首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Halothane (CF3CHClBr), a widely used volatile anesthetic, undergoes extensive biotransformation in humans. Oxidative halothane metabolism yields the stable metabolites trifluoroacetic acid and bromide which can be detected in plasma and urine. To date, analytical methodologies have either required extensive sample preparation, or two separate analytical procedures to determine plasma and urine concentrations of these analytes. A rapid and sensitive method utilizing high-performance liquid chromatography-ion chromatography (HPLC-IC) with suppressed conductivity detection was developed for the simultaneous detection of both trifluoroacetic acid and bromide in plasma and urine. Sample preparation required only ultrafiltration. Standard curves were linear (r2≥0.99) from 10 to 250 μM trifluoroacetic acid and 2 to 5000 μM bromide in plasma and 10 to 250 μM trifluoroacetic acid and 2 to 50 μM bromide in urine. The assay was applied to quantification of trifluoroacetic acid and bromide in plasma and urine of a patient undergoing halothane anesthesia.  相似文献   

2.
Thermal stability of pressurised ready-to-use volatile liquid anaesthetic mixtures (halothane, isoflurane and enflurane) in Entonox (commercially available premixed 50% N2O, 50% O2 mixture) were investigated at temperatures of 20, 258, 400, 503 and 602°C on glass, stainless steel, copper and aluminium by gas chromatography and GC–MS. It was found that most of the decomposition products formed were halogenated compounds and the observed thermal stabilities in glass, stainless steel and copper allowed a thermal treatment up to 250°C without any decomposition problem. Aluminium was found to be the most effective metal at causing decomposition of the anaesthetic mixtures even at lower temperatures.  相似文献   

3.
In the current study, we scrutinized the effect of sevoflurane and halothane on cognitive and immune function in young rats. The rats were divided into following groups: sevoflurane, halothane and sevoflurane + halothane groups, respectively. The rats were regularly treated with the pre-determined treatment. We also scrutinized the serum proinflammatory cytokines including IL-10, IL-4 and IL-2; brain level IL-1β; hippocampal neuronal apoptosis concentration were estimated. The water maze test was performed in rats for the estimation of cognitive ability. During the water maze test, on the 1st day the sevoflurane group showed the latency; sevoflurane and sevoflurane + halothane group demonstrated the declined latency gradually as compared to the control group rats after the 3 days. The latency of the control, halothane, sevoflurane + halothane group rats showed the reduced latency and also showed the reduced crossing circle times. The hippocampal neuron apoptosis was significantly increased in halothane and sevoflurane + halothane group as compared to control group rats, respectively. Control group rats demonstrated the increased neuron apoptosis. The proinflammatory cytokines including IL-10 and IL-4 was significantly higher in sevoflurane, halothane and sevoflurane + halothane group rats after anesthesia and the whole brain IL-1β was significantly decrease in the sevoflurane, halothane and sevoflurane + halothane as compared to control group. Sevoflurane can inhibit the anesthesia effect of halothane on the immune and cognitive function of rats.  相似文献   

4.
Synaptosomes isolated from rat cerebra were used to study the effects of the inhalational anesthetic, halothane, on cholinergic processes. To identify possible mechanisms responsible for the depression of acetylcholine synthesis, we examined the effects of halothane on precursor metabolite metabolism involved with supplying the cytosol with acetyl-CoA for acetylcholine synthesis. Three percent halothane/air (vol/vol) depressed 14CO2 evolution from labeled pyruvate and glucose. Steady-state 14CO2 evolution from [1-14C]glucose was depressed 84% by halothane, while 14CO2 evolution from [6-14C]glucose and [3,4-14C]glucose was decreased 67 and 52%, respectively, when compared with control conditions. Halothane inhibited the activities of both pyruvate dehydrogenase (14% depression) and ATP-citrate lyase (32% depression). Total synaptosomal acetyl-CoA concentrations were unaffected by halothane. Three percent halothane/air (vol/vol) caused a 77% increase in medium glucose depletion rate from 1.38 nmol (mg protein)-1 min-1 to 2.44 nmol (mg protein)-1 min-1. Production of lactate by the synaptosomes in the presence of halothane increased by 231% from a control rate of 1.44 nmol (mg protein)-1 min-1 to 4.77 nmol (mg protein)-1 min-1. Lactate production rate from pyruvate was also enhanced by 56% in the presence of halothane. These data lend support to the concept that the NAD+/NADH potential may be involved in the halothane-induced depression of acetylcholine synthesis.  相似文献   

