首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Saccharomyces cerevisiae non-Mendelian factor [URE3] propagates by a prion-like mechanism, involving aggregation of the chromosomally encoded protein Ure2. The N-terminal prion domain (PrD) of Ure2 is required for prion activity in vivo and amyloid formation in vitro. However, the molecular mechanism of the prion-like activity remains obscure. Here we measure the kinetics of folding of Ure2 and two N-terminal variants that lack all or part of the PrD. The kinetic folding behaviour of the three proteins is identical, indicating that the PrD does not change the stability, rates of folding or folding pathway of Ure2. Both unfolding and refolding kinetics are multiphasic. An intermediate is populated during unfolding at high denaturant concentrations resulting in the appearance of an unfolding burst phase and "roll-over" in the denaturant dependence of the unfolding rate constants. During refolding the appearance of a burst phase indicates formation of an intermediate during the dead-time of stopped-flow mixing. A further fast phase shows second-order kinetics, indicating formation of a dimeric intermediate. Regain of native-like fluorescence displays a distinct lag due to population of this on-pathway dimeric intermediate. Double-jump experiments indicate that isomerisation of Pro166, which is cis in the native state, occurs late in refolding after regain of native-like fluorescence. During protein refolding there is kinetic partitioning between productive folding via the dimeric intermediate and a non-productive side reaction via an aggregation prone monomeric intermediate. In the light of this and other studies, schemes for folding, aggregation and prion formation are proposed.  相似文献   

2.
Kinetic intermediates in protein folding are short-lived and therefore difficult to detect and to characterize. In the folding of polypeptide chains with incorrect isomers of Xaa-Pro peptide bonds the final rate-limiting transition to the native state is slow, since it is coupled to prolyl isomerization. Incorrect prolyl isomers thus act as effective traps for folding intermediates and allow their properties to be studied more easily. We employed this strategy to investigate the mechanism of slow folding of ribonuclease T1. In our experiments we use a mutant form of this protein with a single cis peptide bond at proline 39. During refolding, protein chains with an incorrect trans proline 39 can rapidly form extensive secondary structure. The CD signal in the amide region is regained within the dead-time of stopped-flow mixing (15 ms), indicating a fast formation of the single alpha-helix of ribonuclease T1. This step is correlated with partial formation of a hydrophobic core, because the fluorescence emission maximum of tryptophan 59 is shifted from 349 nm to 325 nm within less than a second. After about 20 s of refolding an intermediate is present that shows about 40% enzymatic activity compared to the completely refolded protein. In addition, the solvent accessibility of tryptophan 59 is drastically reduced in this intermediate and comparable to that of the native state as determined by acrylamide quenching of the tryptophan fluorescence. Activity and quenching measurements have long dead-times and therefore we do not know whether enzymatic activity and solvent accessibility also change in the time range of milliseconds. At this stage of folding at least part of the beta-sheet structure is already present, since it hosts the active site of the enzyme. The trans to cis isomerization of the tyrosine 38-proline 39 peptide bond in the intermediate and consequently the formation of native protein is very slow (tau = 6,500 s at pH 5.0 and 10 degrees C). It is accompanied by an additional increase in tryptophan fluorescence, by the development of the fine structure of the tryptophan emission spectrum, and by the regain of the full enzymatic activity. This indicates that the packing of the hydrophobic core, which involves both tryptophan 59 and proline 39, is optimized in this step. Apparently, refolding polypeptide chains with an incorrect prolyl isomer can very rapidly form partially folded intermediates with native-like properties.  相似文献   

3.
Thermally unfolded staphylococcal nuclease has been rapidly quenched to temperatures near 0 degree C and the refolding behavior examined using an NMR kinetic experiment. Unfolded protein, exhibiting random coil chemical shifts, persists following the quench and refolds in two distinct kinetic phases. A protein folding intermediate with a trans Lys 116-Pro 117 peptide bond is transiently overpopulated and relaxes to the predominantly cis native cis-trans equilibrium. The rate of trans-->cis isomerization in the native-like nuclease intermediate is approximately 100-fold faster than that observed in a Lys-Pro model peptide. The activation enthalpy of 20 kcal/mol observed for the nuclease Lys 116-Pro 117 peptide bond is comparable to that observed for other X-Pro isomerizations.  相似文献   

