首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Substance P receptors (SPRs) are expressed by prenatal rat spinal cord neurons and glial cells early in their differentiation, and SPRs may mediate developmental influences in the developing spinal cord. In order to understand better early SPR expression, we quantified SPR mRNA in the rat spinal cord during prenatal development using a cDNA probe for the rat SPR in nuclease protection assays. SPR mRNA was present in the rat spinal cord at E14, the earliest stage examined, and the presence of specific binding sites for radiolabeled SP suggested that SPRs were expressed at the protein level as well. Comparisons of samples from rats at different prenatal ages showed that the relative abundance of SPR mRNA declined by about 75% from E14 through the remainder of prenatal development. Assays of the hydrolysis of phosphatidyl inositol performed on prenatal spinal cord cells in culture revealed that SP caused a small but significant stimulation. These results show that expression of SPRs is an early molecular event in the development of the rat spinal cord in vivo and that SPRs on young spinal cord cells can mediate functional responses at early developmental stages.  相似文献   

2.
1. We have transfected the rat substance P receptor (SPR) cDNA into the leukemic T-lymphocyte cell line Jurkat (J-wt) in order to study the effects of substance P (SP) on lymphocyte signaling mechanisms and the resultant neuropeptide-induced immunological changes. 2. The SPR cDNA was transfected into J-wt by the method of electroporation. Clones expressing SPRs were selected using a functional assay that measured SP-induced mobilization of intracellular Ca2+ ([Ca2+]i) in a fluorescence activated cell sorter (FACS) and by their expression of specific 125I-SP binding. 3. One clone, J-SPR, was identified and shown by Northern blot and 125I-SP saturation binding techniques to express the 2.2-kb SPR message and approximately 50,000 SPRs/cell with a Kd of 0.3 nM, respectively. Stimulation of J-SPR by SP resulted in the rapid mobilization of [Ca2+]i. This response was dose dependent in the range 10(-11)-10(-6) M SP and was maximal at 10(-7) M SP, with an EC50 of 0.3-0.5 nM SP. We further demonstrated that the SPR is rapidly desensitized following SP stimulation and by activation of the cell's T-cell receptor (TCR). Whole-cell patch-clamp experiments on J-SPR show that SP stimulation induces a Cl- current by a Ca2+ mediated process dependent on Ca2+/calmodulin-dependent protein kinase (CaMK). 4. Stimulation of J-SPR by SP results in changes in the cell surface expression of a number of molecules that play important roles in cell adhesion and activation: the expression of LFA-1 is decreased, and CD2 and IL-2 receptors are increased by 30 min, 6 hr, and 24 hr, respectively, following stimulation, as assessed by antibody staining in a FACS. 5. The expression of functional SPRs in Jurkat lymphocytes will not permit a detailed examination of how the activation of SPRs result in altered immune responses and further elucidate the role this neuropeptide receptor plays in inflammation.  相似文献   

3.
The neuropeptide substance P (SP) stimulates human T-lymphocyte function in vitro. Human blood T-lymphocytes and cultured human IM-9 B-lymphoblasts express 7,000-10,000 and 25,000-30,000 substance P receptors per cell, respectively. The specific binding of 125I-SP is retained in IM-9 lymphoblast membranes solubilized in 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS) at a detergent-to-protein ratio of 1.0. In addition, specific and reversible SP binding to soluble IM-9 cell membrane proteins is demonstrated by gel filtration. The saturation of binding of 125I-SP to both intact and solubilized IM-9 cell membranes attained a steady state after 40-50 min at 4 degrees C. Scatchard analysis of the concentration dependence of 125I-SP binding to IM-9 cell membranes revealed a KD of 0.87 +/- 0.8 nM (mean +/- S.D., n = 4), which is similar to that observed in intact cells, and a density of receptors of 21 +/- 3 fmol/mg of membrane protein (mean +/- S.D.). Binding of 125I-SP to solubilized membranes demonstrated a KD of 0.75 +/- 0.33 nM (mean +/- S.D., n = 3) and a density of receptors of 3.7 +/- 1.5 fmol/mg of membrane protein (mean +/- S.D., n = 3). Affinity cross-linking of 125I-SP by disuccinimidyl suberate to intact IM-9 cells and membranes revealed specifically labeled proteins of Mr 58,000 and 33,000 in cells, and 58,000, 33,000, and 16,000 in membranes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under both reducing and nonreducing conditions. Competitive effects of substituent peptides of SP on cross-linking and 125I-SP binding to membranes demonstrated that the SP receptor recognized the carboxyl-terminal domain of the peptide. Membranes from cells preincubated in vitro for 12 h at 37 degrees C with 10(-8) M SP demonstrated a decrease in SP receptor density to 13 +/- 2 fmol/mg (mean +/- S.D., n = 2), and a parallel diminution in the specific labeling of membrane proteins of Mr 58,000 and 33,000. These observations suggest that solubilization in CHAPS preserves the binding characteristics of the IM-9 lymphoblast receptor for SP, and that affinity cross-linking techniques identify by sodium dodecyl sulfate-polyacrylamide gel electrophoresis membrane proteins that are specifically labeled by SP.  相似文献   

