首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 738 毫秒
1.
The effect of mutation aarV158 on anaphase separation of chromatids was studied on fixed cells of neural ganglia of Drosophila melanogaster larvae. It was shown that mutation aarV158 causes three types of defective chromosome segregation manifested as (1) monopolar anaphase, (2) separation of chromatids to an abnormally short distance in anaphase, and (3) bridging and lagging of some chromatids or prolonged asynchronous separation of sister chromatid sets to the poles in anaphase. We believe that the former two types of defective segregation are caused by disturbed centrosome separation at the beginning of mitosis and the third type, by defects in chromatid separation during anaphase. During the two-year maintenance of the mutation in a heterozygous state, partial correction (adaptive modification) of the defects of type 1 and type 2 (but not type 3) occurred. The correction of type 1 and type 2 defects during adaptogenesis depended on the genotype: in heterozygotes and homozygotes, respectively type 1 and type 2 were preferentially corrected. The frequency of type 3 defects remained constant during the two-year period of maintenance of the mutation in a heterozygous state. However, in all variants of the experiment, their frequency decreased with increasing distance between the sister chromatid sets. In the cells that completed the previous division with abnormalities, the checkpoint system is supposed to effectively arrest the cell cycle in the subsequent division.  相似文献   

2.
Kinetochores and chromatid cores of meiotic chromosomes of the grasshopper species Arcyptera fusca and Eyprepocnemis plorans were differentially silver stained to analyse the possible involvement of both structures in chromatid cohesiveness and meiotic chromosome segregation. Special attention was paid to the behaviour of these structures in the univalent sex chromosome, and in B univalents with different orientations during the first meiotic division. It was observed that while sister chromatid of univalents are associated at metaphase I, chromatid cores are individualised independently of their orientation. We think that cohesive proteins on the inner surface of sister chromatids, and not the chromatid cores, are involved in the chromatid cohesiveness that maintains associated sister chromatids of bivalents and univalents until anaphase I. At anaphase I sister chromatids of amphitelically oriented B univalents or spontaneous autosomal univalents separate but do not reach the poles because they remain connected at the centromere by a long strand which can be visualized by silver staining, that joins stretched sister kinetochores. This strand is normally observed between sister kinetochores of half-bivalents at metaphase II and early anaphase II. We suggest that certain centromere proteins that form the silver-stainable strand assure chromosome integrity until metaphase II. These cohesive centromere proteins would be released or modified during anaphase II to allow normal chromatid segregation. Failure of this process during the first meiotic division could lead to the lagging of amphitelically oriented univalents. Based on our results we propose a model of meiotic chromosome segregation. During mitosis the cohesive proteins located at the centromere and chromosome arms are released during the same cellular division. During meiosis those proteins must be sequentially inactivated, i.e. those situated on the inner surface of the chromatids must be eliminated during the first meiotic division while those located at the centromere must be released during the second meiotic division.by D.P. Bazett-Jones  相似文献   

3.
We used a genetic assay to monitor the behavior of sister chromatids during the cell cycle. We show that the ability to induce sister chromatid exchanges (SCE) with ionizing radiation is maximal in budded cells with undivided nuclei and then decreases prior to nuclear division. SCE can be induced in cells arrested in G2 using either nocodazole or cdc mutants. These data show that sister chromatids have two different states prior to nuclear division. We suggest that the sister chromatids of cir. III, a circular derivative of chromosome III, separate (anaphase A) prior to spindle elongation (anaphase B). Other interpretations are also discussed. SCE can be induced in cdc mutants that arrest in G2 and in nocodazole-treated cells, suggesting that mitotic checkpoints arrest cells prior to sister chromatid separation. Received: 3 July 1996 / Accepted: 4 October 1996  相似文献   

4.
We used a genetic assay to monitor the behavior of sister chromatids during the cell cycle. We show that the ability to induce sister chromatid exchanges (SCE) with ionizing radiation is maximal in budded cells with undivided nuclei and then decreases prior to nuclear division. SCE can be induced in cells arrested in G2 using either nocodazole or cdc mutants. These data show that sister chromatids have two different states prior to nuclear division. We suggest that the sister chromatids of cir. III, a circular derivative of chromosome III, separate (anaphase A) prior to spindle elongation (anaphase B). Other interpretations are also discussed. SCE can be induced in cdc mutants that arrest in G2 and in nocodazole-treated cells, suggesting that mitotic checkpoints arrest cells prior to sister chromatid separation.  相似文献   