4.
The SH3 domain has often been used as a model for protein folding due to its typical two-state behaviour. However, recent experimental data at low pH as well as molecular dynamic simulations have indicated that the folding process of SH3 probably is more complicated, and may involve intermediate states. Using both kinetic and equilibrium measurements we have obtained evidence that under native-like conditions the folding of the spectrin SH3 domain does not follow a classic two-state behaviour. The curvature we observed in the Chevron plots is a strong indication of a non-linear activation energy relationship due to the presence of high-energy intermediates. In addition, circular dichroism measurements indicated that refolding after thermal denaturation did not follow the same pattern as thermal unfolding but rather implied less cooperativity and that the refolding transition increased with increasing protein concentration. Further, NMR experiments indicated that upon refolding the SH3 domain gave rise to more than one conformation. Therefore, our results suggest that the folding of the SH3 domain of αII-spectrin does not follow a classical two-state process under high-salt conditions and neutral pH. Heterogeneous folding pathways, which can include folding intermediates as well as misfolded intermediates, might give a more reasonable insight into the folding behaviour of the αII-spectrin SH3 domain.  相似文献   

5.
Antibody folding is a complex process comprising folding and association reactions. Although it is usually difficult to characterize kinetic folding intermediates, in the case of the antibody Fab fragment, domain-domain interactions lead to a rate-limiting step of folding, thus accumulating folding intermediates at a late step of folding. Here, we analyzed a late folding intermediate of the Fab fragment of the monoclonal antibody MAK 33 from mouse (kappa/IgG1). As a strategy for accumulation of this intermediate we used partial denaturation of the native Fab by guanidinium chloride. This denaturation intermediate, which can be populated to about 90%, is indistinguishable from a late-folding intermediate with respect to denaturation and renaturation kinetics. The spectroscopic analysis reveals a native-like secondary structure of this intermediate with aromatic side chains only slightly more solvent exposed than in the native state. The respective partner domains are weekly associated. From these data we conclude that the intramolecular association of the two chains during folding, with all domains in a native-like structure, follows a two-step mechanism. In this mechanism, presumably hydrophobic interactions are followed by rearrangements leading to the exact complementarity of the contact sites of the respective domains.  相似文献   

6.
Bann JG  Frieden C 《Biochemistry》2004,43(43):13775-13786
The folding of the two-domain bacterial chaperone PapD has been studied to develop an understanding of the relationship between individual domain folding and the formation of domain-domain interactions. PapD contains six phenylalanine residues, four in the N-terminal domain and two in the C-terminal domain. To examine the folding properties of PapD, the protein was both uniformly and site-specifically labeled with p-fluoro-phenylalanine ((19)F-Phe) for (19)F NMR studies, in conjunction with those of circular dichroism and fluorescence. In equilibrium denaturation experiments monitored by (19)F NMR, the loss of (19)F-Phe native intensity for both the N- and C-terminal domains shows the same dependence on urea concentration. For the N-terminal domain the loss of native intensity is mirrored by the appearance of separate denatured resonances. For the C-terminal domain, which contains residues Phe 168 and Phe 205, intermediate as well as denatured resonances appear. These intermediate resonances persist at denaturant concentrations well beyond the loss of native resonance intensity and appear in kinetic refolding (19)F NMR experiments. In double-jump (19)F NMR experiments in which proline isomerization does not affect the refolding kinetics, the formation of domain-domain interactions is fast if the protein is denatured for only a short time. However, with increasing time of denaturation the native intensities of the N- and C-terminal domains decrease, and the denatured resonances of the N-terminal domain and the intermediate resonances of the C-terminal domain accumulate. The rate of loss of the N-terminal domain resonances is consistent with a cis to trans isomerization process, indicating that from an equilibrium denatured state the slow refolding of PapD is due to the trans to cis isomerization of one or both of the N-terminal cis proline residues. The data indicate that both the N- and C-terminal domains must fold into a native conformation prior to the formation of domain-domain interactions.  相似文献   

