首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The major metabolites of 3,5-di-tert.-butyl-4-hydroxytoluene (BHT) in the rat are 3,5-di-tert.-butyl-4-hydroxybenzoic acid (BHT-acid), both free (9% of the dose) and as a glucuronide (15%), and S-(3,5-di-tert.-butyl-4-hydroxybenzyl)-N-acetylcysteine. 2. The mercapturic acid does not appear to derive from the usually accepted enzyme mechanism, and may involve a non-enzymic reaction between BHT free radical and cysteine. 3. The ester glucuronide and mercapturic acid found in rat urine are also the major metabolites in rat bile and must be responsible for the enterohepatic circulation. 4. Free BHT-acid is the main component in rat faeces. 5. In man, BHT-acid, free and conjugated, is a minor component in urine, and the mercapturic acid is virtually absent. The bulk of the radioactivity is excreted as the ether-insoluble glucuronide of a metabolite in which the ring methyl group and one tert.-butyl methyl group are oxidized to carboxyl groups, and a methyl group on the other tert.-butyl group is also oxidized, probably to an aldehyde group. 6. These differences in metabolism by the rat and by man are sufficient to account for the difference in excretion by the two species.  相似文献   

2.
1. A single oral dose of [(14)C]Ionox 100 to rats is almost entirely eliminated in 11 days: 89.1-107.2% of the (14)C is excreted and 0.29+/-0.02% of the dose is present in the carcass plus viscera after removal of the gut. Rats exhibit an individual variation in the elimination pattern, 15.6-70.8% of (14)C being excreted in the urine and 75.2-27.0% in the faeces during 11 days. 2. After the oral administration of [(14)C]Ionox 100 to dogs, 87.1-90.3% of the (14)C is excreted in the faeces and urine during 4 days. 3. Dogs and rats do not show a species difference in this pattern of elimination. 4. The rate of elimination from dogs and rats given a single dose of Ionox 100 is not affected by the size of the dose and the presence of triglyceride fat in the diet. 5. Ionox 100 is completely metabolized in dogs and rats: unchanged Ionox 100 is absent from the urine and faeces, and from the carcass when elimination is complete. In rats, 3,5-di-tert.-butyl-4-hydroxybenzoic acid accounts for 50-85% of a dose of Ionox 100 and (3,5-di-tert.-butyl-4-hydroxybenzoyl beta-d-glucopyranosid)uronic acid for 47-10%; in dogs, the unconjugated acid accounts for 85% and the ester glucuronide for 10-12%. 3,5-Di-tert.-butyl-4-hydroxyhippuric acid is not formed. Other metabolites, which have been detected in small quantity in the faeces and urine of animals dosed with Ionox 100, have not been identified. 6. 3,5-Di-tert.-butyl-4-hydroxybenzoic acid and (3,5-di-tert.-butyl-4-hydroxybenzoyl beta-d-glucopyranosid)uronic acid are also the major metabolites of Ionol (2,6-di-tert.-butyl-p-cresol) in rats. 7. The elimination of Ionox 100 metabolites from rats is faster than that of Ionol and its metabolites. Unlike Ionol, unchanged Ionox 100 could not be detected in the bodies of these animals.  相似文献   

3.
1. Up to one-third of a single oral dose of Ionox 201 was absorbed in rats. 2. In rats dosed with [(14)C]Ionox 201 86.8-97.2% of the label is excreted in the faeces in 24 days (much of this is eliminated in the first 4 days after dosage), 5.6% in the urine and not more than 0.8% in the exhaled air; 5.0% of (14)C is present in the carcass and viscera after removal of the gut, and most of this is in the fatty tissues. 3. About 65.0% of (14)C in the faeces is due to unchanged antioxidant, 30.0% to 3,5-di-tert.-butyl-4-hydroxybenzoic acid, 3.5% to unidentified polar constituent(s), 1.4% to 3,5-di-tert.-butyl-4-hydroxybenzaldehyde and 0.1% to 3,3',5,5'-tetra-tert.-butyl-4-,4'-stilbenequinone. A variable proportion of (14)C in the urine is due to 3,5-di-tert.-butyl-4-hydroxybenzoic acid (40-60%) and the remainder (60-40%) to the ester glucuronide, when the animals were treated with different doses of antioxidant. In eight individual animals dosed with 6.78mg. of [(14)C]Ionox 201, one-third of (14)C in the bile is due to the free acid, 45% to the ester glucuronide, 20% to an unidentified constituent and 2% to unchanged antioxidant, and, in two animals dosed with 13.56mg., there is a small proportion of free acid and a larger proportion of ester glucuronide. About 80% of (14)C in the body fat is due to unchanged antioxidant, 19% to the free acid and 1% to 3,5-di-tert.-butyl-4-hydroxybenzaldehyde. 4. At least 36.2% of a single oral dose of Ionox 201 is metabolized: 3,5-di-tert.-butyl-4-hydroxybenzoic acid accounts for 30.2% of a dose, (3,5-di-tert.-butyl-4-hydroxybenzoyl beta-d-glucopyranosid)uronic acid for 1.4%, 3,5-di-tert.-butyl-4-hydroxybenzaldehyde for 1.3%, 3,3',5,5'-tetra-tert.-butyl-4,4'-stilbenequinone for 0.1% and unidentified polar metabolite(s) for 3.2%. 5. The metabolism of Ionox 201 in vivo is closely related to its antioxidant action in vitro.  相似文献   

