共查询到20条相似文献,搜索用时 10 毫秒
1.
Stephanie L. Madison Matthew L. Buchanan Jeremiah D. Glass Tarah F. McClain Eunsook Park Andreas Nebenführ 《Plant physiology》2015,169(3):1946-1960
Pollen tube growth is an essential aspect of plant reproduction because it is the mechanism through which nonmotile sperm cells are delivered to ovules, thus allowing fertilization to occur. A pollen tube is a single cell that only grows at the tip, and this tip growth has been shown to depend on actin filaments. It is generally assumed that myosin-driven movements along these actin filaments are required to sustain the high growth rates of pollen tubes. We tested this conjecture by examining seed set, pollen fitness, and pollen tube growth for knockout mutants of five of the six myosin XI genes expressed in pollen of Arabidopsis (Arabidopsis thaliana). Single mutants had little or no reduction in overall fertility, whereas double mutants of highly similar pollen myosins had greater defects in pollen tube growth. In particular, myo11c1 myo11c2 pollen tubes grew more slowly than wild-type pollen tubes, which resulted in reduced fitness compared with the wild type and a drastic reduction in seed set. Golgi stack and peroxisome movements were also significantly reduced, and actin filaments were less organized in myo11c1 myo11c2 pollen tubes. Interestingly, the movement of yellow fluorescent protein-RabA4d-labeled vesicles and their accumulation at pollen tube tips were not affected in the myo11c1 myo11c2 double mutant, demonstrating functional specialization among myosin isoforms. We conclude that class XI myosins are required for organelle motility, actin organization, and optimal growth of pollen tubes.Pollen tubes play a crucial role in flowering plant reproduction. A pollen tube is the vegetative cell of the male gametophyte. It undergoes rapid polarized growth in order to transport the two nonmotile sperm cells to an ovule. This rapid growth is supported by the constant delivery of secretory vesicles to the pollen tube tip, where they fuse with the plasma membrane to enlarge the cell (Bove et al., 2008; Bou Daher and Geitmann, 2011; Chebli et al., 2013). This vesicle delivery is assumed to be driven by the rapid movement of organelles and cytosol throughout the cell, a process that is commonly referred to as cytoplasmic streaming (Shimmen, 2007). Cytoplasmic streaming in angiosperm pollen tubes forms a reverse fountain: organelles moving toward the tip travel along the cell membrane, while organelles moving away from the tip travel through the center of the tube (Heslop-Harrison and Heslop-Harrison, 1990; Derksen et al., 2002). Drug treatments revealed that pollen tube cytoplasmic streaming and tip growth depend on actin filaments (Franke et al., 1972; Mascarenhas and Lafountain, 1972; Heslop-Harrison and Heslop-Harrison, 1989; Parton et al., 2001; Vidali et al., 2001). Curiously, very low concentrations of actin polymerization inhibitors can prevent growth without completely stopping cytoplasmic streaming, indicating that cytoplasmic streaming is not sufficient for pollen tube growth (Vidali et al., 2001). At the same time, however, drug treatments have not been able to specifically inhibit cytoplasmic streaming; thus, it is unknown whether cytoplasmic streaming is necessary for pollen tube growth.Myosins are actin-based motor proteins that actively transport organelles throughout the cell and are responsible for cytoplasmic streaming in plants (Shimmen, 2007; Sparkes, 2011; Madison and Nebenführ, 2013). Myosins can be grouped into at least 30 different classes based on amino acid sequence similarity of the motor domain, of which only class VIII and class XI myosins are found in plants (Odronitz and Kollmar, 2007; Sebé-Pedrós et al., 2014). Class VIII and class XI myosins have similar domain architecture. The N-terminal motor domain binds actin and hydrolyzes ATP (Tominaga et al., 2003) and is often preceded by an SH3-like (for sarcoma homology3) domain of unknown function. The neck domain, containing IQ (Ile-Gln) motifs, acts as a lever arm and is bound by calmodulin-like proteins that mediate calcium regulation of motor activity (Kinkema and Schiefelbein, 1994; Yokota et al., 1999; Tominaga et al., 2012). The coiled-coil domain facilitates dimerization (Li and Nebenführ, 2008), and the globular tail functions as the cargo-binding domain (Li and Nebenführ, 2007). Class VIII myosins also contain an N-terminal extension, MyTH8 (for myosin tail homology8; Mühlhausen and Kollmar, 2013), and class XI myosins contain a dilute domain