7.
The folding pathway of the third domain of PDZ from the synaptic protein PSD-95 was characterized using kinetic and equilibrium methods by monitoring the fluorescence signal from a Trp residue that is incorporated at a near-surface position. Kinetic folding of this domain showed multiple exponential phases, whereas unfolding showed a single exponential phase. The slow kinetic phases were attributed to isomerization of proline residues, since there are five proline residues in this domain. We found that the logarithms of the rate constants for the fast phase of folding and unfolding are linearly dependent on the concentrations of denaturant. The unfolding free energy derived from these rate constants at zero denaturant was close to the value measured using the equilibrium method, suggesting the absence of detectable sub-millisecond folding intermediates. However, native-state hydrogen exchange experiments detected a partially unfolded intermediate under native conditions. It was further confirmed by a protein engineering study. These data suggest that a hidden intermediate exists after the rate-limiting step in the folding of the third domain of PDZ.  相似文献   

8.
P19(INK4d) is a tumor suppressing protein and belongs to a family of cyclin D-dependent kinase inhibitors of CDK4 and CDK6, which play a key role in human cell cycle control. P19 comprises ten alpha-helices arranged sequentially in five ankyrin repeats forming an elongated structure. This rather simple topology, combined with its physiological function, makes p19 an interesting model protein for folding studies. Urea-induced unfolding transitions monitored by far-UV CD and phenylalanine fluorescence coincide and suggest a two-state mechanism for equilibrium unfolding. Unfolding of p19 followed by 2D (1)H-(15)N HSQC spectra revealed a third species at moderate urea concentrations with a maximum population of about 30 % near 3.2 M urea. It shows poor chemical shift dispersion, but cross-peaks emerge for some residues that are distinct from the native or unfolded state. This equilibrium intermediate either arises only at high protein concentrations (as in the NMR experiment) or has similar optical properties to the unfolded state. Stopped-flow far-UV CD experiments at various urea concentrations revealed that alpha-helical structure is formed in three phases, of which only the fastest phase (10 s(-1)) depends upon the urea concentration. The kinetic of the slowest phase (0.017 s(-1)) can be resolved by 1D real-time NMR and accelerated by cyclophilin. It is limited in rate by prolyl isomerization, and native-like ordered structure cannot form prior to this isomerization. The two fast phases lead to 83 % native protein within the dead time of the NMR experiment. In contrast to p16(INK4a), which exhibits only a marginal stability and high unfolding rates, p19 shows the expected stability for a protein of this size with a clear kinetic barrier between the unfolded and folded state. Therefore, p19 might complement the function of less stable INK4 inhibitors in cell cycle control under unfavorable conditions.  相似文献   

9.
The folding kinetics and thermodynamics of the isolated C-terminal domain of the ribosomal protein L9 (CTL9) have been studied as a function of pH. CTL9 is an alpha-beta protein that contains a single beta-sheet with an unusual mixed parallel, anti-parallel topology. The folding is fully reversible and two-state over the entire pH range. Stopped-flow fluorescence and CD experiments yield the same folding rate, and the chevron plots have the characteristic V-shape expected for two-state folding. The values of DeltaG*(H2O) and the m value calculated from the kinetic experiments are in excellent agreement with the equilibrium measurements. The extrapolated initial amplitudes of both the stopped-flow fluorescence and CD measurements show that there is no detectable burst phase intermediate. The domain contains three histidine residues, two of which are largely buried in the native state. They do not participate in salt-bridges or take part in a hydrogen bonded network. NMR measurements reveal that the buried histidine residues have significantly perturbed pK(a) values in the native state. The equilibrium stability and the folding rate are found to be strongly dependent upon their ionization state. There is a linear relationship between the log of the folding rate and DeltaG* (H2O) . The protein is much more stable and folds noticeably faster at pH values above the native state pK(a) values. DeltaG*(H2O) of unfolding increases from 2.90 kcal mol(-1) at pH 5.0 to 6.40 kcal mol(-1) at pH 8.0 while the folding rate increases from 0.60 to 18.7 s(-1). Tanford linkage analysis revealed that the interactions involving the two histidine residues are largely developed in the transition state. The results are compared to other studies of the pH-dependence of folding.  相似文献   