4.
5.
6.
7.
1. A large proportion of a single oral dose of [(14)C]Ionox 220 to rats is eliminated in 24 days: 89.3-97.4% of the label is excreted in the faeces (much of this is eliminated in the first 4 days after dosage), 1% in the urine and less than 0.1% in the expired gases; 4.06% of (14)C is present in the carcass and viscera after removal of the gut, and most of this is in the fatty tissues. 2. About 87% of (14)C in the faeces is due to unchanged antioxidant, 5% to the quinone methide, 5% to the free acid and 3% to an unidentified polar constituent. Three-fifths of (14)C in the urine is due to 3,5-di-tert.-butyl-4-hydroxybenzoic acid and the remainder to the ester glucuronide. In three individual animals, one-half of (14)C in the bile is due to the free acid, one-quarter to the ester glucuronide and the remainder to unchanged antioxidant, whereas in another all of (14)C in the bile is due to Ionox 220. About 97% of (14)C in the body fat is due to unchanged antioxidant and the remainder to the free acid. 3. Up to 20% of a single oral dose of Ionox 220 is absorbed in rats: 13-14% is metabolized. 3,5-Di-tert.-butyl-4-hydroxybenzoic acid accounts for just over 5% of a dose of Ionox 220, 3,5-di-tert.-butyl-4-hydroxybenzoyl-beta-d-glucopyranosiduronic acid for less than 0.4%, the quinone methide for just over 5% and an unidentified compound for less than 3%. 4. The physiological and biochemical implications of ingesting Ionox 220 are discussed.  相似文献   

8.
J C Eads  M Beeby  G Scapin  T W Yu  H G Floss 《Biochemistry》1999,38(31):9840-9849
The biosynthesis of ansamycin antibiotics, including rifamycin B, involves the synthesis of an aromatic precursor, 3-amino-5-hydroxybenzoic acid (AHBA), which serves as starter for the assembly of the antibiotics' polyketide backbone. The terminal enzyme of AHBA formation, AHBA synthase, is a dimeric, pyridoxal 5'-phosphate (PLP) dependent enzyme with pronounced sequence homology to a number of PLP enzymes involved in the biosynthesis of antibiotic sugar moieties. The structure of AHBA synthase from Amycolatopsis mediterranei has been determined to 2.0 A resolution, with bound cofactor, PLP, and in a complex with PLP and an inhibitor (gabaculine). The overall fold of AHBA synthase is similar to that of the aspartate aminotransferase family of PLP-dependent enzymes, with a large domain containing a seven-stranded beta-sheet surrounded by alpha-helices and a smaller domain consisting of a four-stranded antiparallel beta-sheet and four alpha-helices. The uninhibited form of the enzyme shows the cofactor covalently linked to Lys188 in an internal aldimine linkage. On binding the inhibitor, gabaculine, the internal aldimine linkage is broken, and a covalent bond is observed between the cofactor and inhibitor. The active site is composed of residues from two subunits of AHBA synthase, indicating that AHBA synthase is active as a dimer.  相似文献   