5.
The effect of cell cycle mutation ff3 on chromosome segregation was studied on fixed cells of neural ganglia of Drosophila melanogasterlarvae. The cell distributions by diameter of interphase nuclei and by distance between sister chromatid sets were compared at anaphase and telophase. In the control wild-type strain Lausenne, the cell distribution by distance between sister chromatids in anaphase was similar to their distribution by nuclear size. The mean distance between segregating chromatids at anaphase (l av) coincided with the mean diameter of interphase nuclei (d av) and was 8.3 m. Cells passed to telophase when chromatids were at least 10 m apart. The mutant ff3 strain differed from the control strain Lausenne in cell distribution by interphase nuclear diameter and distance between sister chromatids in anaphase; the mean nuclear diameter and mean distance between segregating chromatids similarly increased to 9.3 m. A specific feature of mitosis in mutant strain ff3 was a premature beginning of telophase chromatin reorganization. This caused the occurrence of cells with abnormally short (less then the interphase nuclear diameter) distance between sister chromatid sets in telophase but not in anaphase, as if these cells had passed from anaphase to telophase prematurely, during the chromatid movement toward poles in anaphase A.  相似文献   

6.
Background information. In eukaryotic cells, proper formation of the spindle is necessary for successful cell division. For faithful segregation of sister chromatids, each sister kinetochore must attach to microtubules that extend to opposite poles (chromosome bi‐orientation). At the metaphase—anaphase transition, cohesion between sister chromatids is removed, and each sister chromatid is pulled to opposite poles of the cell by microtubule‐dependent forces. Results. We have studied the role of the minus‐end‐directed motor protein dynein by analysing kinetochore dynamics in fission yeast cells deleted for the dynein heavy chain (Dhc1) or the light chain (Dlc1). In these mutants, we found an increased frequency of cells showing defects in chromosome segregation, which leads to the appearance of lagging chromosomes and an increased rate of chromosome loss. By following simultaneously kinetochore dynamics and localization of the checkpoint protein Mad2, we provide evidence that dynein function is not necessary for spindle‐assembly checkpoint inactivation. Instead, we have demonstrated that loss of dynein function alters chromosome segregation and activates the Mad2‐dependent spindle‐assembly checkpoint. Conclusions. These results show an unexpected role for dynein in the control of chromosome segregation in fission yeast, most probably operating during the process of bi‐orientation during early mitosis.  相似文献   

7.
Slk19p is necessary to prevent separation of sister chromatids in meiosis I   总被引:4,自引:0,他引:4  
BACKGROUND: A fundamental difference between meiotic and mitotic chromosome segregation is that in meiosis I, sister chromatids remain joined, moving as a unit to one pole of the spindle rather than separating as they do in mitosis. It has long been known that the sustained linkage of sister chromatids through meiotic anaphase I is accomplished by association of the chromatids at the centromere region. The localization of the cohesin Rec8p to the centromeres is essential for maintenance of sister chromatid cohesion through meiosis I, but the molecular basis for the regulation of Rec8p and sister kinetochores in meiosis remains a mystery. RESULTS: We show that the SLK19 gene product from Saccharomyces cerevisiae is essential for proper chromosome segregation during meiosis I. When slk19 mutants were induced to sporulate they completed events characteristic of meiotic prophase I, but at the first meiotic division they segregated their sister chromatids to opposite poles at high frequencies. The vast majority of these cells did not perform a second meiotic division and proceeded to form dyads (asci containing two spores). Slk19p was found to localize to centromere regions of chromosomes during meiotic prophase where it remained until anaphase I. In the absence of Slk19p, Rec8p was not maintained at the centromere region through anaphase I as it is in wild-type cells. Finally, we demonstrate that Slk19p appears to function downstream of the meiosis-specific protein Spo13p in control of sister chromatid behavior during meiosis I. CONCLUSIONS: Our results suggest that Slk19p is essential at the centromere of meiotic chromosomes to prevent the premature separation of sister chromatids at meiosis I.  相似文献   

8.
Replicated sister chromatids are held together from their synthesis in S phase to their separation in anaphase. The process of sister chromatid cohesion is essential for the proper segregation of chromosomes in eukaroytic cells. Recent studies in Saccharomyces cerevisiae have advanced our understanding of how sister chromatid cohesion is established, maintained, and dissolved during the cell cycle. Historical observations have suggested that establishment of cohesion is roughly coincident with replication fork passage. Emerging evidence now indicates that replication fork components, such as PCNA, a novel DNA polymerase, Trf4p/Pol σ (formerly Trf4p/Pol κ), and a modified clamp-loader complex, actively participate in the process of the cohesion establishment. Here, we review the molecular events in the chromosome cycle with respect to cohesion. Failure of sister chromatid cohesion results in the aneuploidy characteristic of many birth defects and tumors in humans.  相似文献   

