首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effects of ursodeoxycholic acid (UDCA) on mitochondrial functions and oxidative stress and evaluated their relationships in the livers of rats with alloxan-induced diabetes. Diabetes was induced in male Wistar rats by a single alloxan injection (150 mg kg− 1 b.w., i.p.). UDCA (40 mg kg− 1 b.w., i.g., 30 days) was administered from the 5th day after the alloxan treatment. Mitochondrial functions were evaluated by oxygen consumption with Clark oxygen electrode using succinate, pyruvate + malate or palmitoyl carnitine as substrates and by determination of succinate dehydrogenase and NADH dehydrogenase activities. Liver mitochondria were used to measure chemiluminiscence enhanced by luminol and lucigenin, reduced liver glutathione and the end-products of lipid peroxidation. The activities of both NADH dehydrogenase and succinate dehydrogenase as well as the respiratory control (RC) value with all the substrates and the ADP/O ratio with pyruvate + malate and succinate as substrates were significantly decreased in diabetic rats. UDCA developed the beneficial effect on the mitochondrial respiration and oxidative phosphorylation parameters in alloxan-treated rats, whereas the activities of mitochondrial enzymes were increased insignificantly after the administration of UDCA. The contents of polar carbonyls and MDA as well as the chemiluminescence with luminol were elevated in liver mitochondria of diabetic rats. The treatment with UDCA normalized all the above parameters measured except the MDA content. UDCA administration prevents mitochondrial dysfunction in rats treated with alloxan and this process is closely connected with inhibition of oxidative stress by this compound.  相似文献   

2.
1. On brief exposure of rats to hypobaric conditions, the activity of hepatic mitochondrial succinate dehydrogenase was raised from the basal state to a ;partially activated state'. This was further raised to ;fully activated state' by preincubation of mitochondria with succinate, as was the activity in mitochondria from normal rats. 2. On washing mitochondria with the homogenizing sucrose medium the activity excess obtained on preincubation with succinate was lost in mitochondria from both normal and treated rats. 3. The enzyme in the ;partially activated state' from animals exposed to hypobaric conditions was stable to the washing procedure but was labilized and reverted to a low basal state of activity on freezing and thawing of the isolated mitochondria. 4. The results suggest that activation of succinate dehydrogenase under hypobaric conditions represents a conformational change leading to a stable, partially activated, form of the enzyme system: this is the first evidence of physiological modulation of this rate-limiting step in the control of the rate of oxidation of succinate.  相似文献   

3.
The influence was studied of 15-days stressing on the appearance of stable neurosis-like state of rats lines, selected by the excitability of the nervous system. Unconditioned and conditioned components of behaviour were tested: pain sensitivity, behaviour in the open field, level of "anxiety", passive and active defensive avoidance. Differential reactivity was shown of the rats lines to prolonged stressing, depending on the genetically determined level of the nervous system functional state. Interlinear differences in dynamics of the development of neurosis-like state were established.  相似文献   

4.
Transitional steady-state investigations during changes in oxygen tension under aerobic and during aerobic-anaerobic transition conditions were carried out with the aim of finding an indicator system which separates the equilibrium from the non-equilibrium state. Of the parameters used i.e. biomass formation, CO2 production, Q02, NADH oxidase, succinate dehydrogenase, phosphofructokinase, glyceraldehyde-3 phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and 2-oxoglutarate dehydrogenase, only the three enzymes requiring NADH or NADP for their function fulfilled the requirements. Biomass production and CO2 formation were useful only during the aerobic-anaerobic transition period. In each case the response was immediate and the indicator systems demonstrated that a new steady state of oxygen was always obtained after 11 h which, at the specific growth rate used, was equivalent to at least two volume replacements of the growth vessel.  相似文献   