in the C-terminal globular tail (Kinkema and Schiefelbein, 1994; Odronitz and Kollmar, 2007; Sebé-Pedrós et al., 2014). Recently, Mühlhausen and Kollmar (2013) proposed a new nomenclature for plant myosins based on a comprehensive phylogenetic analysis of all known plant myosins that clearly identifies paralogs and makes interspecies comparisons easier (Madison and Nebenführ, 2013).The localization of class VIII myosins, as determined by immunolocalization and the expression of fluorescently labeled full-length or tail constructs, has implicated these myosins in cell-to-cell communication, cell division, and endocytosis in angiosperms and moss (Reichelt et al., 1999; Van Damme et al., 2004; Avisar et al., 2008; Golomb et al., 2008; Sattarzadeh et al., 2008; Yuan et al., 2011; Haraguchi et al., 2014; Wu and Bezanilla, 2014). On the other hand, class XI myosin mutants have been studied extensively in Arabidopsis (Arabidopsis thaliana), which revealed roles for class XI myosins in cell expansion and organelle motility (Ojangu et al., 2007, 2012; Peremyslov et al., 2008, 2010; Prokhnevsky et al., 2008; Park and Nebenführ, 2013). Very few studies have examined the reproductive tissues of class XI myosin mutants. In rice (Oryza sativa), one myosin XI was shown to be required for normal pollen development under short-day conditions (Jiang et al., 2007). In Arabidopsis, class XI myosins are required for stigmatic papillae elongation, which is necessary for normal fertility (Ojangu et al., 2012). Even though pollen tubes of myosin XI mutants have not been examined, the tip growth of another tip-growing plant cell has been thoroughly examined in myosin mutants. Root hairs are tubular outgrowths of root epidermal cells that function to increase the surface area of the root for water and nutrient uptake. Two myosin XI mutants have shorter root hairs, of which the myo11e1 (xik; myosin XI K) mutation has been shown to be associated with a slower root hair growth rate and reduced actin dynamics compared with the wild type (Ojangu et al., 2007; Peremyslov et al., 2008; Park and Nebenführ, 2013). Higher order mutants have a further reduction in root hair growth and have altered actin organization (Prokhnevsky et al., 2008; Peremyslov et al., 2010). Disruption of actin organization was also observed in myosin XI mutants of the moss Physcomitrella patens (Vidali et al., 2010), where these motors appear to coordinate the formation of actin filaments in the apical dome of the tip-growing protonemal cells (Furt et al., 2013). Interestingly, organelle movements in P. patens are much slower than in angiosperms and do not seem to depend on myosin motors (Furt et al., 2012).The function of myosins in pollen tubes is currently not known, although it is generally assumed that they are responsible for the prominent cytoplasmic streaming observed in these cells by associating with organelle surfaces (Kohno and Shimmen, 1988; Shimmen, 2007). Myosin from lily (Lilium longiflorum) pollen tubes was isolated biochemically and shown to move actin filaments with a speed of about 8 µm s−1 (Yokota and Shimmen, 1994) in a calcium-dependent manner (Yokota et al., 1999). Antibodies against this myosin labeled small structures in both the tip region and along the shank (Yokota et al., 1995), consistent with the proposed role of this motor in moving secretory vesicles to the apex.In Arabidopsis, six of 13 myosin XI genes are highly expressed in pollen: Myo11A1 (XIA), Myo11A2 (XID), Myo11B1 (XIB), Myo11C1 (XIC), Myo11C2 (XIE), and Myo11D (XIJ; Peremyslov et al., 2011; Sparkes, 2011). The original gene names (Reddy and Day, 2001) are given in parentheses. Myo11D is the only short-tailed myosin XI in Arabidopsis (Mühlhausen and Kollmar, 2013) and lacks the typical myosin XI globular tail involved in cargo binding (Li and Nebenführ, 2007). The remaining genes have the same domain architecture as the conventional class XI myosins that have been shown to be involved in the elongation of trichomes, stigmatic papillae, and root hairs (Ojangu et al., 2007, 2012; Peremyslov et al., 2008, 2010; Prokhnevsky et al., 2008; Park and Nebenführ, 2013). Therefore, we predicted that these five pollen-expressed, conventional class XI myosins are required for the rapid elongation of pollen tubes. In this study, we examined transfer DNA (T-DNA) insertion mutants of Myo11A1, Myo11A2, Myo11B1, Myo11C1, and Myo11C2 for defects in fertility and pollen tube growth. Organelle motility and actin organization were also examined in myo11c1 myo11c2 pollen tubes. 相似文献
2.
