首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There have been numerous studies on variability and correlation in dental crown size, but the significance of the resulting patterns remains unclear. Regions of low variation and high correlation have been hypothesized to represent the poles of Butler's morphological fields, to be related to absolute tooth size, or to be related to morphological complexity of the teeth and functional efficiency. Variation and correlation of tooth lengths and breadths were investigated in 138 red colobus monkeys to further assess the relations among size associations, crown morphology, and absolute tooth size. In the maxilla and mandible, the postcanine teeth are the most highly correlated and least variable, followed by the incisors, then the canines. There are also lower correlations between premolars and molars than within either group. While there appears to be a relation between degree of morphological differentiation and levels of correlation and variation, there are no notable differences in the correlation of opponents along the dental arcade, which is the most important functional consideration. This suggests that different levels of correlation and variation within upper or lower teeth are “artifacts” of tooth dimensions that contribute to different geometric designs in different tooth groups as the germs develop. This morphological effect is coupled with the influence of integration fields, indicated by higher variability and lower correlations of the third molar, the largest or most molarized tooth. It is concluded that there are wide functional tolerances in occlusion with respect to the gross dimensions of dental crowns and their interrelationships.  相似文献   

2.
Teeth increase in size during a 9,000-year period in an archaeologically derived, radiocarbon dated sample of skeletons from a geographically restricted area of coastal Peru. Although cultural change is extensive, including the transition to food production and pottery making, teeth do not reduce as predicted under these conditions by Brace's Probable Mutation Effect. Since most of the dental literature dealing with size change of teeth focuses upon dental reduction, hypotheses explaining why teeth increase through time are not well developed. No obvious selective forces explaining size increase are apparent in the present data. Attrition decreases through time. The increase in tooth size in this collection may be a function of overall cranialfacial size increase, which (pending further data) may be related to a general body size increase.  相似文献   

3.
The dental crown morphology and size of 48 male West Nakanai, New Britain, Melanesians is described and compared with other Pacific and Asian dental samples. The West Nakanai dentition is like those of other Melanesians, much less like those of Polynesians and Micronesians, and very dissimilar to teeth of modern and Neolithic Southeast Asians. It is suggested that the origin of the modern Melanesian dental pattern (large but simplified teeth) was probably in Melanesia, not Southeast Asia as the orthodox view of a Hoabinhian-Australmelanesian relation claims.  相似文献   

4.
Dental reduction has been sufficiently widespread among human populations to render the phenomenon of reduced tooth size worthy of scientific explanation. One of the most controversial models invoked to explain structural reduction in organisms is referred to as the "probable mutation effect" (PME). According to this model, structures no longer functional owing to ecological or cultural changes will experience a relaxation of selection pressure, permitting an accumulation of mutations in the population that inevitably will result in the reduction in size or the loss of the concerned structure. Although the PME continues to be offered as a viable explanation of human dental reduction, it is based upon several premises that modern dental clinical experience fails to support. Known enzyme defects resulting from mutations, factors predisposing to dental infections, and the deleterious effects of teeth that are too large or too small reveal that the PME does not logically account for the reduction of tooth size. Given such information, this paper proposes models of dental reduction based upon natural selection, which, unlike the PME, are testable in both modern and archaeological populations. The integration of clinical and skeletal data permits a more thorough understanding of dental reduction in the hominid fossil record.  相似文献   

5.
Longitudinal studies of aboriginal children over a 20-year period have drawn attention to the wide variation in morphological features of the dentition and the way in which occlusal relationships develop. This paper summarizes some important determinants of optimal occlusal development, namely, tooth size relationships within and between dentitions, the patterns of alveolar growth, and tooth migrations during the transition from primary to permanent teeth and the nature of growth changes in the dental arches. Dental occlusion constantly changes throughout life in response to changing functional requirements. Observations limited to cross-sectional material provide an incomplete, and sometimes misleading, concept of dental occlusion and masticatory function.  相似文献   