5.
《Free radical research》2013,47(3-6):343-351
Free radicals were detected from the in vim metabolism of halothane (rat liver microsomes) by the PBN spin trapping method. The detected radical species include the I-chloro-2.2.2-trifluoro-I-ethyl radical (I). as determined by mass spectral analysis, and lipid-type radicals assigned by high resolution ESR spectro-scopy with the use of d, deuterated PBN. The lipid-derived radicals are a carbon-centred radical with the partially assigned structure 'CH, R and an oxygen-centred radical of the OR type. From the mass spectral analysis of the spin adduct mixture there is also evidence for a halocarbon double adduct of PBN of the type I-PBN-I.  相似文献   

6.
Fluorinated anesthetics such as halothane preferentially partition into hydrophobic environments such as cell membranes. The 19F-NMR spectrum of halothane in a rat adenocarcinoma (with known altered lipid metabolism and membrane composition) shows an altered chemical shift pattern compared to the anesthetic in normal tissue. In eight tumor samples examined, the 19F-NMR spectra exhibit two distinct resonances, compared to a single resonance observed in normal tissues. This is explained by an enhanced or altered hydrophobic component in the tumor tissue giving rise to two discrete halothane environments. Another fluorinated anesthetic, isoflurane, shows similar behavior in distinguishing normal from diseased tissue. Given the large chemical shift range of fluorine and the inherent sensitivity of this nucleus, 19F-NMR spectra of fluorinated anesthetics can also be used to follow anesthetic degradation by the liver. The ability of fluorinated anesthetics to discriminate tissues and to monitor metabolic processes is potentially useful for in vivo 19F-NMR surface coil and imaging studies.  相似文献   

7.
In this study we used barium currents through voltage gated L-type calcium channels (recorded in freshly isolated cells with a conventional patch-clamp technique) to elucidate the cellular action mechanism for volatile anesthetics. It was found that halothane and isoflurane inhibited (dose-dependently and voltage independently) Ba2+ currents through voltage gated Ca2+ channels. Half maximal inhibitions occurred at 0.64 ± 0.07 mM and 0.86 ± 0.1 mM. The Hill slope value was 2 for both volatile anesthetics, suggesting the presence of more than one interaction site. Current inhibition by volatile anesthetics was prominent over the whole voltage range without changes in the peak of the current voltage relationship. Intracellular infusion of the GDPβS (100 μM) together with staurosporine (200 nM) did not prevent the inhibitory effect of volatile anesthetics. Unlike pharmacological Ca2+ channel blockers, volatile anesthetics blocked Ca2+ channel currents at resting membrane potentials. In other words, halothane and isoflurane induced an ‘initial block’. After the first 4–7 control pulses, the cells were left unstimulated and anesthetics were applied. The first depolarization after the pause evoked a Ca2+ channel current whose amplitude was reduced to 41 ± 3.4% and to 57 ± 4.2% of control values. In an analysis of the steady-state inactivation curve for voltage dependence, volatile anesthetics induced a negative shift of the 50% inactivation of the calcium channels. By contrast, the steepness factor characterizing the voltage sensitivity of the channels was unaffected. Unitary L-type Ca2+ channels blockade occurred under cell-attached configuration, suggesting a possible action of volatile anesthetics from within the intracellular space or from the part of the channel inside the lipid bilayer.  相似文献   