Hua Zhang Xiaolu Qu Chanchan Bao Parul Khurana Qiannan Wang Yurong Xie Yiyan Zheng Naizhi Chen Laurent Blanchoin Christopher J. Staiger Shanjin Huang 《The Plant cell》2010,22(8):2749-2767
A dynamic actin cytoskeleton is essential for pollen germination and tube growth. However, the molecular mechanisms underlying the organization and turnover of the actin cytoskeleton in pollen remain poorly understood. Villin plays a key role in the formation of higher-order structures from actin filaments and in the regulation of actin dynamics in eukaryotic cells. It belongs to the villin/gelsolin/fragmin superfamily of actin binding proteins and is composed of six gelsolin-homology domains at its core and a villin headpiece domain at its C terminus. Recently, several villin family members from plants have been shown to sever, cap, and bundle actin filaments in vitro. Here, we characterized a villin isovariant, Arabidopsis thaliana VILLIN5 (VLN5), that is highly and preferentially expressed in pollen. VLN5 loss-of-function retarded pollen tube growth and sensitized actin filaments in pollen grains and tubes to latrunculin B. In vitro biochemical analyses revealed that VLN5 is a typical member of the villin family and retains a full suite of activities, including barbed-end capping, filament bundling, and calcium-dependent severing. The severing activity was confirmed with time-lapse evanescent wave microscopy of individual actin filaments in vitro. We propose that VLN5 is a major regulator of actin filament stability and turnover that functions in concert with oscillatory calcium gradients in pollen and therefore plays an integral role in pollen germination and tube growth. 相似文献
3.
4.
Dong-Jie Jia ;Xi Cao ;Wei Wang ;Xiao-Yun Tan ;Xue-Qin Zhang ;Li-Qun Chen ;De Ye 《Acta Botanica Sinica》2009,(8):762-773
In flowering plants, male gametes are delivered to female gametophytes by pollen tubes. Although it is important for sexual plant reproduction, little is known about the genetic mechanism that controls pollen germination and pollen tube growth. Here we report the identification and characterization of two novel mutants, gnom-like 2-1 (gnl2-1) and gn12-2 in Arabidopsis thaliana, in which the pollen grains failed to germinate in vitro and in vivo. GNL2 encodes a protein homologous to the adenosine diphosphate-ribosylation factor-guanine nucleotide exchange factors, GNOM and GNL1 that are involved in endosomal recycling and endoplasmic reticulum-Golgi vesicular trafficking. It was prolifically expressed in pollen grains and pollen tubes. The results of the present study suggest that GNL2 plays an important role in pollen germination. 相似文献
5.
Dong-Jie Jia Xi Cao Wei Wang Xiao-Yun Tan Xue-Qin Zhang Li-Qun Chen De Ye 《植物学报(英文版)》2009,51(8):762-773
In flowering plants, male gametes are delivered to female gametophytes by pollen tubes. Although it is important for sexual plant reproduction, little is known about the genetic mechanism that controls pollen germination and pollen tube growth. Here we report the identification and characterization of two novel mutants, gnom-like 2-1 ( gnl2-1 ) and gnl2-2 in Arabidopsis thaliana , in which the pollen grains failed to germinate in vitro and in vivo . GNL2 encodes a protein homologous to the adenosine diphosphate-ribosylation factor-guanine nucleotide exchange factors, GNOM and GNL1 that are involved in endosomal recycling and endoplasmic reticulum-Golgi vesicular trafficking. It was prolifically expressed in pollen grains and pollen tubes. The results of the present study suggest that GNL2 plays an important role in pollen germination. 相似文献
6.