5.
Incubation of submitochondrial particles with relatively low concentrations of ethanol (20–100 mm) or acetaldehyde (1–10 mm) produces alterations in the electron paramagnetic resonance spectra of the iron-sulfur centers in the NADH dehydrogenase segments of the respiratory chain. The iron-sulfur centers in the NADH dehydrogenase region are most sensitive to both ethanol and acetaldehyde, in comparison to the iron-sulfur centers in succinate dehydrogenase and the cytochrome b-c region. Centers N-3, 4, N-5, 6 and N-1b are affected after relatively short incubation periods (3–30 min) while center N-2 shows considerable sensitivity over somewhat longer incubations (20–90 min). The most ethanol-sensitive center in the succinate dehydrogenase region of the respiratory chain is high potential iron-sulfur protein-type center S-3. Potentiometric analysis shows that these alterations are not due to simple changes in the redox state caused by addition of dissolved oxygen. Changes in the electron paramagnetic resonance spectra can be correlated with decreased rates of oxidation of NADH and, to a lesser extent, succinate in both ethanol- and acetaldehyde-treated submitochondrial particles.  相似文献   

6.
The present study investigates the effect of aspartate and glutamate on mitochondrial function during myocardial infarction (MI) in wistar rats. Male albino wistar rats were pretreated with aspartate [100 mg(kgbody weight)(-1) day(-1)] or glutamate [100 mg(kg body weight)(-1) day(-1)] intraperitoneally for a period of 7 days. Following amino acid treatment, MI was induced in rats by subcutaneous injection of isoproterenol [200 mg(kg body weight)(-1) day(-1)] for 2 days at an interval of 24 h. Isoproterenol (ISO) induction resulting in significant (P<0.05) increase in the levels of cardiac mitochondrial lipid peroxidation with a decrease in reduced glutathione level. The activities of glutathione peroxidase and glutathione reductase were significantly (P<0.05) decreased by ISO. ISO-induction also caused significant (P<0.05) decrease in the activities of mitochondrial tricarboxylic acid cycle enzymes (malate dehydrogenase, isocitrate dehydrogenase, succinate dehydrogenase, alpha-ketoglutarate dehydrogenase) and respiratory chain enzymes (NADH dehydrogenase and cytochrome-c-oxidase). ISO significantly (P<0.05) reduced the cytochrome contents, ATP production, ADP/O ratio and oxidation of succinate in state 3/state 4 whereas significantly (P<0.05) increased NADH oxidation. Pretreatment with aspartate or glutamate significantly (P<0.05) reduced the alterations induced by ISO and maintained normal mitochondrial function. The present findings reveal the protective effect of aspartate and glutamate on cardiac mitochondrial function in myocardial infarction-induced rats.  相似文献   

7.
The rate of reduction of ferricyanide in the presence and absence of antimycin and ubiquinone-1 was measured using liver mitochondria from control and glucagon treated rats. Glucagon treatment was shown to increase electron flow from both NADH and succinate to ubiquinone, and from ubiquinone to cytochrome c. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was shown to inhibit the oxidation of glutamate + malate to a much greater extent than that of succinate or duroquinol. Spectral and kinetic studies confirmed that electron flow between NADH and ubiquinone was the primary site of action but that the interaction of the ubiquinone pool with complex 3 was also affected. The effects of various respiratory chain inhibitors on the rate of uncoupled oxidation of succinate and glutamate + malate by control and glucagon treated mitochondria were studied. The stimulation of respiration seen in the mitochondria from glucagon treated rats was maintained or increased as respiration was progressively inhibited with DCMU, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), 2-heptyl-4-hydroxyquinoline-n-oxide (HQNO) and colletotrichin, but greatly reduced when inhibition was produced with malonate or antimycin. These data were also shown to support the conclusion that glucagon treatment may cause some stimulation of electron flow through NADH dehydrogenase, succinate dehydrogenase and through the bc1 complex, probably at the point of interaction of the complexes with the ubiquinone pool. The effects of glucagon treatment on duroquinol oxidation and the inhibitor titrations could not be mimicked by increasing the matrix volume, nor totally reversed by aging of mitochondria. These are both processes that have been suggested as the means by which glucagon exerts its effects on the respiratory chain (Armston, A.E., Halestrap, A.P. and Scott, R.D., 1982, Biochim. Biophys. Acta 681, 429-439). It is concluded that an additional mechanism for regulating electron flow must exist and a change in lipid peroxidation of the inner mitochondrial membrane is suggested.  相似文献   