8.
In spite of numerous investigations, the molecular mechanism of general anesthetics action is still not well understood. It has been shown that the anesthetic potency is related to the ability of an anesthetic to partition into the membrane. We have investigated changes in structure, dynamics and forces of interaction in supported dipalmitoylphosphatidylcholine (DPPC) bilayers in the presence of the general anesthetic halothane. In the present study, we measured the forces of interaction between the probe and the bilayer using an atomic force microscope. The changes in force curves as a function of anesthetic incorporation were analyzed. Force measurements were in good agreement with AFM imaging data, and provided valuable information on bilayer thickness, structural transitions, and halothane-induced changes in electrostatic and adhesive properties.  相似文献   

9.
The halogenated hydrocarbons, such as halothane, are widely used as anesthetics in clinical practice; however their application is often accompanied with metabolic, cardiovascular and respiratory complications. One of the possible factors for this negative outcome might be the severe toxicity of these agents. In this paper, we investigate in vitro effects of halothane on human lung carcinoma A 549 cells, namely on their cytotoxicity, adhesive properties and metabolic activity. The cytotoxicity response of lung carcinoma A 549 cells to halothane was determined by lactate dehydrogenase (LDH) assay (for cytotoxicity), by detachment assay after adhesion to type IV collagen (for cell adhesive properties) and by surface tension measurements of culture medium (for cell metabolic activity). Regarding the cytotoxicity, the determined maximal non-toxic concentration of halothane on A 549 cells, given here as volume percentages (vol.%) was 0.7 vol.% expressed as aqueous concentration in the culture medium. Direct measurement of the actual halothane concentration in the culture medium showed that 0.7 vol.% corresponds to 1.05 mM and 5.25 aqueous-phase minimum alveolar concentration (MAC). Concentrations equal or higher than 1.4 vol.% (2.1 mM; 10.5 MAC) of halothane provoked complete detachment (cell death), or reduction of initial adhesion to collagen IV in half of the cell population. Surfactant production of A 549 cells, registered up to 48 h after halothane treatment, was inhibited by halothane concentrations as low as 0.6 vol.% (0.9 mM; 4.5 MAC). Our results demonstrate that sub toxic halothane concentrations of 0.6 vol.% inhibits surfactant production; concentrations in the range 0.8-1.4 vol.% induce membrane damages and concentrations equal and higher than 1.4 vol.%--cell death of approximately 50% of the cells.  相似文献   

10.
Volatile anaesthetics such as halothane, isoflurane and sevoflurane inhibit membrane currents contributing to the ventricular action potential. Transmural variation in the extent of current blockade induces differential effects on action potential duration (APD) in the endocardium and epicardium which may be pro-arrhythmic. Biophysical modelling techniques were used to simulate the functional impact of anaesthetic-induced blockade of membrane currents on APD and effective refractory period (ERP) in rat endocardial and epicardial cell models. Additionally, the transmural conduction of excitation waves in 1-dimensional cell arrays, the tissue's vulnerability to arrhythmogenesis and dynamic behaviour of re-entrant excitation in 2-dimensional cell arrays were studied. Simulated anaesthetic exposure reduced APD and ERP in both epicardial and endocardial cell models. The reduction in APD was greater in endocardial than epicardial cells, reducing transmural APD dispersion consistent with experimental data. However, the transmural ERP dispersion was augmented. All three anaesthetics increased the width of the tissue's vulnerable window during which a premature stimulus could induce unidirectional conduction block but only halothane reduced the critical size of ventricular substrates necessary to initiate and sustain re-entrant excitation. All three anaesthetics accelerated the rate of re-entrant excitation waves, but only halothane prolonged the lifespan of re-entry. These data illustrate in silico, that modest changes in ion channel conductance abbreviate rat ventricular APD and ERP, reduce transmural APD dispersion, but augment transmural ERP dispersion. These changes collectively enhance the propensity for arrhythmia generation and provide a substrate for re-entry circuits with a longer half life than in control conditions.  相似文献   