10.
The TEM-1 β-lactamase is a globular protein containing 12 proline residues. The folding mechanism of this enzyme was investigated by kinetic and equilibrium experiments with the help of fluorescence spectroscopy and circular dichroism. The equilibrium denaturation of the protein induced by guanidine hydrochloride occurs in two discrete steps, indicating the existence of a thermodynamically stable intermediate state. Thisstate is 5.2 ± 0.4 kcal/mol less stable than the native conformation and 5.7 ± 0.2 kcal/mol more stable than the fully denaturedprotein. This intermediate state exhibits a high content of native secondary structure elements but is devoid of specific tertiary organization; its relation to the “molten globule” is discussed. Refolding kinetic experimentsrevealed the existence of a transient intermediate conformation between thethermodynamically stable intermediate and the native protein. This transient intermediate appears rapidly during the folding reaction. It exhibits a secondary structure content very similar to that of the native protein and has also recovered a significant amount of tertiary organisation. The final refolding step of the TEM-1 β-lactamase, leading to the native enzyme, is dominated by two major slow kinetic phases which probablyreflect a very complex process kinetically limited by proline cis/transisomerization. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Previous studies have suggested that the carboxy-terminal peptide (residues 401-415) and interdomain helix (residues 185-199) of yeast phosphoglycerate kinase, a two-domain enzyme, play a role in the folding and stability of the amino-terminal domain (residues 1-184). A deletion mutant has been created in which the carboxy-terminal peptide is attached to the amino-terminal domain (residues 1-184) plus interdomain helix (residues 185-199) through a flexible peptide linker, thus eliminating the carboxy-terminal domain entirely. CD, fluorescence, gel filtration, and NMR experiments indicated that, unlike versions described previously, this isolated N-domain is soluble, monomeric, compactly folded, native-like in structure, and capable of binding the substrate 3-phosphoglycerate with high affinity in a saturable manner. The midpoint of the guanidine-induced unfolding transition was the same as that of the native two-domain protein (Cm approximately 0.8 M). The free energy change associated with guanidine-induced unfolding was one-third that of the native enzyme, in agreement with previous studies that evaluated the intrinsic stability of the N-domain and the contribution of domain-domain interactions to the stability of PGK. These observations suggest that the C-terminal peptide and interdomain helix are sufficient for maintaining a native-like fold of the N-domain in the absence of the C-domain.  相似文献   

12.
The III-A intermediate constitutes the major rate-determining step in the oxidative folding of leech carboxypeptidase inhibitor (LCI). In this work, III-A has been directly purified from the folding reaction and structurally characterized by NMR spectroscopy. This species, containing three native disulfides, displays a highly native-like structure; however, it lacks some secondary structure elements, making it more flexible than native LCI. III-A represents a structurally determined example of a disulfide-insecure intermediate; direct oxidation of this species to the fully native protein seems to be restricted by the burial of its two free cysteine residues inside a native-like structure. We also show that theoretical approaches based on topological constraints predict with good accuracy the presence of this folding intermediate. Overall, the derived results suggest that, as it occurs with non-disulfide bonded proteins, native-like interactions between segments of secondary structure rather than the crosslinking of disulfide bonds direct the folding of LCI.  相似文献   