钙调素对花粉萌发和花粉管生长的效应 总被引:1,自引:0,他引:1
牛脑和玉米胚CaM能显著促进花粉萌发和花粉管生长(图1),而CaM抑制剂TFP、CPZ及另外两个专一性更强的抑制剂Compound48/80和W7均严重抑制甚至阻止花粉的萌发(图2,3)。用对CaM亲和性较低的W7同系物W5,在与W7同样浓度下,对花粉萌发和花粉管生长无明显影响。此外,W7对花粉萌发和花粉管生长的抑制效应可被外源CaM所消除(图4)。在花粉萌发过程中,其内源CaM含量显著上升,在花粉萌发率接近最大值时,花粉CaM含量达最高水平(图5)。上述结果表明CaM对花粉萌发和花粉管生长的调控起重要作用。 相似文献
7.
花粉萌发和花粉管生长发育的信号转导 总被引:25,自引:0,他引:25
显花植物授粉是一个复杂的发育过程。从花粉落在柱头上开始,经过粘附、识别、水合、萌发,花粉管在花柱内生长,直至到达子房发生双受精作用,整个过程发生在雌、雄两性细胞和组织之间,受到严格的遗传控制和细胞控制。一方面雌雄配子的基因型决定两者是否亲和,另一方面雌雄两性细胞间发生复杂的相互作用,细胞外信号分子是这些过程的主要调控因子。当花粉或花粉管细胞感知外部信号后,必然通过信号转导级联反应,达到控制萌发、调整花粉管生长方向等目的。这一系列动力学的细胞事件,关系到受精的成败。因此研究此过程中的信号及其转换机… 相似文献
8.
Ca2+、pH在花粉及萌发花粉管生长中的作用研究进展 总被引:11,自引:0,他引:11
花粉正常萌发并生长是精细胞顺利到达胚囊并实现受精作用的前提,因而是高等植物有性生殖的一个关键环节。花粉管生长涉及一系列过程,而花粉(或花粉管)内外的Ca^2 和pH的变化与花粉萌发、花粉管生长有着密切的关系。比较详细地论述了Ca^2 和pH在花粉萌发、花粉管生长过程中的分布特点、生理功能及分子机制。 相似文献
9.
The formation of distinct actin filament arrays in the subapical region of pollen tubes is crucial for pollen tube growth. However, the molecular mechanisms underlying the organization and dynamics of the actin filaments in this region remain to be determined. This study shows that Arabidopsis thaliana MICROTUBULE-DESTABILIZING PROTEIN25 (MDP25) has the actin filament–severing activity of an actin binding protein. This protein negatively regulated pollen tube growth by modulating the organization and dynamics of actin filaments in the subapical region of pollen tubes. MDP25 loss of function resulted in enhanced pollen tube elongation and inefficient fertilization. MDP25 bound directly to actin filaments and severed individual actin filaments, in a manner that was dramatically enhanced by Ca2+, in vitro. Analysis of a mutant that bears a point mutation at the Ca2+ binding sites demonstrated that the subcellular localization of MDP25 was determined by cytosolic Ca2+ level in the subapical region of pollen tubes, where MDP25 was disassociated from the plasma membrane and moved into the cytosol. Time-lapse analysis showed that the F-actin-severing frequency significantly decreased and a high density of actin filaments was observed in the subapical region of mdp25-1 pollen tubes. This study reveals a mechanism whereby calcium enhances the actin filament–severing activity of MDP25 in the subapical region of pollen tubes to modulate pollen tube growth. 相似文献
10.
不同培养条件对黄连木花粉萌发和花粉管生长的影响 总被引:8,自引:1,他引:8
以黄连木花粉为试材,采用离体培养法研究了培养基组分和植物生长调节物质对黄连木花粉萌发和花粉管生长的影响.结果表明:花粉萌发和花粉管生长的适宜蔗糖浓度为15%,适宜培养温度为25℃;该培养条件下,花粉萌发率和花粉管长度分别达最大值63.3%和412.1 μm.硼酸、赤霉素(GA3)和吲哚乙酸(IAA)在一定浓度范围内,可以促进黄连木花粉萌发和花粉管生长,浓度过高时起抑制作用;最适宜黄连木花粉萌发和花粉管生长的硼酸浓度、赤霉素(GA3)和吲哚乙酸(IAA)浓度分别为100、50和15 mg/L. 相似文献
11.