6.
In order to reassess previous hypotheses concerning dental size reduction of the posterior teeth during Pleistocene human evolution, current fossil dental evidence is examined. This evidence includes the large sample of hominid teeth found in recent excavations (1984–1993) in the Sima de los Huesos Middle Pleistocene cave site of the Sierra de Atapuerca (Burgos, Spain). The lower fourth premolars and molars of the Atapuerca hominids, probably older than 300 Kyr, have dimensions similar to those of modern humans. Further, these hominids share the derived state of other features of the posterior teeth with modern humans, such as a similar relative molar size and frequent absence of the hypoconulid, thus suggesting a possible case of parallelism. We believe that dietary changes allowed size reduction of the posterior teeth during the Middle Pleistocene, and the present evidence suggests that the selective pressures that operated on the size variability of these teeth were less restrictive than what is assumed by previous models of dental reduction. Thus, the causal relationship between tooth size decrease and changes in food-preparation techniques during the Pleistocene should be reconsidered. Moreover, the present evidence indicates that the differential reduction of the molars cannot be explained in terms of restriction of available growth space. The molar crown area measurements of a modern human sample were also investigated. The results of this study, as well as previous similar analyses, suggest that a decrease of the rate of cell proliferation, which affected the later-forming crown regions to a greater extent, may be the biological process responsible for the general and differential dental size reduction that occurred during human evolution. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Teeth grow incrementally and preserve within them a record of that incremental growth in the form of microscopic growth lines. Studying dental development in extinct and extant primates, and its relationship to adult brain and body size as well as other life history and ecological parameters (e.g., diet, somatic growth rates, gestation length, age at weaning), holds the potential to yield unparalleled insights into the life history profiles of fossil primates. Here, we address the absolute pace of dental development in Megaladapis edwardsi, a giant extinct lemur of Madagascar. By examining the microstructure of the first and developing second molars in a juvenile individual, we establish a chronology of molar crown development for this specimen (M1 CFT = 1.04 years; M2 CFT = 1.42 years) and determine its age at death (1.39 years). Microstructural data on prenatal M1 crown formation time allow us to calculate a minimum gestation length of 0.54 years for this species. Postnatal crown and root formation data allow us to estimate its age at M1 emergence (approximately 0.9 years) and to establish a minimum age for M2 emergence (>1.39 years). Finally, using reconstructions or estimates (drawn elsewhere) of adult body mass, brain size, and diet in Megaladapis, as well as the eruption sequence of its permanent teeth, we explore the efficacy of these variables in predicting the absolute pace of dental development in this fossil species. We test competing explanations of variation in crown formation timing across the order Primates. Brain size is the best single predictor of crown formation time in primates, but other variables help to explain the variation.  相似文献   

8.
The form of the anthropoid mandibular symphysis has recently been addressed in association with spatial requirements for the forming anterior teeth. To evaluate potential relationships between the symphyseal shape and teeth further, the growth patterns of the symphyseal region and the positioning of the tooth crypts were examined using CT data, comparing four primate species (modern humans, chimpanzees, Japanese monkeys, and hamadryas baboons) with varied symphyseal curvature and tooth size. First, results showed that interspecies differences in overall mandibular shape including symphyseal inclination and bicanine width are consistently expressed throughout postnatal ontogeny, although local symphyseal configurations related to the superior transverse torus (STT) tended to change considerably during growth in chimpanzees. Second, the four species were found to exhibit differentiated formation positions of the incisor and canine crypts. In particular, I2 developed between I1 and C in humans with a broad bicanine space and small teeth, whereas it was positioned posterior to I1 and above C in the cercopithecines with an extremely narrow bicanine space. In chimpanzees, despite the large bicanine width, I1 and I2 grew with a large antero-posterior overlap owing to their large size. These results indicate that the dental positioning is determined in concert with the size balance of the available mandibular space and forming teeth. Finally, the positions/contours of I2 crypt were shown to correspond strongly with the STT across the taxa. This suggests that interspecies differences in symphyseal shape should be interpreted partially by the species-specific positional relationships of the developing anterior teeth.  相似文献   