13.
Langevin dynamics is used with our physics-based united-residue (UNRES) force field to study the folding pathways of the B-domain of staphylococcal protein A (1BDD (alpha; 46 residues)). With 400 trajectories of protein A started from the extended state (to gather meaningful statistics), and simulated for more than 35 ns each, 380 of them folded to the native structure. The simulations were carried out at the optimal folding temperature of protein A with this force field. To the best of our knowledge, this is the first simulation study of protein-folding kinetics with a physics-based force field in which reliable statistics can be gathered. In all the simulations, the C-terminal alpha-helix forms first. The ensemble of the native basin has an average RMSD value of 4 A from the native structure. There is a stable intermediate along the folding pathway, in which the N-terminal alpha-helix is unfolded; this intermediate appears on the way to the native structure in less than one-fourth of the folding pathways, while the remaining ones proceed directly to the native state. Non-native structures persist until the end of the simulations, but the native-like structures dominate. To express the kinetics of protein A folding quantitatively, two observables were used: (i) the average alpha-helix content (averaged over all trajectories within a given time window); and (ii) the fraction of conformations (averaged over all trajectories within a given time window) with Calpha RMSD values from the native structure less than 5 A (fraction of completely folded structures). The alpha-helix content grows quickly with time, and its variation fits well to a single-exponential term, suggesting fast two-state kinetics. On the other hand, the fraction of folded structures changes more slowly with time and fits to a sum of two exponentials, in agreement with the appearance of the intermediate, found when analyzing the folding pathways. This observation demonstrates that different qualitative and quantitative conclusions about folding kinetics can be drawn depending on which observable is monitored.  相似文献   

14.
The cysteine endopeptidase streptopain, an extracellular enzyme from pathogenic Streptococcus pyogenes, is synthesized as a precursor containing an NH2-terminal pro-sequence. The pro-sequence of streptopain was expressed in Escherichia coli and subjected to structural and functional investigation. Heat-induced denaturation of the pro-sequence studied using circular dichroism spectroscopy revealed that it forms a compact structure and represents an independently folded domain. The isolated pro-sequence exhibits high affinity towards mature streptopain and associates with its cognate enzyme by forming an equimolar complex. Refolding of denatured streptopain in the presence of pro-sequence in vitro facilitated recovery of active enzyme. Expression of the mature streptopain in E. coli either alone, or in trans with its pro-sequence as an independent polypeptide, led to the formation of insoluble protein aggregates or functionally active enzyme, respectively. These results demonstrate that the pro-sequence domain acts as an intramolecular chaperone that directs the correct folding of the mature streptopain.  相似文献   

15.
A kinetic folding mechanism for the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli, involving four parallel channels with multiple native, intermediate and unfolded forms, has recently been proposed. The hypothesis that cis/trans isomerization of several Xaa-Pro peptide bonds is the source of the multiple folding channels was tested by measuring the sensitivity of the three rate-limiting phases (tau(1), tau(2), tau(3)) to catalysis by cyclophilin, a peptidyl-prolyl isomerase. Although the absence of catalysis for the tau(1) (fast) phase leaves its assignment ambiguous, our previous mutational analysis demonstrated its connection to the unique cis peptide bond preceding proline 28. The acceleration of the tau(2) (medium) and tau(3) (slow) refolding phases by cyclophilin demonstrated that cis/trans prolyl isomerization is also the source of these phases. A collection of proline mutants, which covered all of the remaining 18 trans proline residues of alphaTS, was constructed to obtain specific assignments for these phases. Almost all of the mutant proteins retained the complex equilibrium and kinetic folding properties of wild-type alphaTS; only the P217A, P217G and P261A mutations caused significant changes in the equilibrium free energy surface. Both the P78A and P96A mutations selectively eliminated the tau(1) folding phase, while the P217M and P261A mutations eliminated the tau(2) and tau(3) folding phases, respectively. The redundant assignment of the tau(1) phase to Pro28, Pro78 and Pro96 may reflect their mutual interactions in non-random structure in the unfolded state. The non-native cis isomers for Pro217 and Pro261 may destabilize an autonomous C-terminal folding unit, thereby giving rise to kinetically distinct unfolded forms. The nature of the preceding amino acid, the solvent exposure, or the participation in specific elements of secondary structure in the native state, in general, are not determinative of the proline residues whose isomerization reactions can limit folding.  相似文献   