9.
In meiosis, chromosome cohesion is maintained by the cohesin complex, which is released in a two‐step manner. At meiosis I, the meiosis‐specific cohesin subunit Rec8 is cleaved by the protease Separase along chromosome arms, allowing homologous chromosome segregation. Next, in meiosis II, cleavage of the remaining centromere cohesin results in separation of the sister chromatids. In eukaryotes, protection of centromeric cohesion in meiosis I is mediated by SHUGOSHINs (SGOs). The Arabidopsis genome contains two SGO homologs. Here we demonstrate that Atsgo1 mutants show a premature loss of cohesion of sister chromatid centromeres at anaphase I and that AtSGO2 partially rescues this loss of cohesion. In addition to SGOs, we characterize PATRONUS which is specifically required for the maintenance of cohesion of sister chromatid centromeres in meiosis II. In contrast to the Atsgo1 Atsgo2 double mutant, patronus T‐DNA insertion mutants only display loss of sister chromatid cohesion after meiosis I, and additionally show disorganized spindles, resulting in defects in chromosome segregation in meiosis. This leads to reduced fertility and aneuploid offspring. Furthermore, we detect aneuploidy in sporophytic tissue, indicating a role for PATRONUS in chromosome segregation in somatic cells. Thus, ploidy stability is preserved in Arabidopsis by PATRONUS during both meiosis and mitosis.  相似文献   

10.
The effect of cell cycle mutation ff3 on chromosome segregation was studied on fixed cells of neural ganglia. The cell distributions by diameter of interphase nuclei and by distance between sister chromatid sets were compared at anaphase and telophase. In the control wild-type strain Lausenne, the cell distribution by distance between sister chromatids in anaphase was similar to their distribution by nuclear size. The mean distance between segregating chromatids at anaphase (lcp) coincided with the mean diameter of interphase nuclei (dcp) and was 8.3 microns. Cells passed to telophase when chromatids were at least 10 microns apart. The mutant ff3 strain differed from the control strain Lausenne in cell distribution by interphase nuclear diameter and distance between sister chromatids in anaphase; the mean nuclear diameter and mean distance between segregating chromatids similarly increased to 9.3 microns. A specific feature of mitosis in mutant strain ff3 was a premature beginning of telophase chromatin reorganization. This caused the occurrence of cells with abnormally short (less then the interphase nuclear diameter) distance between sister chromatid sets in telophase but not in anaphase, as if these cells had passed from anaphase to telophase prematurely, during the chromatid movement toward poles in anaphase A.  相似文献   

11.
Anaphase chromatid segregation defects (CSDs) were quantitatively and qualitatively studied in neural ganglion cells of third-instar larvae of several control wild type Drosophila melanogaster strains and four strains with mutations of the aar v158 , ff3, mast v40 , and CycB 2g cell cycle genes. A linear specificity was observed for the CSD frequency, type, determination, and correction probability. The probability of anaphase CSD correction was close to unity in the control strains and lower in the mutant strains. The lower correction probability in the mutant strains was explained in the context of two findings, that the mutations induced the CSDs that were atypical of the wild type strains and were potentially uncorrectable in anaphase and that the mutations negatively affected the relative anaphase time in mitosis.  相似文献   

12.
The condensin complex is a key determinant of mitotic chromosome architecture. In addition, condensin promotes resolution of sister chromatids during anaphase, a function that is conserved from prokaryotes to human. Anaphase bridges observed in cells lacking condensin are reminiscent of chromosome segregation failure after inactivation of topoisomerase II (topo II), the enzyme that removes catenanes persisting between sister chromatids following DNA replication. Circumstantial evidence has linked condensin to sister chromatid decatenation but, because of the difficulty of observing chromosome catenation, this link has remained indirect. Alternative models for how condensin facilitates chromosome resolution have been put forward. Here, we follow the catenation status of circular minichromosomes of three sizes during the Saccharomyeces cerevisiae cell cycle. Catenanes are produced during DNA replication and are for the most part swiftly resolved during and following S-phase, aided by sister chromatid separation. Complete resolution, however, requires the condensin complex, a dependency that becomes more pronounced with increasing chromosome size. Our results provide evidence that condensin prevents deleterious anaphase bridges during chromosome segregation by promoting sister chromatid decatenation.  相似文献   