8.
P Padma  O H Setty 《Life sciences》1999,64(25):2411-2417
The effect of carbon tetrachloride administration on liver mitochondrial function and the protective effect of an aqueous extract of Phyllanthus fraternus were studied in rats. The following changes were observed in mitochondria due to the administration of carbon tetrachloride. 1) A decrease in the rate of respiration, respiratory control ratio and P/O ratio using glutamate and malate or succinate as substrates. 2) A decrease in the activities of NADH dehydrogenase (35%), succinate dehydrogenase (76%) and cytochrome c oxidase (51%). The rate of electron transfer through site I, site II and site III was studied independently and found to be significantly decreased. 3) A decrease in the content of cytochrome aa3 (34%). 4) A significant decrease in the levels of phospholipids particularly cardiolipin and a significant increase in the lipid peroxide level was observed. The carbon tetrachloride induced toxicity may be partly due to the lipid peroxidation and partly due to the effect on protein synthesis. Administration of rats with an aqueous extract of P. fraternus prior to carbon tetrachloride administration showed significant protection on the carbon tetrachloride induced mitochondrial dysfunction on all the parameters studied.  相似文献   

9.
The effects of hypophysectomy and subsequent administration of bovine growth hormone (0.1 IU/100 g body wt) and l-thyroxine (5 μg/100 g body wt) on respiration, energization-dependent fluorescence of 1-anilino-8-naphthalene sulfonate, NADH dehydrogenase, energy-independent nicotinamide nucleotide transhydrogenase, and succinate dehydrogenase activities were investigated in submitochondrial particles of rat liver. Hormones were injected daily for 7 days. Hypophysectomy decreased the respiratory rate with NADH or succinate and the activities of the three enzymes. Administration of growth hormone increased the respiration but showed selectivity toward NADH. Thyroxine increased the respiration more than growth hormone did with both substrates. Growth hormone increased the activities of NADH dehydrogenase and transhydrogenase whereas thyroxine increased the activity of only succinate dehydrogenase. After growth hormone treatment transhydrogenase activity was increased to about three times that of controls which may have significance in some processes mediated either directly or permissively by growth hormone. When both hormones were injected together, there was a significant decrease in the thyroxine-dependent rise in respiration on succinate as well as the growth hormone-dependent rise in enzyme activities. Fluorescence yield of 1-anilino-8-naphthalene sulfonate in unenergized submitochondrial particles remained unchanged independent of the hormonal status. Energization with succinate or NADH increased the fluorescence yield by about 2–20 times. Several parameters of energizationdependent fluorescence were decreased after hypophysectomy. In restoring these parameters, growth hormone and thyroxine showed specificity toward the energization substrate NADH and succinate, respectively. From the present results we conclude that (a) growth hormone and thyroxine regulate mitochondrial activity by affecting different segments of the respiratory chain, namely Complex I and Complex II, respectively, and (b) growth hormone and thyroxine exert moderating effects on one another.  相似文献   