9.
10.
Analysis of urinary metabolites of [1, 2-3H]-aldosterone and [1, 2-3H]-3 alpha, 5 beta-tetrahydroaldosterone was performed in male rabbits. The preliminary separation of urinary metabolites was carried out by submitting these metabolites to countercurrent distribution. Further separation of each fraction thus obtained was achieved by means of DEAE-Sephadex A-25 column chromatography. The separated peak was then hydrolyzed with the enzyme and the free steroid released was identified on the basis of the mobilities of the steroid and its derivatives on paper chromatography. After the injection of [1, 2-3H]-aldosterone, a major urinary metabolite was characterized as monosulphate of 3 alpha, 5 beta-tetrahydroaldosterone. In addition, a small amount of the monoglucosiduronate fraction was found in the urine. 3 alpha, 5 beta-tetrahydroaldosterone and 3 beta, 5 alpha-tetrahydroaldosterone were detected as aglycones in this fraction. After the injection of [1, 2-3H]-3 alpha, 5 beta-tetrahydroaldosterone, a similar pattern of urinary radiometabolites was observed. The close similarity between the profile of urinary metabolites of [1, 2-3H]-aldosterone and that of [1, 2-3H]-3 alpha, 5 beta-tetrahydroaldosterone suggests that the conversion of aldosterone to 3 alpha, 5 beta-tetrahydroaldosterone is needed before the conjugation processes take place.  相似文献   

11.
12.
13.
14.
1. A multiple aromatic mutant, Escherichia coli 156:53D2, required 4-hydroxybenzoic acid for rapid aerobic growth on a number of carbon sources. 2. In the absence of 4-hydroxybenzoic acid aerobic growth was stimulated by a mixture of lysine and methionine and by succinate. The influence of the amino acids is attributed to a sparing of succinyl-CoA. 3. Low activities of both alpha-oxoglutarate dehydrogenase and fumarate reductase were found in organisms grown aerobically without 4-hydroxybenzoate and consequently both mechanisms known for the formation of succinate were impaired. 4. The low fumarate-reductase activity in these organisms was due to repression of enzyme synthesis by aeration and not to enzyme inactivation. In contrast lactate dehydrogenase and ethanol dehydrogenase were induced. This is interpreted as the appearance of alternative routes of NADH oxidation when electron transfer to oxygen is impaired. 5. The activities of the other tricarboxylic acid-cycle enzymes tested were little influenced by 4-hydroxybenzoate deficiency, although anaerobiosis resulted in a fall in activity.  相似文献   

15.
The oxidation of 3,5-di-tert.-butylphenyl N-methylcarbamate (Butacarb) has been studied in the flies Musca domestica and Lucilia sericata, grass grubs Costelytra zealandica and the mouse. In all species eleven oxidation products, which were formed by hydroxylation of the tert.-butyl groups and the N-methyl group, were detected.  相似文献   

16.
[6, 7-3H]-17beta-Estradiol-3-glucosiduronate, [6, 7-3H]-estrone-3-glucosiduronate or [6, 7-3H]-estrone was administered intravenously into the rabbit, and analysis and identification of the urinary metabolites were carried out. In either case, the major urinary metabolite was found to be a diconjugate. The sequential enzymic hydrolysis indicated that this diconjugate was glucosiduronate-N-acetyglucosaminide of 17alpha-estradiol. From these results, the conversion of the estrogen glucosiduronate into a diconjugate was thought a rather universal phenomenon in the rabbit.  相似文献   

17.
18.
19.
Benzoates are a class of natural products containing compounds of industrial and strategic importance. In plants, the compounds exist in free form and as conjugates to a wide range of other metabolites such as glucose, which can be attached to the carboxyl group or to specific hydroxyl groups on the benzene ring. These glucosylation reactions have been studied for many years, but to date only one gene encoding a benzoate glucosyltransferase has been cloned. A phylogenetic analysis of sequences in the Arabidopsis genome revealed a large multigene family of putative glycosyltransferases containing a consensus sequence typically found in enzymes transferring glucose to small molecular weight compounds such as secondary metabolites. Ninety of these sequences have now been expressed as recombinant proteins in Escherichia coli, and their in vitro catalytic activities toward benzoates have been analyzed. The data show that only 14 proteins display activity toward 2-hydroxybenzoic acid, 4-hydroxybenzoic acid, and 3,4-dihydroxybenzoic acid. Of these, only two enzymes are active toward 2-hydroxybenzoic acid, suggesting they are the Arabidopsis salicylic acid glucosyltransferases. All of the enzymes forming glucose esters with the metabolites were located in Group L of the phylogenetic tree, whereas those forming O-glucosides were dispersed among five different groups. Catalytic activities were observed toward glucosylation of the 2-, 3-, or 4-hydroxyl group on the ring. To further explore their regioselectivity, the 14 enzymes were analyzed against benzoic acid, 3-hydroxybenzoic acid, 2,3-, 2,4-, 2,5-, and 2,6-dihydroxybenzoic acid. The data showed that glycosylation of specific sites could be positively or negatively influenced by the presence of additional hydroxyl groups on the ring. This study provides new tools for biotransformation reactions in vitro and a basis for engineering benzoate metabolism in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号