4.
Binding studies have shown that [125I]NKA is a selective ligand of tachykinin septide-sensitive binding sites from membranes of the rat submaxillary gland. Indeed, this ligand bound with high affinity to a single population of sites. In addition, competition studies indicated that natural tachykinins and tachykinin-related compounds had a similar affinity for these sites than for those labeled with [3H]ALIE-124, a selective ligand of septide-sensitive binding sites. Moreover, selective tachykinin NK2, or NK3 agonists or antagonists exhibited weak or no affinity for [125I]NKA binding sites. As indicated by Ki values of several compounds, the pharmacological characteristics of the septide-sensitive binding sites (labeled with [125I]NKA) largely differ from those of classic NK1 binding sites, as determined on crude synaptosomes from the rat brain using [125I]Bolton-Hunter substance P (SP) as ligand. Indeed, several tachykinins including neurokinin A (NKA), neuropeptide K (NPK), neuropeptide gamma (NKgamma), and neurokinin B, as well as some SP and NKA analogues or C-terminal fragments such as septide, ALIE-124, SP(6-11), NKA(4-10), which have a weak affinity for classic tachykinin NK1 binding sites exhibited a high affinity for the septide-sensitive binding sites. In contrast, SP, classic selective NK1 agonists, and antagonists had a high affinity for both types of binding sites. The presence of a large population of tachykinin septide-sensitive binding sites in the rat submaxillary gland may thus explain why NPK and NPgamma induce salivary secretion and may potentiate the SP-evoked response in spite of the absence of tachykinin NK2 receptors in this tissue.  相似文献   

5.
Neurokinin1 (NK1) receptors are up-regulated in the spinal cord during peripheral inflammation, but the biochemical mediators regulating this change have not been resolved. The promoter region of the gene encoding the NK1 receptor contains a cyclic AMP (cAMP)-responsive element. Therefore, we used primary cultures of neonatal rat spinal cord to test whether increasing intracellular cAMP can increase expression of NK1 receptors. Treatment with dibutyryl-cAMP (dbcAMP) resulted in a time-dependent increase in 125I-Bolton-Hunter-substance P (BHSP) binding in the cultures; treatment with dibutyryl-cyclic GMP did not. Treatment with forskolin plus 3-isobutyl-1-methylxanthine mimicked the increase in binding, providing further evidence for the involvement of cAMP in this effect. Scatchard analyses indicated that the increase in BHSP binding was due to an increase in binding capacity. The cAMP-induced increase in BHSP binding was preceded by an increase in levels of mRNA for NK1 receptor and was attenuated by pretreatment with cycloheximide. These data indicate that the cAMP-induced increase in binding was due to increased synthesis of NK1 receptors. Comparison of substance P (SP)-induced production of inositol phosphates between cultures pretreated with dbcAMP and controls suggested that increased expression of NK1 receptors did not result in increased generation of second messenger by NK1 receptor activation. Together, these data indicate that a persistent increase in intracellular cAMP increases expression of NK1 receptors. Because NK1 receptor activation contributes to increased excitability of spinal neurons, the increased expression of NK1 receptors may be important in maintaining responsiveness of spinal neurons to SP in central mechanisms underlying hyperalgesia.  相似文献   