10.
The components involved in the respiratory system of the euryarcheon Halobacterium salinarum were investigated by spectroscopic and polarographic techniques. Previous results about the cytochrome composition could be verified. However, under low oxygen tension, the expression of a d-type cytochrome was detected. Membranes exerted an NADH– and succinate–cytochrome-c oxidoreductase as well as an NADH and succinate oxidase activity. These activities could be blocked by the following inhibitors: 7-jodocarboxylic acid, giving evidence for the presence of a type II NADH dehydrogenase, antimycin A, and myxothiazol, indicating the presence of a complex III analog, and the typical succinate dehydrogenase (SDH) and terminal oxidase inhibitors. Complex I inhibitors like rotenone and annonine were inactive, clearly excluding the presence of a coupled NADH dehydrogenase. In addition, no [Fe-S] resonances in the region of the NADH dehydrogenase (NDH) clusters could be observed after NADH addition. One of the terminal oxidases could be shown to act as a cytochrome-c oxidase with a K m value of 37 M and an activation energy of 23.7 kJ/mol. The relative molecular mass of the endogenous c-type cytochrome could be determined as 14.1 kD. The complex III analog could be enriched after detergent extraction with Triton X-100 and hydroxylapatite (HTP) chromatography. The partially purified complex contained a Rieske iron–sulfur cluster, b- and c-type cytochromes, and was catalytically active in the decylubiquinone–cytochrome-c oxidoreductase assay.  相似文献   

11.
Growth of Mycobacterium phlei under low oxygen tension resulted in specific activities two to twenty times lower for formate dehydrogenase, malate dehydrogenase, beta-hydroxybutyrate dehydrogenase, lactate oxidase and NADH dehydrogenase than when cultures were grown under high aeration. An increase in fumarate reductase and succinate dehydrogenase occurred with M. phlei grown under low oxygen tension. Malate: vitamin K dehydrogenase and glucose-6-phosphate dehydrogenase activity were not significantly affected by the oxygen tension used to grow the bacteria, and neither culture contained a lactate dehydrogenase. With growth of M. phlei in conditions of low oxygen tension, cytochrome a was not detected, but cytochrome b was prominent in membranes and cytochrome c was present in the soluble fraction.  相似文献   

12.
Respiration in cyanobacterial thylakoid membranes is interwoven with photosynthetic processes. We have constructed a range of mutants that are impaired in several combinations of respiratory and photosynthetic electron transport complexes and have examined the relative effects on the redox state of the plastoquinone (PQ) pool by using a quinone electrode. Succinate dehydrogenase has a major effect on the PQ redox poise, as mutants lacking this enzyme showed a much more oxidized PQ pool. Mutants lacking type I and II NAD(P)H dehydrogenases also had more oxidized PQ pools. However, in the mutant lacking type I NADPH dehydrogenase, succinate was essentially absent and effective respiratory electron donation to the PQ pool could be established after addition of 1 mM succinate. Therefore, lack of the type I NADPH dehydrogenase had an indirect effect on the PQ pool redox state. The electron donation capacity of succinate dehydrogenase was found to be an order of magnitude larger than that of type I and II NAD(P)H dehydrogenases. The reason for the oxidized PQ pool upon inactivation of type II NADH dehydrogenase may be related to the facts that the NAD pool in the cell is much smaller than that of NADP and that the NAD pool is fully reduced in the mutant without type II NADH dehydrogenase, thus causing regulatory inhibition. The results indicate that succinate dehydrogenase is the main respiratory electron transfer pathway into the PQ pool and that type I and II NAD(P)H dehydrogenases regulate the reduction level of NADP and NAD, which, in turn, affects respiratory electron flow through succinate dehydrogenase.  相似文献   

13.
Studies of respiration on glucose in procyclic Trypanosoma congolense in the presence of rotenone, antimycin, cyanide, salicylhydroxamic acid and malonate have indicated the presence of NADH dehydrogenase, cytochrome b-c1, cytochrome aa3, trypanosome alternate oxidase and NADH fumarate reductase/succinate dehydrogenase pathway that contributes electrons to coenzyme Q of the respiratory chain. The rotenone sensitive NADH dehydrogenase, the trypanosome alternate oxidase, and cytochrome aa3 accounted for 24.5 +/- 6.5, 36.2 +/- 4.2 and 54.1 +/- 5.5% respectively of the total respiration. Activities of lactate dehydrogenase, NAD(+)-linked malic enzyme and pyruvate kinase were less than 6 nanomoles/min/mg protein suggesting that they play a minor role in energy metabolism of the parasite. Phosphoenolpyruvate carboxykinase, pyruvate dehydrogenase, succinate dehydrogenase, NADP(+)-linked malic enzyme, NADH fumarate reductase, malate dehydrogenase, and alpha-ketoglutarate dehydrogenase and glycerol kinase on the other hand had specific activities greater than 60 nanomoles/min/mg protein. These enzyme activities could account for the production of pyruvate, acetate, succinate and glycerol. The results further show that the amount of glycerol produced was 35-48% of the combined total of pyruvate, acetate and succinate produced. It is apparent that some of the glycerol 3-phosphate produced in glycolysis in the presence of salicylhydroxamic acid is dephosphorylated to form glycerol while the rest is oxidised via cytochrome aa3 to form acetate, succinate and pyruvate.  相似文献   