11.
Although the fluorinated inhalation anesthetics, including desflurane, sevoflurane, isoflurane, enflurane, and halothane are commonly used, fatal cases resulting from their abuse or misuse have been reported. To date, gas chromatography (GC) equipped with different kinds of detectors has been utilized to analyze inhalation anesthetics. However, none of them can detect desflurane reliably or analyze all five common anesthetics simultaneously. The purpose of the present work is to further modify the previously developed headspace (HS) GC–MS method for blood isoflurane determination to analyze and distinguish five common clinical inhalation anesthetics, simultaneously. The modified HS-GC–MS method adopts a 60 m×0.25 mm I.D., 0.25 μm film thickness DB-5 capillary column along with an adequate GC temperature program, which gives the five inhalation anesthetics, including isoflurane and its isomer, enflurane, a high resolution. The method also takes both the volatility and the influence of the top space on the obtained concentration into consideration and therefore keeps the sample loss acceptable even for analyzing the highly volatile desflurane. Within a certain concentration range of the calibration standard (about 20–300 μg/ml), this method shows a good linearity with correlation coefficients greater than 0.999. In addition, both within- and between-run precision and accuracy results meet the validation requirements as well as the tested results of practical blood samples of desflurane. In summary, this is a reliable analytical method to simultaneously determine the concentration of five common inhalation anesthetics in blood. Such a method is very practical for both clinical and occupational monitoring, as well as for analytical toxicology.  相似文献   

12.
Genotoxicity, cytotoxicity or teratogenicity are among the well-known detrimental effects of the volatile anaesthetics. The aim of the present work was to study the structural changes, proliferative activity and the possibility of alveolar A549 cells to recover after in vitro exposure to halothane at 1.5 and 2.1 mM concentrations. Our data indicated significant reduction of viability, suppression of mitotic activity more than 60%, and that these alterations were accompanied by disturbances of nuclear and nucleolar structures. The most prominent negative effect was the destruction of the lamellar bodies, the main storage organelles of pulmonary surfactant, substantial for the lung physiology. In conclusion, halothane applied at clinically relevant concentrations exerts genotoxic and cytotoxic effect on the alveolar cells in vitro, most likely as a consequence of stress-induced apoptosis, thus modulating the respiratory function.  相似文献   

13.
Invasive surgical procedures are often used to study the reproductive and adrenocortical endocrine systems in primates. Anesthetic agents must, therefore, be used that have the least confounding effects on these systems. The present study was designed to characterize various adrenocortical endocrine responses of female baboons (Papio anubis), each treated for 120 minutes with an infusion of ketamine HCl (6 mg/min) in 5% dextrose in water (0.40 ml/min), a combination of ketamine and acetylpromazine (0.6 mg acetylpromazine and 6 mg ketamine HCl/min) in 5% dextrose in water, or inhalation of vaporized halothane (1.0% halothane, N2O 25%, 1 liter/min; O2 75%, 3 liters/min). Blood samples were collected throughout the treatment period, and serum was assayed for prolactin (PRL), dehydroepiandrosterone (DHA), dehydroepiandrosterone sulfate (DHAS), and cortisol (F). No significant elevations in DHA, F, or PRL concentrations were found following infusion of ketamine alone. Only serum DHAS concentrations were significantly altered after long-term exposure to ketamine. Acetylpromazine increased PRL concentrations tenfold to levels significantly greater than those in ketamine- and halothane-treated animals but had no effect on serum DHA, DHAS, or F. Treatment with halothane had no effect on serum PRL, DHA, or DHAS but did suppress F (>40%) concentrations over time. These data indicate that ketamine is best suited for the collection of biological samples when deep analgesia is not required but that halothane is preferable in the latter situation.  相似文献   