6.
The specific binding of 125I-Bolton Hunter substance P (125I-BHSP) was estimated on 4- to 5-week-old primary cultures of astrocytes from several brain structures and the spinal cord of 16-day-old embryonic or newborn rats. In both cases, high levels of binding of 125I-BHSP were found on intact astrocytes from the brainstem, but this binding was low or negligible on cells from the cerebral cortex, striatum, hypothalamus, and mesencephalon. In addition, hippocampal astrocytes from newborn rats were also devoid of 125I-BHSP binding sites, while a binding of 125I-BHSP (half that of brainstem cells) was observed on astrocytes from the cerebellum and spinal cord. It was also shown that this regional heterogeneity in 125I-BHSP binding was not linked to differences in the inactivation of the ligand, cell plating density. or eventual cell contaminants. Five-day-old cultures from 16-day-old embryos were used to estimate 125I-BHSP binding on neuron-enriched cultures. Specific 125I-BHSP binding was found on cells from the brainstem, mesencephalon, and hypothalamus, but neurons from the cerebral cortex or the striatum contained low or negligible amounts of 125I-BHSP binding sites. Competition studies using tachykinins and SP analogues indicated that 125I-BHSP binding sites on brainstem astrocytes (16-day-old embryos) have the pharmacological profile expected for NK1 binding sites. SP (1 microM) stimulated phosphoinositide breakdown in cells rich in 125I-BHSP binding sites (brainstem) but not in those devoid of 125I-BHSP binding (striatum).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Pain and neurotransmitters   总被引:5,自引:0,他引:5  
1. To study physiological roles of substance P (SP), gamma-aminobutyric acid (GABA), enkephalins and other endogenous substances, we developed several kinds of isolated spinal cord preparations of newborn rats. 2. In these preparations, various slow responses of spinal neurons evoked by stimulation of primary afferent C fibers were depressed by a tachykinin antagonist, spantide. These results together with many other lines of evidence suggest that SP and neurokinin A serve as pain transmitters in a subpopulation of primary afferent C fibers. 3. Some C-fiber responses in various isolated spinal cord preparations were depressed by GABA, muscimol, and opioid peptides. In contrast, bicuculline (GABA antagonist) and naloxone (opioid antagonist) potentiated the "tail pinch potential," i.e., a nociceptive response of the ventral root evoked by pinch stimulation of the tail in isolated spinal cord-tail preparation of the newborn rat. The latter results support the hypothesis that some primary afferents activate inhibitory spinal interneurons which release GABA and enkephalins as transmitters to modulate pain inputs.  相似文献   

8.
The distribution of binding sites in rat brain for iodinated neurokinin A and iodinated substance P were compared using autoradiography. Distinct patterns of binding for the two iodinated tachykinins were noted. Binding sites for iodinated neurokinin A were noted in the olfactory bulb, cortex, supraoptic n., paraventricular n., certain amygdaloid n., hippocampus, medial habenula, interpeduncular n., n. of the tractus solitarius, and dorsal horn of the spinal cord. This pattern was in contrast to low levels of binding of iodinated substance P to the cortex, supraoptic n., paraventricular n., and the interpeduncular n., but substantial density of binding sites in numerous other regions.  相似文献   

9.
10.
Buprenorphine: High-Affinity Binding to Dorsal Spinal Cord   总被引:1,自引:0,他引:1  
The binding of the mixed opiate agonist-antagonist [3H]buprenorphine was compared with [3H]naloxone and [3H]dihydromorphine binding in membranes prepared from rat whole brain and dorsal spinal cord. Scatchard analysis of binding to whole brain yielded KD values close to 1.0 nM for all three 3H-ligands studied, although [3H]buprenorphine labelled five times as many binding sites. [3H]Naloxone and [3H]dihydromorphine bound to dorsal spinal cord with approximately the same affinity as to whole brain, although both 3H-ligands labelled fewer sites in the spinal cord. In contrast, Scatchard analysis of [3H]buprenorphine binding to spinal cord yielded curvilinear Scatchard plots, suggesting the presence of a very high-affinity (KD = 0.12 nM) binding site in addition to the high-affinity site (KD = 1.0 nM) present in the brain. Studies on the displacement of [3H]buprenorphine by opiates and D-Ala2,Met5-enkephalinamide supported the presence of two binding sites for this ligand in the spinal cord.  相似文献   