14.
Neurofibromin loss drives neoplastic growth and a rewiring of mitochondrial metabolism. Here we report that neurofibromin ablation dampens expression and activity of NADH dehydrogenase, the respiratory chain complex I, in an ERK-dependent fashion, decreasing both respiration and intracellular NAD+. Expression of the alternative NADH dehydrogenase NDI1 raises NAD+/NADH ratio, enhances the activity of the NAD+-dependent deacetylase SIRT3 and interferes with tumorigenicity in neurofibromin-deficient cells. The antineoplastic effect of NDI1 is mimicked by administration of NAD+ precursors or by rising expression of the NAD+ deacetylase SIRT3 and is synergistic with ablation of the mitochondrial chaperone TRAP1, which augments succinate dehydrogenase activity further contributing to block pro-neoplastic metabolic changes. These findings shed light on bioenergetic adaptations of tumors lacking neurofibromin, linking complex I inhibition to mitochondrial NAD+/NADH unbalance and SIRT3 inhibition, as well as to down-regulation of succinate dehydrogenase. This metabolic rewiring could unveil attractive therapeutic targets for neoplasms related to neurofibromin loss.Subject terms: Cancer metabolism, Cell biology  相似文献   

15.
X-band electron-paramagnetic-resonance spectroscopy at 4.2--77K combined with measurements of oxidation-reduction potential was used to identify iron--sulphur centres in Arum maculatum (cuckoo-pint) mitochondria. In the oxidized state a signal with a derivative maximum at g = 2.02 was assigned to succinate dehydrogenase centre S-3. Unreduced particles showed additional signals at g = 2.04 and 1.98 (at 9.2 GHz), which may be due to a spin-spin interaction. In the reduced state a prominent signal at g = 1.93 and 2.02 was resolved into at least three components that could be assigned to centres S-1 and S-2 of succinate dehydrogenase (midpoint potentials -7 and -240 mV respectively at pH 7.2) and a small amount of centre N-1b (e'o= -240 mV) of NADH-ubiquinone reductase. In addition, changes in line shape around -10 mV indicated the presence of a fourth component in this signal. The latter was more readily reduced by NADH than by succinate, suggesting that it might be associated with the external NADH dehydrogenase. The iron-sulphur centres of NADH-ubiquinone reductase were present in an unusually low concentration, indicating that the alternative, non-phosphorylating, NADH dehydrogenase containing a low number of iron-sulphur centres may be responsible for most of the high rate of oxidation of NADH.  相似文献   

16.
1. The midpoint potentials of the various iron-sulphur centres in Site I were determined at different pH values by the technique of redox potentiometry. An interesting feature is the pH-dependence of Centre N-2, the highest potential component of the NADH dehydrogenase segment of the respiratory chain. 2. The apparent midpoint potentials of Centre N-2 (NADH dehydrogenase) and S-1 (succinate dehydrogenase) and their pH-dependence was also determined by using the succinate/fumarate couple. Again Centre N-2 is pH-dependent in midpoint potential, and Centre S-1 is not. The results obtained by titrating with the succinate/fumarate couple are in quantitative agreement with those obtained for these centres by redox potentiometry. 3. Oxidation-reduction titrations of iron-sulphur centres with the couple NADH/NAD+ and an analogue APADH/APAD+ in the presence of rotenone gave results substantially different from those obtained by redox potentiometry; these differences may be due to the mechanism of action of NADH dehydrogenase and its specific interaction with NADH. 5. The addition of ATP to an NAD+/NADH-poised system induces an uncoupler-sensitive oxidation of Centre N-4.  相似文献   