9.
Size variations in the anterior dentition were analyzed for 26 species of strepsirhine primates. The upper and lower incisor rows of strepsirhines, like those of anthropoid primates, scale isometrically with body size. Within the order Primates, strepsirhines exhibit the smallest incisors relative to body size, followed in increasing size by tarsiers, platyrrhines, and catarrhines. If the lateral teeth of the indriid toothcomb are interpreted as incisors and not canines, correlations between mandibular tooth size variables and body weight are maximized. The upper incisors of strepsirhines are extremely small and frequently widely separated, most likely to minimize occlusion with the toothcomb. Species deviations for assorted size variables of the anterior dentition generally fail to reflect functional variations in the use of the anterior teeth; some of the variables, however, do reflect taxonomic differences within the Strepsirhini. Although toothcomb size variations among extant strepsirhines are more readily interpreted in terms of gum feeding and bark scraping than they are in terms of grooming, anterior dental morphology as a whole is more easily explained by a grooming hypothesis when existing models of toothcomb origins are considered.  相似文献   

10.
Juveniles and adults from a prehistoric Amerindian skeletal series from Tennessee are compared for differences in the means and variances of the buccolingual dimensions of their permanent teeth. While there are no significant differences in variance, it is found that juveniles exhibit significantly smaller mandibular canines, first premolars, and first molars. The results are similar to those of a previous examination of an Amerindian skeletal collection from South Dakota. There is evidence to suggest that teeth may fail to develop to their maximum genetic size potential when there is interference from exogenous chronic stressors such as malnutrition or disease. Archeological and biological evidence demonstrates that both the Tennessee and South Dakota series represent groups that suffered considerably from environmental stressors. It is suggested that those persons who suffered most were more likely to die prematurely, thus explaining why juvenile skeletons tend to have smaller teeth. The conclusion is that the examination of age variation in crown size can be a useful supplement to other osteological indicators of stress in skeletal collections. The factor of sex ratio and the implications of the results for other kinds of dental metric studies are discussed.  相似文献   

11.
Estimating body weights for fossil primates is an important step in reconstructing aspects of their behavior and ecology. To date, the body size of Eocene euprimates—the Adapidae and Omomyidae—has been estimated only from molar area. Studies on other primates and mammals demonstrate that body weights estimated from teeth are not always concordant with those estimated from postcranial variables. We derive estimates for Eocene primates based on tarsal bone variables to compare with previously published values derived from dental measures. Stepsirhine-wide, family-level, and subfamily-level models are developed and compared. We also compare the accuracy and precision of dental- and tarsal-based regression models for predicting weight in extant species. Tarsal bone and dental area measures prove to be equally robust in predicting body weight; however, highly disparate estimates are often obtained from different variables. Equations based on lower-level taxonomic groups perform better than more widely based models. However, all equations considered yield fairly large errors, which can affect interpretations of paleoecology. The choice of the more robust prediction is not straightforward.  相似文献   

12.
At a given body mass, folivorous colobines have smaller postcanine teeth than frugivorous cercopithecines. This distinction is a notable exception to the general tendency for folivorous primates to have relatively larger postcanine tooth rows than closely related frugivores. The reason for this anomalous pattern is unclear, but one potential explanation is that the difference in facial size between these two subfamilies confounds the comparison-i.e., it may be that the large postcanine teeth of cercopithecines are a consequence of their large faces. The goal of this study was to test this hypothesis. Phylogenetic comparative methods were used to examine the relationships among postcanine area, facial size, and body mass in 29 anthropoid primates, including eight colobines and eight cercopithecines. Results indicate that there is a strong and highly significant partial correlation between postcanine area and facial size when body mass is held constant, which supports the hypothesis that facial size has an important influence on postcanine size. Moreover, colobines have larger postcanine teeth relative to facial size than cercopithecines. Surprisingly, when facial size is held constant, the partial correlation between postcanine area and body mass is weak and nonsignificant. These results suggest that facial size may be more appropriate than body mass for size-adjusting postcanine measurements in some contexts. A phylogenetic comparative test of the association between diet and relative postcanine size (scaled using facial size) confirms that folivorous anthropoids are characterized by relatively large postcanine teeth in comparison to closely related nonfolivores.  相似文献   