13.
At the metaphase to anaphase transition, chromosome segregation is initiated by the splitting of sister chromatids. Subsequently, spindles elongate, separating the sister chromosomes into two sets. Here, we investigate the cell cycle requirements for spindle elongation in budding yeast using mutants affecting sister chromatid cohesion or DNA replication. We show that separation of sister chromatids is not sufficient for proper spindle integrity during elongation. Rather, successful spindle elongation and stability require both sister chromatid separation and anaphase-promoting complex activation. Spindle integrity during elongation is dependent on proteolysis of the securin Pds1 but not on the activity of the separase Esp1. Our data suggest that stabilization of the elongating spindle at the metaphase to anaphase transition involves Pds1-dependent targets other than Esp1.  相似文献   

14.
BACKGROUND: Proteins conserved from yeast to human hold two sister chromatids together. The failure to form cohesion in the S phase results in premature separation of chromatids in G2/M. Mitotic kinetochores free from microtubules or the lack of tension are known to activate spindle checkpoint. RESULTS: The loss of chromatid cohesion in fission yeast mutants (mis4-242 and rad21-K1) leads to the activation of Mad2- and Bub1-dependent checkpoint, possibly due to a diminished microtubule-kinetochore interaction. Bub1, a checkpoint kinase, localizes briefly at early mitotic kinetochores in wild-type, whereas the cohesion mutation greatly increases the duration of kinetochore localization. Bub1 is bound to the central centromere region of mitotic cells. These cohesion mutants are hypersensitive to a tubulin poison and are synthetic lethal with dis1 and bir1/cut17, which are defective in microtubule-kinetochore interaction. The formation of specialized centromere chromatin containing CENP-A does not require cohesion. Dominant-negative noncleavable Rad21 fails to activate checkpoint but blocks sister chromatid separation and full spindle elongation in anaphase. CONCLUSIONS: Mis4 and Rad21 (budding yeast Scc2 and Scc1 homologs, respectively) act in establishing the normal spindle-kinetochore interaction in early mitosis and inhibit sister chromatid separation until the cleavage of Rad21 in anaphase. Checkpoint directly or indirectly monitors the states of cohesion in early mitosis. Full spindle extension occurs with unequal nuclear division in cohesion mutants in the absence of Mad2.  相似文献   

15.
Faithful segregation of homologous chromosomes during the first meiotic division is essential for further embryo development. The question at issue is whether the same mechanisms ensuring correct separation of sister chromatids in mitosis are at work during the first meiotic division. In mitosis, sister chromatids are linked by a cohesin complex holding them together until their disjunction at anaphase. Their disjunction is mediated by Separase, which cleaves the cohesin. The activation of Separase requires prior degradation of its associated inhibitor, called securin. Securin is a target of the APC/C (Anaphase Promoting Complex/Cyclosome), a cell cycle-regulated ubiquitin ligase that ubiquitinates securin at the metaphase-to-anaphase transition and thereby targets it for degradation by the 26S proteasome. After securin degradation, Separase cleaves the cohesins and triggers chromatid separation, a prerequisite for anaphase. In yeast and worms, the segregation of homologous chromosomes in meiosis I depends on the APC/C and Separase activity. Yet, it is unclear if Separase is required for the first meiotic division in vertebrates because APC/C activity is thought to be dispensable in frog oocytes. We therefore investigated if Separase activity is required for correct chromosome segregation in meiosis I in mouse oocytes.  相似文献   

16.
LeBlanc HN  Tang TT  Wu JS  Orr-Weaver TL 《Chromosoma》1999,108(7):401-411
Faithful segregation of sister chromatids during cell division requires properly regulated cohesion between the sister centromeres. The sister chromatids are attached along their lengths, but particularly tightly in the centromeric regions. Therefore specific cohesion proteins may be needed at the centromere. Here we show that Drosophila MEI-S332 protein localizes to mitotic metaphase centromeres. Both overexpression and mutation of MEI-S332 increase the number of apoptotic cells. In mei-S332 mutants the ratio of metaphase to anaphase figures is lower than wild type, but it is higher if MEI-S332 is overexpressed. In chromosomal squashes centromeric attachments appear weaker in mei-S332 mutants than wild type and tighter when MEI-S332 is overexpressed. These results are consistent with MEI-S332 contributing to centromeric sister-chromatid cohesion in a dose-dependent manner. MEI-S332 is the first member identified of a predicted class of centromeric proteins that maintain centromeric cohesion. Received: 11 December 1998; in revised form: 4 August 1999 / Accepted: 13 August 1999  相似文献   