桃花粉离体萌发和花粉管生长特性研究 总被引:3,自引:0,他引:3
采用花粉离体萌发法研究不同培养基组分和培养条件对桃花粉萌发和花粉管生长的影响,同时对不同贮藏温度下的桃花粉寿命进行研究.结果表明:固体培养基与液体培养基对桃的花粉萌发率和花粉管长度影响差异不显著;10%蔗糖是大多数桃品种花粉的最适萌发条件;硼能提高桃花粉的萌发率,但对花粉管的生长没有促进作用;桃花粉在20℃~25℃的培养温度下萌发率最高,花粉管最长;桃花粉萌发率和花粉管长度在培养前3 h内上升最快,3~5 h上升趋势减弱,5 h后基本停止;随着贮藏温度的升高和贮藏时间的延长,花粉生活力呈降低的趋势. 相似文献
12.
13.
果梅花粉离体萌发及花粉管生长特性研究 总被引:15,自引:3,他引:15
研究了果梅(Prunus mumeSieb.1et Zucc.)花粉在不同培养基组分、花粉不同培养密度和不同温度及培养时间的离体萌发和花粉管生长特性.结果表明:细叶青花粉萌发及花粉管生长最适宜的液体培养基为30mmol/L MES(pH 6.5)缓冲液中含20%蔗糖,0.01%硼酸,20%PEG-4000,0.03?(NO3)2?4H2O,0.02%Mg-SO4?7H2O;萌发率达45.03%,花粉管长度达597.2μm.适宜于果梅花粉萌发和花粉管生长的花粉粒密度为20~80粒/μL.培养温度过高或过低都不利于果梅花粉的萌发和生长,25℃时花粉萌发和花粉管生长最好.细叶青"、月世界"、莺宿"3个品种的平均萌发率为48.6%,平均花粉管长度为762.3μm.果梅花粉在不同培养温度下,萌发及生长不同,在25℃条件下花粉管生长速度最快,集中在0~12 h内,3个品种花粉管平均生长速度为58.5μm/h. 相似文献
14.
Calcium plays an essential role in pollen tube tip growth. However, little is known concerning the molecular basis of the signaling pathways involved. Here, we identified Arabidopsis (Arabidopsis thaliana) CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASE19 (CIPK19) as an important element to pollen tube growth through a functional survey for CIPK family members. The CIPK19 gene was specifically expressed in pollen grains and pollen tubes, and its overexpression induced severe loss of polarity in pollen tube growth. In the CIPK19 loss-of-function mutant, tube growth and polarity were significantly impaired, as demonstrated by both in vitro and in vivo pollen tube growth assays. Genetic analysis indicated that disruption of CIPK19 resulted in a male-specific transmission defect. Furthermore, loss of polarity induced by CIPK19 overexpression was associated with elevated cytosolic Ca2+ throughout the bulging tip, whereas LaCl3, a Ca2+ influx blocker, rescued CIPK19 overexpression-induced growth inhibition. Our results suggest that CIPK19 may be involved in maintaining Ca2+ homeostasis through its potential function in the modulation of Ca2+ influx.In flowering plants, fertilization is mediated by pollen tubes that extend directionally toward the ovule for sperm delivery (Krichevsky et al., 2007; Johnson, 2012). The formation of these elongated tubular structures is dependent on extreme polar growth (termed tip growth), in which cell expansion occurs exclusively in the very apical area (Yang, 2008; Rounds and Bezanilla, 2013). As this type of tip growth is amenable to genetic manipulation and cell biological analysis, the pollen tube is an excellent model system for the functional analysis of essential genes involved in polarity control and fertilization (Yang, 2008; Qin and Yang, 2011; Bloch and Yalovsky, 2013).It is well established that Ca2+ plays a critical role in pollen germination and tube growth (Konrad et al., 2011; Hepler et al., 2012). A steep tip-focused Ca2+ gradient has been detected at the tip of elongating pollen tubes (Rathore et al., 1991; Pierson et al., 1994; Hepler, 1997). In previous studies, artificial dissipation of the Ca2+ gradient seriously inhibited tip growth of pollen tubes, whereas elevation of internal Ca2+ level induced bending of the growth axis toward the zone of higher Ca2+. These studies suggest that Ca2+ not only controls pollen tube elongation but also modulates growth orientation (Miller et al., 1992; Malho et al., 1994; Malho and Trewavas, 1996; Hepler, 1997). These Ca2+ signatures are perceived and relayed to downstream responses by a complex toolkit of Ca2+-binding proteins that function as Ca2+ sensors (Yang and Poovaiah, 2003; Harper et al., 2004; Dodd et al., 