11.
Developmental motoneuron cell death and neurotrophic factors   总被引:5,自引:0,他引:5  
During the development of higher vertebrates, motoneurons are generated in excess. In the lumbar spinal cord of the developing rat, about 6000 motoneurons are present at embryonic day 14. These neurons grow out axons which make contact with their target tissue, the skeletal muscle, and about 50% of the motoneurons are lost during a critical period from embryonic day 14 until postnatal day 3. This process, which is called physiological motoneuron cell death, has been the focus of research aiming to identify neurotrophic factors which regulate motoneuron survival during this developmental period. Motoneuron cell death can also be observed in vitro when the motoneurons are isolated from the embryonic avian or rodent spinal cord. These isolated motoneurons and other types of primary neurons have been a useful tool for studying basic mechanisms underlying neuronal degeneration during development and under pathophysiological conditions in neurodegenerative disorders. Accumulating evidence from such studies suggests that some specific requirements of motoneurons for survival and proper function may change during development. The focus of this review is a synopsis of recent data on such specific mechanisms.  相似文献   

12.
Glycine is the principal inhibitory neurotransmitter in posterior regions of the brain. In addition, glycine serves as an allosteric regulator of excitatory neurotransmission mediated by the N-methyl-D-aspartate (NMDA) acidic amino acid receptor subtype. The studies presented here characterize [3H]glycine binding to washed membranes prepared from rat spinal cord and cortex, areas enriched in glycine inhibitory and NMDA receptors, respectively, in an attempt to define the glycine recognition sites on the two classes of receptors. Specific binding for [3H]glycine was seen in both cortex and spinal cord. Saturation analyses in cortex were best fitted by a two-site model with respective equilibrium dissociation constants (KD values) of 0.24 and 5.6 microM and respective maximal binding constants (Bmax values) of 3.4 and 26.7 pmol/mg of protein. Similar analyses in spinal cord were best fitted by a one-site model with a KD of 5.8 microM and Bmax of 20.2 pmol/mg of protein. Na+ had no effect on [3H]glycine binding to cortical membranes but increased the binding to spinal cord membranes by greater than 15-fold. This Na+-dependent binding may reflect glycine binding to the recognition site of the high-affinity, Na+-dependent glycine uptake system. Several short-chain, neutral amino acids displaced [3H]glycine binding from both cortical and spinal cord membranes. The most potent displacers of [3H]glycine binding to cortical membranes were D-serine and D-alanine, followed by the L-isomers of serine and alanine and beta-alanine. In contrast, D-serine and D-alanine were similar in potency to L-serine in spinal cord membranes. Compounds active at receptors for the acidic amino acids had disparate effects on the binding of [3H]glycine. At 10 microM, NMDA resulted in a 25% increase, whereas D- and L-2-amino-5-phosphonovaleric acid at 100 microM resulted in a 30% decrease, in [3H]glycine binding to cortical membranes. Kynurenic acid was the most potent of the acidic amino acid-related compounds at displacing [3H]glycine binding. In cortical membranes, kynurenic acid displacement was resolved into a high- and a low-affinity component; the high-affinity component displaced the high-affinity component of [3H]glycine binding.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Substance P (SP), a neuropeptide found in high concentrations in the gut, is reported to have many potent immunomodulatory actions. This study evaluated some effects of SP on human peripheral blood lymphocytes (PBL) and jejunal intraepithelial lymphocytes (IEL) and the expression of SP receptors on these and other lymphocytes types. In contrast to previous studies, SP (10(-8) or 10(-12) M) did not affect the proliferation (spontaneous or mitogen-induced) nor spontaneous cytotoxicity by PBL or IEL. To determine whether this unresponsiveness was due to an absence of SP receptors, the SP binding potential of these and other human lymphocyte types was determined by Scatchard analysis of radioligand binding. The IM-9 B lymphoblastoid cell line, used as a positive control, demonstrated 4838 +/- 603 or 3131 +/- 832 receptors per cell, with a Kd of 0.21 +/- 0.01 or 0.18 +/- 0.09 nM, using [3H]SP or 125I-SP, respectively. No receptors were found on PBL, polymorphonuclear leukocytes, splenocytes, IEL, or jejunal lamina propria lymphocytes using either radioligand. These findings dispute the presence of large numbers of SP receptors on lymphocytes in peripheral blood, spleen, or intestinal mucosa, and argue against any major effect of SP on T cell proliferation or spontaneous cytotoxicity.  相似文献   