14.
Pan JZ  Xi J  Eckenhoff MF  Eckenhoff RG 《Proteomics》2008,8(14):2983-2992
Inhaled anesthetics bind specifically to many proteins in the mammalian brain. Within the subgroup of proteins whose activity is substantially modulated by anesthetic binding, it is reasonable to expect anesthetic-induced alterations in host expression level. Thus, in an attempt to define the group of functional targets for these commonly used drugs, we examined changes in protein expression after anesthetic exposure in both intact rodent brains and in neuronal cell culture. Differential in-gel electrophoresis was used to minimize variance, in order to detect small changes. Quantitative analysis shows that 5 h exposures to 1 minimum alveolar concentration (1 MAC) halothane caused changes in the expression of approximately 2% of detectable proteins, but only at 2-24 h after awakening, and only in the cortex. An equipotent concentration of isoflurane altered the expression of only approximately 1% of detectable proteins, and only in the hippocampus. Primary cortical neurons were exposed to three-fold higher concentrations of anesthetics with no evidence of cytotoxicity. Small changes in protein expression were elicited by both drugs. Despite the fact that anesthetics produce profound changes in neurobiology and behavior, we found only minor changes in brain protein expression. A pronounced degree of regional selectivity was noted, indicating an under appreciated degree of specificity for these promiscuous drugs.  相似文献   

15.
Rats were exposed to 0.5% halothane in air for 8 h per day during the intervals (1) 5 days postconception to birth, (2) birth to 5 days postnatal age, or (3) birth to 10 days postnatal age. Controls were exposed to an equivalent flow of air. Prenatal exposure had no significant effect on body or brain weight and no subsequent effect on the relative synthesis of brain subcellular membranes. Five days of postnatal exposure caused a 10% reduction in body and brain weight and a 10% relative reduction in the synthesis of brain myelin. The effect persisted throughout the period of rapid postnatal brain myelination. Ten days of postnatal exposure produced equivalent, more severe effects on body and brain weights and a more severe effect on myelin synthesis. Postnatal exposure had no apparent effect on the relative synthesis of non-myelin particulate proteins.  相似文献   

16.
We compared the potencies of halothane, enflurane, and methoxyflurane in producing unconsciousness in vivo and in inhibiting the release of [3H]norepinephrine and [3H]acetylcholine in vitro. Rats were anesthetized with various concentrations of each anesthetic, and responsiveness was determined by a hemostat tail pinch. Slices of cerebral cortex were equilibrated with similar concentrations of each agent in vitro, and potassium-evoked release of [3H]norepinephrine and [3H]acetylcholine was determined. For both studies, brain concentrations of the anesthetics were determined by heptane extraction and gas chromatography. Using this method, we found that brain concentrations of all three agents which caused unconsciousness in vivo also reduced depolarization-evoked release of [3H]norepinephrine by approximately 30% in vitro. The release of [3H]acetylcholine was unaffected by similar concentrations of these anesthetics. Such selective interference with stimulus-secretion coupling in central noradrenergic, and possibly other, neurons might contribute to the depressant actions of volatile anesthetics. The differential effects on norepinephrine and acetylcholine release also suggest differences in the mechanisms by which these two transmitters are released.  相似文献   

17.
A method was devised for reproducing anesthetic concentrations of halothane in slice and membrane preparations of rat brain in vitro. Rats were anesthetized with varying concentrations of halothane, responsiveness was tested, and brain halothane content was determined by heptane extraction and gas chromatography. The inspired concentration of halothane at which half of all animals were unresponsive was 1.05%. At 1.25% halothane, all animals were unresponsive and brain halothane was determined to be 41 +/- 1.3 nmol/mg lipid. No significant differences in halothane concentration between whole brain and a variety of brain regions were detected. To obtain similar concentrations in vitro, membranes or slices of cerebral cortex were incubated in Krebs-Ringer bicarbonate buffer (KRB) that had been preequilibrated with anesthetic. Halothane equilibrated rapidly with the buffer and the tissues. The partition coefficient between gas and KRB was found to be 0.78, and between brain slices and KRB approximately 12. Slightly lower gas concentrations were necessary in vitro than in vivo to obtain the same tissue levels of anesthetic. Using this method, it was shown that there was no effect of anesthetic concentrations of halothane on the uptake of [3H]norepinephrine or [3H]choline into slices of rat cerebral cortex.  相似文献   