17.
Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast   总被引:50,自引:0,他引:50  
Uhlmann F  Wernic D  Poupart MA  Koonin EV  Nasmyth K 《Cell》2000,103(3):375-386
In eukaryotic cells, replicated DNA strands remain physically connected until their segregation to opposite poles of the cell during anaphase. This "sister chromatid cohesion" is essential for the alignment of chromosomes on the mitotic spindle during metaphase. Cohesion depends on the multisubunit cohesin complex, which possibly forms the physical bridges connecting sisters. Proteolytic cleavage of cohesin's Sccl subunit at the metaphase to anaphase transition is essential for sister chromatid separation and depends on a conserved protein called separin. We show here that separin is a cysteine protease related to caspases that alone can cleave Sccl in vitro. Cleavage of Sccl in metaphase arrested cells is sufficient to trigger the separation of sister chromatids and their segregation to opposite cell poles.  相似文献   

18.
Background Precise control of sister chromatid separation is essential for the accurate transmission of genetic information. Sister chromatids must remain linked to each other from the time of DNA replication until the onset of chromosome segregation, when the linkage must be promptly dissolved. Recent studies suggest that the machinery that is responsible for the destruction of mitotic cyclins also degrades proteins that play a role in maintaining sister chromatid linkage, and that this machinery is regulated by the spindle-assembly checkpoint. Studies on these problems in budding yeast are hampered by the inability to resolve its chromosomes by light or electron microscopy.Results We have developed a novel method for visualizing specific DNA sequences in fixed and living budding yeast cells. A tandem array of 256 copies of the Lac operator is integrated at the desired site in the genome and detected by the binding of a green fluorescent protein (GFP)–Lac repressor fusion expressed from the HIS3 promoter. Using this method, we show that sister chromatid segregation precedes the destruction of cyclin B. In mad or bub cells, which lack the spindle-assembly checkpoint, sister chromatid separation can occur in the absence of microtubules. The expression of a tetramerizing form of the GFP–Lac repressor, which can bind Lac operators on two different DNA molecules, can hold sister chromatids together under conditions in which they would normally separate.Conclusions We conclude that sister chromatid separation in budding yeast can occur in the absence of microtubule-dependent forces, and that protein complexes that can bind two different DNA molecules are capable of holding sister chromatids together.  相似文献   

19.
Key to faithful genetic inheritance is the cohesion between sister centromeres that physically links replicated sister chromatids and is then abruptly lost at the onset of anaphase. Misregulated cohesion causes aneuploidy, birth defects and perhaps initiates cancers. Loss of centromere cohesion is controlled by the spindle checkpoint and is thought to depend on a ubiquitin ligase, the Anaphase Promoting Complex/Cyclosome (APC). But here we present evidence that the APC pathway is dispensable for centromere separation at anaphase in mammals, and that anaphase proceeds in the presence of cyclin B and securin. Arm separation is perturbed in the absence of APC, compromising the fidelity of segregation, but full sister chromatid separation is achieved after a delayed anaphase. Thereafter, cells arrest terminally in telophase with high levels of cyclin B. Extending these findings we provide evidence that the spindle checkpoint regulates centromere cohesion through an APC-independent pathway. We propose that this Centromere Linkage Pathway (CLiP) is a second branch that stems from the spindle checkpoint to regulate cohesion preferentially at the centromeres and that Sgo1 is one of its components.

Supplemental Figures  相似文献   

20.
The effect of the mast v40 mutation was studied using neural ganglion cells of third-instar larvae of Drosophila melanogaster. The distributions of the cells by the interphase nucleus diameter and by the distance between the sister chromosome sets in anaphase were analyzed. Three following types of defects induced by the mutation were described: (1) Monopolar mitosis or, in the case of bipolar mitosis, an abnormally short distance between the sister chromosome sets in anaphase and early telophase. We suppose that these abnormalities are caused by damage of the start and (or) motor mechanisms of centrosome separation at the beginning and in the end of mitosis. (2) Lagging and bridging of chromosomes in anaphase and early telophase. These defects seem to be related to the disruption of functioning of mitotic spindle microtubules and (or) their defective attachment to the appropriate kinetochores. (3) Unlimited division of aneuploid and polyploid cells, which may be explained either by inactivation of the checkpoint system controlling the genome ploidy or by checkpoint adaptation. Taken collectively, our results and literature data suggest that the MAST protein is an element of the checkpoint system and that division of aneuploid and polyploid cells results from inactivation of the checkpoints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号