14.
In sections of rat forebrain, perikarya labeled radioautographically with125I-NGF resembled cholinesterase-positive neurons in their distribution within striatum and basal forebrain. Neurons with NGF receptors were also visualized in radioautographs prepared from the basal forebrain of a cerebrus monkey. Present techniques fail to detect axons projecting from basal forebrain to hippocampus or cortex which have been shown to take up NGF selectively in retrograde transport studies. In studies with membrane-enriched preparations from rat, high-affinity binding of125I-NGF (half maximal saturation in the 15–30 pM range) was detected in basal forebrain and striatum; lower levels of high-affinity binding were seen in hippocampus and neocortex. The binding and molecular properties of these receptors are similar to those described in other NGF-responsive tissues. These observations are further evidence supporting a biological role for NGF on some forebrain cholinergic neurons in adult rat.Special issue dedicated to Dr. E. M. Shooter and Dr. S. Varon.  相似文献   

15.
The binding of substance P (SP) to receptors in peripheral tissues as well as in the CNS is subject to regulation by guanine nucleotides. In this report, we provide direct evidence that this effect is mediated by a guanine nucleotide-binding regulatory protein (G-protein) that is required for high-affinity binding of SP to its receptor. Rat submaxillary gland membranes bind a conjugate of SP and 125I-labeled Bolton-Hunter reagent (125I-BHSP) with high affinity (KD = 1.2 +/- 0.4 X 10(-9) M) and sensitivity to guanine nucleotide inhibition. Treatment of the membranes with alkaline buffer (pH 11.5) causes a loss of the high-affinity, GTP-sensitive binding of 125I-BHSP and a parallel loss of [35S]guanosine 5'-(3-O-thio)triphosphate ([35S]GTP gamma S) binding activity. Addition of purified G-proteins from bovine brain to the alkaline-treated membranes restores high-affinity 125I-BHSP binding. Reconstitution is maximal when the G-proteins are incorporated into the alkaline-treated membranes at a 30-fold stoichiometric excess of GTP gamma S binding sites over SP binding sites. Both Go (a pertussis toxin-sensitive G-protein having a 39,000-dalton alpha-subunit) and Gi (the G-protein that mediates inhibition of adenylate cyclase) appear to be equally effective, whereas the isolated alpha-subunit of Go is without effect. The effects of added G-proteins are specifically reversed by guanine nucleotides over the same range of nucleotide concentrations that decreases high-affinity binding of 125I-BHSP to native membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Calcitonin gene-related peptide (CGRP) is cleaved by an endopeptidase, also known to hydrolyze substance P (SP). The enzyme which was isolated from human cerebrospinal fluid, converted rCGRP into two products, clearly separable on HPLC. Amino acid analysis showed cleavage to occur at Leu16-Ser17. The carboxy-terminal fragment, rCGRP-(17-37), was weakly active in inhibiting 125I-rCGRP binding to a rat medulla oblongata membrane preparation, but it showed no binding to spinal cord membranes. The N-terminal fragment, rCGRP-(1-16), had very low or no affinity. Autoradiography with 125I-rCGRP showed distinct labelling of rat dorsal spinal cord, while there was no consistent pattern with 125I-rCGRP-(1-16). In the isolated guinea pig ileum preparation, the two fragments showed no CGRP-like activity. The ability of CGRP to interfere with SP degradation is offered as the explanation why CGRP has been reported to potentiate several biologic actions of SP.  相似文献   

17.
Dissociated neurons from the trigeminal (V) region of the metencephalic basal plate or the ventral spinal cord from chick embryos of Day 4 (V basal plate) or Day 5 (spinal cord) were cultured on a laminin substratum either in the presence of nerve growth factor (NGF) or in control medium. Assessment was made of neuronal survival, the amount of neurite elaborated, and the percentage of neurons initiating neurites. The presence of motoneurons was verified by retrograde labeling with the fluorescent dye diI. NGF was found to significantly increase the quantity of neuritic processes produced by the spinal cord dissociates at both 24 and 48 hr in vitro. The percentage of neurons initiating neuritic processes was significantly increased by NGF in the trigeminal population at 48 hr in vitro. Neuronal survival was not enhanced by NGF in either group. Both trigeminal and spinal cord neurons were also found to specifically bind 125I-NGF in culture. These results provide direct evidence for an influence of NGF on process formation of early embryonic motoneurons in culture.  相似文献   