13.
Patterning the size and number of tooth and its cusps   总被引:1,自引:0,他引:1  
Cai J  Cho SW  Kim JY  Lee MJ  Cha YG  Jung HS 《Developmental biology》2007,304(2):499-507
Mice and rats, two species of rodents, show some dental similarities such as tooth number and cusp number, and differences such as tooth size and cusp size. In this study, the tooth size, tooth number, cusp size and cusp number, which are four major factors of the tooth patterning, were investigated by the heterospecific recombinations of tissues from the molar tooth germs of mice and rats. Our results suggest that the dental epithelium and mesenchyme determine the cusp size and tooth size respectively and the cusp number is co-regulated by the tooth size and cusp size. It is also suggested that the mesenchymal cell number regulates not the tooth size but the tooth number. The relationships among these factors in tooth patterning including micropatterning (cusp size and cusp number) and macropatterning (tooth size and tooth number) were analyzed in a reaction diffusion mechanism. Key molecules determining the patterning of teeth remains to be elucidated for controlling the tooth size and cusp size of bioengineered tooth.  相似文献   

14.
The «increasing population density effect» (IPDE) proposed by Macchiarelli and Bondioli (1986) represents one of the most recent attempts to account for dental reduction in modern human populations. Under the IPDE, the marked reduction in tooth size observed in post-Pleistocene human groups is seen as merely a side-effect of a more general reduction in body size, which resulted from an increase in population density. The model is dependent upon a strong correlation between tooth size and body size, which after numerous attempts has yet to be convincingly demonstrated in humans. This paper argues that the IPDE neglects the negative consequences on individual fitness of teeth which are too large to fit into diminishing jaws or are more susceptible to pathology, and that the worldwide reduction of tooth size is the result of selection for smaller teeth due to shifts to a softer and/or more cariogenic diet. Although increased population density may have intensified this selective effect by decreasing general fitness by lowering resistance to oral infections, it was not the primary cause of dental reduction. All proposed mechanisms of dental reduction, however, are in need of additional testing, and possible directions are offered for future studies of the phenomenon.  相似文献   

15.
Metric and morphological characterizations of the permanent teeth from a total of 155 prehistoric Amerindians are presented. The individuals represent samples from three Ohio Valley burial complexes (considered together as the Late Diffuse group): Glacial Kame, Adena and Ohio Hopewell. Metric data include common measures of central tendency and dispersion. From these measures estimates and analyses of the magnitude of sexual dimorphism and relative variability are presented as well as analyses of the patterns of these estimates. Forty morphological characters are also tabulated. The results indicate a number of provisional hypotheses: the generally larger tooth size of the Late Archaic Indian Knoll when compared to the Late Diffuse groups is consistent with the hypothesis of mitigated selective pressures in more technologically advanced groups; although tooth size is smaller in the Late Diffuse groups, dental morphology is as complex, or more so when compared to the Indian Knoll group. Since morphology and size do not covary exactly the biocultural forces resulting in smaller tooth size do not seem to act as strongly on dental morphology; odontological differences within the Late Diffuse arise primarily between the Glacial Kame-Adena and the Ohio Hopewell. These differences correspond to major biocultural changes in this area; although provisional hypotheses concerning odontological variability are erected, hypotheses concerning evolutionary trends must await the discovery of evolving lineages within these groups; similarities are noted among all compared groups including the pattern and magnitude of sexual dimorphism and relative variability. These parameters may be similar for all eastern Amerindians during this period; finally, the morphology of the deciduous dentition, which generally predicts that of the permanent teeth, is found to be less complex than the permanent teeth. This may be the result of a selective disadvantage for the individuals in the deciduous dentition sample which is reflected in the dentition.  相似文献   

16.
There exists an extensive literature that deals with interspecific allometry, eg, brain size-body size relationships among species. Yet comparatively little attention has been paid to intraspecific or static adult allometry. An intraspecfic allometric analysis was conducted on the complete permanent dentition of a prehistoric American Indian population (N = 156). Mesiodistal and buccolingual measurements were logarithmically transformed and regressed on log transformations of femur length, an estimate of body size. When measurements of antimeric teeth were introduced together into common regressions on femur length, 20 of the 32 slopes were significantly different from zero. Thirty-one of the slopes ranged between zero and one and clustered between 0.2 and 0.4. Hence, negative allometry describes the tooth size-body size association, ie, taller individuals in general possess absolutely but not relatively larger teeth than shorter individuals. In addition, no significant sex differences for the regression slopes were observed. Though significantly correlated, tooth size and body size variables are too weakly associated to permit accurate predictons from regression equations. Evolutionary implications of intraspecfic dental allometry are discussed.  相似文献   