18.
The present study investigated the effect of halothane on acetylcholine (ACh) and dopamine (DA) release from the rat striatum. Halothane decreased DA release in a concentration-dependent manner, while increased ACh release. In our previous investigation, a volatile anesthetic, halothane, inhibited DA release from the rat striatal slices in a concentration-dependent manner. Although the release of ACh from cholinergic interneurons is tonically modulated by DA in the striatum, the effect of halothane on the relationship between the release of ACh and DA has not been discussed. Using double-labeled techniques, we investigated the effect of halothane on ACh and DA release simultaneously. The slices were incubated with [14C]-choline and [3H]-DA and superfused with modified Krebs solution containing 1 microM of hemicholinium-3. We applied electrical field stimulation (2 Hz, 240 shocks), and the amount of the release of radioactivity evoked by stimulation was calculated by subtraction of the basal radioactive outflow from the total outflow at the beginning of the respective stimulation periods. The effects of drugs on the release were expressed as the ratio of stimulation-evoked fractional releases (FR), measured in the presence and absence (FRS2/FRS1) of the drug. Halothane decreased DA release in a concentration-dependent manner (FRS2/FRS1=0.767+/-0.021, 0.715+/-0.026, 0.671+/-0.014 and 0.639+/-0.033 at the concentration of 0, 0.5, 2 and 4%, respectively), while ACh release showed a biphasic change in the presence of different concentrations of halothane. The release of ACh was significantly increased at the concentration of 2%, but not at 0.5 or 4%. Halothane failed to increase the release of ACh in striatal slices after lesion by 6-OH-dopamine. The application of amphetamine reduced the release of ACh and abolished the effect of halothane. These results indicate that the effect of halothane on ACh release is indirect: it increases the release by attenuating the inhibitory effect of DA released from the nigro-striatal pathway. The nonsynaptic interaction between DA and ACh release is involved in the effect of halothane on ACh release.  相似文献   

19.
The incorporation of two fluorine-containing general anesthetic agents, halothane and methoxyflurane, into erythrocytes (from three different species), rabbit muscle and rabbit nerve, was followed with 19F NMR spectroscopy. Two major findings emerged from these studies: (1) multiple environments indicative of domain structure in the membrane can be observed depending on the anesthetic and the tissue type; and (2) the 19F chemical shifts of a given anesthetic were characteristic for the tissue examined. Halothane showed a single resonance in erythrocytes and multiple resonances in muscle and nerve, while methoxyflurane showed multiple resonances in both muscle and erythrocytes. The range of the 19F chemical shifts for the multiple peaks was as great as 6 ppm.  相似文献   

20.
Continuous recordings were made of slow potential shift activity occurring at six locations on the surface of the cerebral cortex of seizure-prone and non seizure-prone gerbils. Measurements were made for 80-s epochs of recordings of frequency, maximum and minimum slow shift amplitude and baseline potential of the brain during periods of normal inactivity and subsequently during halothane anaesthesia. Induction of anaesthesia initially provoked large (millivolt) slow (3–4 s) oscillations in all animals, larger in amplitude than any recorded prior to anaesthesia. With increasing depth of anaesthesia, all animals also showed a reduction in the amplitude of this spontaneous slow potential shift activity. The effect was most pronounced in seizure-prone animals, and subsequent to anaesthetic-induced behavioural immobility, these animals also showed a regional resistance to the depression of spontaneous slow potential shift oscillations. Slow potential shift activity during anaesthesia represents ionic fluxes which may normally be involved in modulation of neuronal responsiveness. It was suggested that glia may be targets for anaesthetics and that seizure susceptibility may confer some degree of resistance to the depressant effects of such substances. Accepted: 25 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号