16.
The equilibrium and kinetic folding/unfolding of apomyoglobin (ApoMb) were studied at pH 6.2, 11 °C by recording tryptophan fluorescence. The equilibrium unfolding of ApoMb in the presence of urea was shown to involve accumulation of an intermediate state, which had a higher fluorescence intensity as compared with the native and unfolded states. The folding proceeded through two kinetic phases, a rapid transition from the unfolded to the intermediate state and a slow transition from the intermediate to the native state. The accumulation of the kinetic intermediate state was observed in a wide range of urea concentrations. The intermediate was detected even in the region corresponding to the unfolding limb of the chevron plot. Urea concentration dependence was obtained for the observed folding/unfolding rate. The shape of the dependence was compared with that of two-state proteins characterized by a direct transition from the unfolded to the native state.  相似文献   

17.
18.
The refolding kinetics of a single-chain Fv (scFv) fragment, derived from a stabilized mutant of the phosphorylcholine binding antibody McPC603, was investigated by H/D exchange and ESI-MS and compared with the folding kinetics of its constituting domains V(H) and V(L). Both V(H) and V(L) adopt essentially native-like exchange protection within the dead time of the manual-mixing H/D exchange experiment (10 s) and in the case of V(L), which contains two cis-prolines in the native conformation, this fast protection is independent of proline cis/trans isomerization. At the earliest time point resolvable by manual mixing, fewer deuterons are protected in the scFv fragment than in the two isolated domains together, despite the fact that the scFv fragment is significantly more stable than V(L) and V(H). Full H/D exchange protection in the scFv fragment is gained on a time scale of minutes. This means that the domains in the scFv fragment do not refold independently. Rather, they associate prematurely and in nonnative form, a kinetic trap. Unproductive domain association is observed both after equilibrium- and short-term denaturation. For the equilibrium-denatured scFv fragment, whose native structure formation is dependent on a cis conformation of an interface proline in V(L), this cis/trans isomerization reaction proceeds about one order in magnitude more slowly than the escape from the trap to a conformation where full H/D exchange protection is already achieved. We interpret these data in terms of a general kinetic scheme involving intermediates with and without domain association.  相似文献   

19.
Although numerous studies have been directed at understanding early folding events through the characterization of folding intermediates, there are few reports on the very late folding events, i.e. on the events taking place on the native side of the folding barrier and on alternative conformations of the folded state. To shed further light on these issues, we have characterized by protein engineering the structure of an expanded but native-like intermediate that accumulates transiently in the unfolding reaction of the small protein S6 in the presence of SDS. The results show that the SDS micelles attack the native protein in the dead-time of the denaturation experiment, causing an expansion of the hydrophobic core prior to the major unfolding transition. We distinguish two forms of the unfolding intermediate that are correlated with the micellar structure. With spherical micelles, the expansion is seen mainly as a weakening of the interactions which anchor the two alpha-helices to the core of the S6 structure. With cylindrical micelles, prevalent at higher SDS concentrations, the expansion is more global and produces a species which closely resembles the transition-state structure for unfolding in GdmCl. Despite the highly weakened core, the micelle-associated intermediate displays cooperative unfolding, indicating a significant structural plasticity of the species on the native side of the folding barrier in the presence of SDS.  相似文献   

20.
Previous work used hydrogen exchange (HX) experiments in kinetic and equilibrium modes to study the reversible unfolding and refolding of cytochrome c (Cyt c) under native conditions. Accumulated results now show that Cyt c is composed of five individually cooperative folding units, called foldons, which unfold and refold as concerted units in a stepwise pathway sequence. The first three steps of the folding pathway are linear and sequential. The ordering of the last two steps has been unclear because the fast HX of the amino acid residues in these foldons has made measurement difficult. New HX experiments done under slower exchange conditions show that the final two foldons do not unfold and refold in an obligatory sequence. They unfold separately and neither unfolding obligately contains the other, as indicated by their similar unfolding surface exposure and the specific effects of destabilizing and stabilizing mutations, pH change, and oxidation state. These results taken together support a sequential stabilization mechanism in which folding occurs in the native context with prior native-like structure serving to template the stepwise formation of subsequent native-like foldon units. Where the native structure of Cyt c requires sequential folding, in the first three steps, this is found. Where structural determination is ambiguous, in the final two steps, alternative parallel folding is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号