17.
The reversible, membrane-associated transhydrogenase that catalyzes hydride-ion transfer between NADP(H) and NAD(H) was evaluated and compared to the corresponding NADH oxidase and succinate dehydrogenase activities in midgut and fat body mitochondria from fifth larval instar Manduca sexta. The developmentally significant NADPH-forming transhydrogenation occurs as a nonenergy- or energy-linked activity with energy for the latter derived from either electron transport-dependent NADH or succinate utilization, or ATP hydrolysis by Mg++-dependent ATPase. In general, the plant flavonoids examined (chyrsin, juglone, morine, quercetin, and myricetin) affected all reactions in a dose-dependent fashion. Differences in the responses to the flavonoids were apparent, with the most notable being inhibition of midgut, but stimulation of fat body transhydrogenase by morin, and myricetin as also noted for NADH oxidase and succinate dehydrogenase. Although quercetin inhibited or stimulated transhydrogenase activity depending on the origin of mitochondria, it was without effect on either midgut or fat body NADH oxidase or succinate dehydrogenase. Observed sonication-dependent increases in flavonoid inhibition may well reflect an alteration in membrane configuration, resulting in increased exposure of the enzyme systems to the flavonoids. The effects of flavonoids on the transhydrogenation, NADH oxidase, and succinate dehydrogenase reactions suggest that compounds of this nature may prove valuable in the control of insect populations by affecting these mitochondrial enzyme components.  相似文献   

18.
There are several reports on the oxidation of external NADH by an exogenous NADH dehydrogenase in the outer leaflet of the inner membrane of rat heart mitochondria. Until now, however, little was known about its physiological role in cellular metabolism. The present work shows that carvedilol (?1-[carbazolyl-(4)-oxy]-3-[2-methoxyphenoxyethyl)amino]-pro - panol-(2)?) is a specific inhibitor of an exogenous NADH dehydrogenase in rat heart mitochondria. Carvedilol does not affect oxygen consumption linked to the oxidation of succinate and internal NADH. It is also demonstrated that the inhibition of exogenous NADH dehydrogenase by carvedilol is accompanied by the inhibition of alkalinization of the external medium. In contrast to the addition of glutamate/malate or succinate, exogenous NADH does not generate a membrane potential in rat heart mitochondria, as observed with a TPP(+) electrode. It is also demonstrated that the oxygen consumption linked to NADH oxidation is not due to permeabilized mitochondria, but to actual oxidase activity in the inner membrane. The enzyme has a K(m) for NADH of 13 microM. Carvedilol is a noncompetitive inhibitor of this external NADH dehydrogenase with a K(i) of 15 microM. Carvedilol is the first inhibitor described to this organospecific enzyme. Since this enzyme was demonstrated to play a key role in the cardiotoxicity of anticancer drugs of the anthracycline family (e.g., adriamycin), we may suggest that the administration of carvedilol to tumor patients treated with adriamycin might be of great help in the prevention of the cardioselective toxicity of this antibiotic.  相似文献   