2010).To date, four major Ca2+ sensor families have been identified in Arabidopsis (Arabidopsis thaliana), including calcium-dependent protein kinase, calmodulin (CaM), calmodulin-like (CML), and CALCINEURIN B-LIKE (CBL) proteins (Luan et al., 2002, 2009; Yang and Poovaiah, 2003; Harper et al., 2004). Calcium-dependent protein kinase family members comprise a kinase domain and a CaM-like domain in a single protein; thus, they act not only as a Ca2+ sensor but also as an effector, designated as sensor responders (Cheng et al., 2002). In contrast, CaM, CML, and CBL proteins do not have any enzymatic domains but transmit Ca2+ signals to downstream targets via Ca2+-dependent protein-protein interactions. Therefore, they have been designated as sensor relays (McCormack et al., 2005). While CaM and CML proteins interact with a diverse array of target proteins, it is generally accepted that CBLs interact specifically with a group of Ser/Thr protein kinases termed CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASEs (CIPKs; Luan et al., 2002; Kolukisaoglu et al., 2004).In Arabidopsis, several CBLs coupled with their target CIPKs have been demonstrated to function in the regulation of ion homeostasis and stress responses (Luan et al., 2009). Under salt stress, SALT OVERLY SENSITIVE3 (SOS3)/CBL4-SOS2/CIPK24 regulate SOS1 at the plasma membrane for Na+ exclusion, whereas CBL10-CIPK24 complexes appear to regulate Na+ sequestration at the tonoplast (Liu et al., 2000; Qiu et al., 2002; Kim et al., 2007; Quan et al., 2007). For low-K+ stress, CBL1 and CBL9, with 87% amino acid sequence identity, interact with CIPK23, which regulates a voltage-gated ion channel (ARABIDOPSIS K+ TRANSPORTER1) to mediate the uptake of K+ in root hairs (Li et al., 2006; Xu et al., 2006; Cheong et al., 2007). In addition, CBL1 integrates plant responses to cold, drought, salinity, and hyperosmotic stresses (Albrecht et al., 2003; Cheong et al., 2003), and CBL9 is involved in abscisic acid signaling and biosynthesis during seed germination (Pandey et al., 2004). Over the past decade, the functions of CBL-CIPK complexes in abiotic stress tolerance have been studied extensively, but only limited studies focus on CBL family members in pollen tube growth. For example, CBL3 overexpression caused a defective phenotype in pollen tube growth (Zhou et al., 2009). Overexpression of CBL1 or its closest homolog CBL9 inhibited pollen germination and perturbed tube growth at high external K+, whereas disruption of CBL1 and CBL9 leads to a significantly reduced growth rate of pollen tubes under low-K+ conditions (Mähs et al., 2013). The potential roles of CIPKs in pollen tubes so far appear to be completely unknown.In this study, we demonstrated that Arabidopsis CIPK19, a CIPK specifically expressed in pollen grains and pollen tubes, functions in pollen tube tip growth, providing a new insight into the function of the CBL-CIPK network in the control of growth polarity during pollen tube extension in fertilization. 相似文献
15.
拟南芥编码亮氨酸拉链蛋白的AS2基因在叶发育中具有控制极性建立的作用 总被引:5,自引:0,他引:5
在拟南芥 (Arabidopsisthaliana (L .)Heynh .)叶发育研究中 ,as2是一个经典突变体。as2典型的表型是叶片开裂或形成一种小叶状结构。遗传学和分子生物学实验证明 ,AS2基因具有抑制KNOX基因在叶中表达的功能。在本文中 ,我们着重研究了新得到的在Landsbergerecta (Ler)遗传背景下的as2突变体。除了前人报道过的as2表型外 ,新as2突变体的部分叶柄长在叶片的下方 ,形成一种荷叶状结构 ,更严重的甚至长成花丝状叶结构。这两种结构都反映了不正常的叶腹背轴极性分化。在我们所收集到的as2等位突变体中 ,只有在Ler背景下这两种结构才以高频率出现。我们通过图位克隆方法分离了AS2基因。该基因编码一个含有亮氨酸拉链结构的蛋白。在拟南芥中 ,AS2同源基因共 4 3个 ,除AS2外 ,其他基因的功能都不清楚。AS2在叶和花中表达 ,在茎中无表达 ,这种表达模式和as2突变体的表型是吻合的。 相似文献
16.