17.
18.
《Mammalian Biology》2014,79(3):170-175
The endemic South American “ungulates” (SANU) were traditionally assumed to be a monophyletic offshoot of the Granorder Ungulata, but the current reorganization of the extant ungulates in Laurasiatheria and Afrotheria (based on molecular data) leaved them in an undetermined systematic position. The delayed dental eruption versus cranial growth was proposed as a hard-tissue synapomorphy of Afrotheria. In a recent paper, at least some endemic SANU (Notoungulata, Astrapotheria, and possibly Pyrotheria) were interpreted as allied to Afrotheres by having a late replacement of deciduous cheek teeth. This statement was based on: (1) the usual occurrence within these groups of individuals with deciduous and permanent teeth; (2) the individual size (estimated comparing the length/width ratio of cheek teeth) of specimens with permanent premolars erupted is indistinguishable from that of specimens with deciduous premolars (putative juveniles), and (3) the retention of at least dP1–dP3 in adult specimens of Parastrapotherium (Astrapotheria). Herein we critically examine the presumed existence of delayed dental eruption in astrapotheres, pyrotheres and xenungulates and the assumptions on which it was based. The alleged evidences supporting the occurrence of delayed dental eruption in SANU arise from misinterpreted information from the literature and conceptual mistakes (i.e. delayed dental eruption versus cranial growth was confused with delayed replacement of premolars versus molar eruption). Based on examination of at-hand specimens, we found that there is no evidence for a delayed premolar replacement relative to the eruption of the molars in astrapotheres, pyrotheres, and xenungulates. A delayed dental eruption in relation to jaw growth does not occur at least in Astrapotherium magnum. Although a very recent study proposed close relationships among afrotheres and at least notoungulates and xenungulates, a more complete analysis is still needed to elucidate the evolutionary relationships of astrapotheres and pyrotheres.  相似文献   

19.
The knowledge of processes involved in morphological variation requires the integrated analysis of evolutionary and ecological factors. Here, we investigate the factors responsible for dental variation among human populations from southern South America. The aim of this work is to test the correspondence of dental size and shape variation with geographical, molecular (i.e. mtDNA) and ecological (i.e. climate, diet and food preparation) variables employing comparative phylogenetic methods, which have not previously been extensively applied at a within-species level. The results of the Procrustes analysis show a significant association of shape variables with molecular distance and geography, whereas dental size is not associated with molecular or geographical distances among groups. Phylogenetic generalized least-squares analysis, which takes into account the evolutionary autocorrelation among populations, shows a significant relationship between dental size variation and diet, while temperature and pottery do not correspond with dental size or shape. Specifically, groups with diets rich in carbohydrates, as well as the maritime hunter-gatherers, have the smallest teeth. In summary, our results support ecological factors as the dominant factor on dental size diversification in this region, while evolutionary relationships account for variation in dental shape.  相似文献   

20.
Tooth size varies exponentially with body weight in primates. Logarithmic transformation of tooth crown area and body weight yields a linear model of slope 0.67 as an isometric (geometric) baseline for study of dental allometry. This model is compared with that predicted by metabolic scaling (slope = 0.75). Tarsius and other insectivores have larger teeth for their body size than generalized primates do, and they are not included in this analysis. Among generalized primates, tooth size is highly correlated with body size. Correlations of upper and lower cheek teeth with body size range from 0.90–0.97, depending on tooth position. Central cheek teeth (P and M) have allometric coefficients ranging from 0.57–0.65, falling well below geometric scaling. Anterior and posterior cheek teeth scale at or above metabolic scaling. Considered individually or as a group, upper cheek teeth scale allometrically with lower coefficients than corresponding lower cheek teeth; the reverse is true for incisors. The sum of crown areas for all upper cheek teeth scales significantly below geometric scaling, while the sum of crown areas for all lower cheek teeth approximates geometric scaling. Tooth size can be used to predict the body weight of generalized fossil primates. This is illustrated for Aegyptopithecus and other Eocene, Oligocene, and Miocene primates. Regressions based on tooth size in generalized primates yield reasonable estimates of body weight, but much remains to be learned about tooth size and body size scaling in more restricted systematic groups and dietary guilds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号