19.
Palmitylcarnitine oxidation by isolated liver mitochondria has been used to investigate the interaction of fatty acid oxidation with malate, glutamate, succinate, and the malate-aspartate shuttle. Mitochondria preincubated with fluorocitrate were added to a medium containing 2mM ATP and ATPase. This system, characterized by a high energy change, allowed titration of respiration to any desired rate between States 4 and 3 (Chance, B., and Williams, G. R. (1956) Adv. Enzymol. Relat. Areas Mol. Biol. 17, 65-134). When respiration (reference, with palmitylcarnitine and malate as substrates) was set at 75% of State 3, the oxidation of palmitylcarnitine was limited by acetoacetate formation. The addition of malate or glutamate approximately doubled the rate of beta oxidation. Malate circumvented this limitation by citrate formation, but the effect of glutamate apparently was due to enhancement of the capacity for ketogenesis. The rate of beta oxidation was curtailed when malate and glutamate were both present. This curtailment was more pronounced when the malate-aspartate shuttle was fully reconstituted. Among the oxidizable substrates examined, succinate was most effective in inhibiting palmitylcarnitine oxidation. Mitochondrial NADH/NAD+ ratios were correlated positively with suppression of beta oxidation. The degree of suppression of beta oxidation by the malate-aspartate shuttle (NADH oxidation) or by succinate oxidation was dependent on the respiratory state. Both substrates extensively reduced mitochondrial NAD+ and markedly suppressed beta oxidation as respiration approached State 4. Calculations of the rates of flux of hydrogen equivalents through beta oxidation show that the suppression of beta oxidation by glutamate or by the malate-aspartate shuttle is accounted for by increased flux of reducing equivalents through mitochondrial malic dehydrogenase. This increased Flux is accompanied by an increase in the steady state NADH/NAD+ ratio and a marked decrease in the synthesis of citrate. The alpha-glycerophosphate shuttle was reconstituted with mitochondria isolated from rats treated with L-thyroxine. This shuttle was about equal to the reconstructed malate-aspartate shuttle in supression of palmitylcarnitine oxidation. This interaction could not be demonstrated in euthyroid animals owing to the low activity of the mitochondrial alpha-glycerol phosphate dehydrogenase. It is concluded that beta oxidation can be regulated by the NADH/NAD+ ratio. The observed stimulation of flux through malate dehydrogenase both by glutamate and by the malate-aspartate shuttle results in an increased steady state NADH/NAD+ ratio, and is linked to a stoichiometric outward transport of aspartate. We suggest, therefore, that some of the reducing pressure exerted by the malate-aspartate shuttle and by glutamate plus malate is provided through the energy-linked, electrogenic transport of aspartate out of the mitochondria. These results are discussed with respect to the mechanism of the genesis of ethanol-induced fatty liver.  相似文献   

20.
Iron-sulfur clusters present in rat liver submitochondrial particles were characterized by ESR at temperatures between 30 and 5.5 K combined with potentiometric titrations. The spectral and thermodynamic characteristics of the iron-sulfur clusters were generally similar to those previously reported for pigeon or bovine heart submitochondrial particles. Clusters N-1a, N-1b, N-2, N-3 and N-4 of NADH dehydrogenase had midpoint oxidation-reduction potentials at pH 7.5 of ?425, ?265, ?85, ?240 and ?260 mV, respectively. Clusters S-1 and S-3 of succinate dehydrogenase had midpoint potentials of 0 and +65 mV, respectively. The iron-sulfur cluster of electron-transferring flavoprotein-ubiquinone oxidoreductase exhibited the gz signal at g = 2.08 and had a midpoint potential of +30 mV. This signal was relatively prominent in rat liver compared to pigeon or bovine heart.Submitochondrial particles from rats chronically treated with ethanol (36% of total calories, 40 days) showed decreases of 20–30% in amplitudes of signals due to clusters N-2, N-3 and N-4 compared to those from pair-fed control rats. Signals from clusters N-1b, S-1, S-3 and electron-transferring flavoprotein-ubiquinone oxidoreductase were unaffected. Microwave power-saturation behavior was similar for both submitochondrial particle preparations, suggesting that the lower signal amplitudes reflected a lower content of these particular clusters. NADH dehydrogenase activity was significantly decreased (46%), whilst succinate dehydrogenase activity was elevated (25%), following chronic ethanol consumption. The results indicate that chronic ethanol treatment leads to an alteration of the structure and function of the NADH dehydrogenase segment of the electron transfer chain. This alteration is one of the factors contributing to the lower respiration rates observed following chronic ethanol administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号