在拟南芥(Arabidopsis thaliana (L.) Heynh.)叶发育研究中,as2是一个经典突变体.as2典型的表型是叶片开裂或形成一种小叶状结构.遗传学和分子生物学实验证明,AS2基因具有抑制KNOX基因在叶中表达的功能.在本文中,我们着重研究了新得到的在Landsberg erecta (Ler)遗传背景下的as2突变体.除了前人报道过的as2表型外,新as2突变体的部分叶柄长在叶片的下方,形成一种荷叶状结构,更严重的甚至长成花丝状叶结构.这两种结构都反映了不正常的叶腹背轴极性分化.在我们所收集到的as2等位突变体中,只有在Ler背景下这两种结构才以高频率出现.我们通过图位克隆方法分离了AS2基因.该基因编码一个含有亮氨酸拉链结构的蛋白.在拟南芥中,AS2同源基因共43个,除AS2外,其他基因的功能都不清楚.AS2在叶和花中表达,在茎中无表达,这种表达模式和as2突变体的表型是吻合的. 相似文献
17.
DEX1, a Novel Plant Protein, Is Required for Exine Pattern Formation during Pollen Development in Arabidopsis 下载免费PDF全文
Dawn M. Paxson-Sowders Craig H. Dodrill Heather A. Owen Christopher A. Makaroff 《Plant physiology》2001,127(4):1739-1749
To identify factors that are required for proper pollen wall formation, we have characterized the T-DNA-tagged, dex1 mutation of Arabidopsis, which results in defective pollen wall pattern formation. This study reports the isolation and molecular characterization of DEX1 and morphological and ultrastructural analyses of dex1 plants. DEX1 encodes a novel plant protein that is predicted to be membrane associated and contains several potential calcium-binding domains. Pollen wall development in dex1 plants parallels that of wild-type plants until the early tetrad stage. In dex1 plants, primexine deposition is delayed and significantly reduced. The normal rippling of the plasma membrane and production of spacers observed in wild-type plants is also absent in the mutant. Sporopollenin is produced and randomly deposited on the plasma membrane in dex1 plants. However, it does not appear to be anchored to the microspore and forms large aggregates on the developing microspore and the locule walls. Based on the structure of DEX1 and the phenotype of dex1 plants, several potential roles for the protein are proposed. 相似文献
18.
Yamazaki Misako; Shimada Tomoo; Takahashi Hideyuki; Tamura Kentaro; Kondo Maki; Nishimura Mikio; Hara-Nishimura Ikuko 《Plant & cell physiology》2008,49(4):678
The above article 相似文献
19.
花柱和花粉胞外钙调素对花粉萌发和花粉管伸长的影响 总被引:6,自引:0,他引:6
以烟草为材料,通过半体内实验,就花柱和花粉胞外钙调素对花粉萌发和花粉管伸长的影响进行了观察。发现用EGTA及钙调素抗血清处理柱头或花粉均可抑制花粉在柱头上的萌发;向花柱引导组织中显微注射纯化钙调素可促进花粉管束伸长,而注射钙调素抗血清可抑制花粉管束伸长;同时证实玉米花柱和花粉细胞壁中均存在钙调素及钙调素结合蛋白,而且花粉和花柱细胞壁中钙调素结合蛋白的种类有差异。结果表明存在于花粉和花柱细胞外的钙调素对花粉萌发和花粉管伸长均有促进作用。 相似文献
20.
Pine (Pinus roxburghii) pollen grown in suspension cultureswas used to study the effects of growth regulators and lightconditions on germination and pollen tube growth. Indol-3-ylacetic acid, gibberellic acid, ethylene, abscisic acid and cyclicAMP (cAMP) at low concentrations (110 mg 11) promotedgermination and tube growth. Addition of 1 and 10 mg 11cAMP to any of the growth regulators had a promotory effect.Pollen tube growth decreased in white light as compared to thedark, and was increased in red light. Far-red light counteractedthe effect of red light. The effect of growth regulators incausing the enhanced tube growth appears to be manifested throughsubstances such as cAMP, and phytochrome seems to be involved. Pinus roxburghii, pine, pollen germination, pollen tube growth, growth regulators, cyclic AMP, phytochrome 相似文献