50, and 100 μg/L) for 7 days. Anemones were then transferred to metal-free seawater for an additional 7 days after the metal exposure to assess metal depuration and recovery. Metal accumulation, activity of the enzymes catalase, glutathione reductase, and carbonic anhydrase, as well as, cell density of the symbiotic zooxanthellae were measured over 14 days. Metal accumulation in A. pallida occurred in a concentration dependent manner over the 7-day exposure period. Altered enzyme activity and tentacle retraction of the host, as well as decreased zooxanthellae cell density were observed responses over the 7 days, after exposure to a metal concentration as low as 10 μg/L. Metal depuration and physiological recovery were dependent on both the metal and the exposure concentration. Understanding how A. pallida and their symbionts are affected by metal exposures in the laboratory may allow better understanding about the responses of symbiotic cnidarians in metal polluted aquatic environments.  相似文献   

19.
The combined use of ultrastructural morphometry and X-ray microanalysis in conjunction with biochemical analysis is one approach to elucidating mechanisms of metal nephrotoxicity at the cellular level. Ultrastructural morphometry conducted on proximal tubule cells of rats exposed to low levels of methyl mercury for prolonged periods of time showed statistically significant increases in the volume densities of the lysosomal and mitochondrial compartments. These findings were associated with marked changes in lysosomal marker enzymes and mitochondrial heme biosynthesis enzymes leading to the detection of a renal porphyrinuria that occurred before changes in standard tests of renal function. Ultrastructural morphometry, X-ray microanalysis, and biochemical studies of the low-molecular-weight tubular proteinuria produced by injection of cadmium metallothionein (CdMT) showed a rapid proximal tubule cell lysosome uptake and degradation of the CdMT complex, which led to a subsequent decrease in the numerical density (Nv) and average diameter of lysosomes and to an increase in the Nv of apical pinocytolic vesicles with time. The data indicate disruption of the normal primary lysosome-pinocytolic vesicle fusion process and related development of tubular proteinuria. Ultrastructural techniques may provide information useful in elucidating mechanisms of ongoing metal-induced nephrotoxic processes when consideration is given to sampling strategies for morphometric analysis and the inherent detection limits, elemental volatility, translocation effects, and limitations of quantification for X-ray microanalysis in soft biological tissues.  相似文献   

20.
Acid phosphatase activity, a lysosomal marker, is commonly demonstrated using the Gomori technique with cytidine 5'-monophosphate or beta-glycerophosphate as substrate. Using this lead capture method on mouse and rat exorbital lacrimal, parotid, and pancreatic acinar cells, reaction product was localized in GERL, forming secretory granules, and secondary lysosomes. However, a different cytochemical localization was observed for inorganic trimetaphosphatase, another lysosomal enzyme. When the technique for trimetaphosphatase activity, a metal chelation method, was applied to exocrine acinar cells, reaction produce was conspicuously absent from GERL and forming secretory granules, but was present in secondary lysosomes, occasionally in Golgi saccules, and in previously unreported basal elongated lysosomes. The differences in the localization of the two enzymatic activities emphasizes the importance of employing more than one substrate where possible, and raises questions concerning the mechanism of delivery of acid hydrolases to secondary lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号