18.
Specific 125I-Bolton-Hunter substance P (125I-BHSP) binding sites are present on intact cortical astrocytes of the newborn mouse in primary culture. Therefore, these cells were used to ascertain the existence of functional substance P (SP) receptors coupled positively to phospholipase C. SP stimulated phosphoinositide breakdown with an EC50 value (4.5 x 10(-10) M) similar to its IC50 value (3.8 x 10(-10) M) for inhibiting 125I-BHSP binding. The maximal response to (10(-6) M SP for 60 min) obtained was approximately 500% of control values. The rank order of potency of tachykinins was SP greater than neurokinin (NK) A greater than NKB. Long SP C-terminal fragments were more potent than shorter ones in stimulating the accumulation of 3H-inositol phosphates. SP free acid and SP N-terminal fragments were without effect. [L-Pro9]SP and SP methyl ester, two selective agonists of NK1 receptors, were almost as potent as SP. An excellent correlation was found when the abilities of tachykinins and their analogs for stimulating phosphoinositide breakdown and for inhibiting 125I-BHSP binding were compared. Finally, when used at a concentration of 3 x 10(-6) M, spantide [( D-Arg1, D-Trp7,9, Leu11]SP), an SP antagonist, competitively reduced the stimulatory effect of SP on accumulation of 3H-inositol phosphates. These results demonstrate the presence of functional SP receptors (NK1) on cortical astrocytes from the newborn mouse in primary culture.  相似文献   

19.
alpha 1-Adrenergic receptor subtypes were differentiated by their affinities for the competitive antagonist WB 4101 and their sensitivities to inactivation by chlorethylclonidine (CEC) in eight rat brain regions. WB 4101 showed low Hill coefficients for inhibition of specific 125I-[2-beta-(4-hydroxyphenyl)ethylaminomethyl]tetralone (125IBE) binding in all regions. Nonlinear regression analysis showed that there were two binding sites with different affinities for WB 4101 in each region. The proportions of these sites varied among regions, although the affinity of WB 4101 for each site remained constant. Thalamus and cerebral cortex had the highest proportion of low-affinity sites, whereas hippocampus and pons-medulla had the highest proportion of high-affinity sites. Pretreatment with CEC in hypotonic buffer significantly reduced the density of 125IBE binding sites in all brain regions. Cerebral cortex and cerebellum had the highest proportion of CEC-sensitive sites, whereas hippocampus and spinal cord had the highest proportion of CEC-insensitive sites. There was a significant correlation between the proportion of binding sites with a low affinity for WB 4101 and those sensitive to inactivation by CEC.  相似文献   

20.
Abstract: Using a radioligand binding assay, we examined ionic modulation and G protein coupling of neuropeptide FF(NPFF) receptors in membranes of rat brain and spinal cord. We found that NaCl (but not KCl or LiCl) and MgCl2 increased specific 125I-YLFQPQRFamide (125I-Y8Fa) binding to NPFF receptors in both tissues in a dose-dependent manner, with optimal conditions being 60 m M NaCl and 1 m M MgCl2. Guanine nucleotides dose-dependently inhibited specific 125I-Y8Fa binding to rat brain and spinal cord membranes with maximal effects of 64 ± 6 and 71 ± 2%, respectively. The order of potency was nonhydrolyzable GTP analogues > GTP GDP > GMP, ATP. The guanine nucleotide inhibition was observed in the absence and presence of NaCl and MgCl2. The mechanism of inhibition in spinal cord membranes appeared to be a reduction in the number of NPFF receptors; in one experiment, control KD and Bmax values were 0.068 n M and 7.2 fmol/mg of protein, respectively, and with 0.1 μ M guanylylimidodiphosphate the respective values were 0.081 n M and 4.9 fmol/mg, a 32% reduction in receptor number. Similar results were obtained with guanosine 5'-0-(3-thiotriphosphate). Our data suggest that 125I-Y8Fa binding sites in rat CNS are G protein-coupled NPFF receptors regulated by GTP and cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号