首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apostichopus (= Stichopus) japonicus blastulae and gastrulae were acclimated for 18 h to salinities of 32 (control), 24 and 22 (the lower limit of the range of tolerance), and 20 (below the range of tolerance). Acclimation to 20 resulted in the appearance of teratic larvae, most of which subsequently died. Acclimation to 24, 22, and 20 led to a shift in the range of tolerance of the larvae at further stages of development. With a decrease in salinity, acclimated larvae developed more successfully than unacclimated larvae. Acclimated larvae attained the pentactula stage and settled at a salinity range of 32–20; unacclimated larvae, at 32–22. At different stages of development, acclimated larvae survived greater decreases in salinity than unacclimated larvae. The acclimation effects could be traced up to metamorphosis and settling, i.e., two weeks after the end of the acclimation process.  相似文献   

2.
Summary The mean stable-carbon isotope ratios (13C) for polar bear (Ursus maritimus) tissues (bone collagen –15.7, muscle –17.7, fat –24.7) were close to those of the same tissues from ringed seals (Phoca hispida) (–16.2, –18.1, and –26.1, respectively), which feed exclusively from the marine food chain. The 13C values for 4 species of fruits to which polar bears have access when on land in summer ranged from –27.8 to –26.2, typical of terrestrial plants in the Arctic. An animal's 13C signature reflects closely the 13C signature of it's food. Accordingly, the amount of food that polar bears consume from terrestrial food webs appears negligible, even though some bears spend 1/3 or more of each year on land during the seasons of greatest primary productivity.  相似文献   

3.
Stable carbon (13C) and nitrogen (15N) isotopes were used to elucidate primary food sources and trophic relationships of organisms in Khung Krabaen Bay and adjacent offshore waters. The three separate sampling sites were mangroves, inner bay and offshore. The 13C values of mangrove leaves were –28.2 to –29.4, seagrass –10.5, macroalgae –14.9 to –18.2, plankton –20.0 to –21.8, benthic detritus –15.1 to –26.3, invertebrates –16.5 to –26.0, and fishes –13.4 to –26.3. The 15N values of mangrove leaves were 4.3 to 5.7, seagrass 4.3, macroalgae 2.2 to 4.4, plankton 5.7 to 6.4 , benthic detritus 5.1 to 5.3, invertebrates 7.2 to 12.2 , and fishes 6.3 to 15.9. The primary producers had distinct 13C values. The 13C values of animals collected from mangroves were more negative than those of animals collected far from shore. The primary carbon sources that support food webs clearly depended on location. The contribution of mangroves to food webs was confined only to mangroves, but a mixture of macroalgae and plankton was a major carbon source for organisms in the inner bay area. Offshore organisms clearly derived their carbon through the planktonic food web. The 15N values of consumers were enriched by 3–4 relative to their diets. The 15N data suggests that some of aquatic animals had capacity to change their feeding habits according to places and availability of foods and as a result, individuals of the same species could be assigned to different trophic levels at different places.  相似文献   

4.
The stable isotope ratios of nitrogen were measured in the mysid,Neomysis intermedia, together with various biogenic materials in a eutrophic lake, Lake Kasumigaura, in Japan throughout a year of 1984/85. The mysid, particulate organic matter (POM, mostly phytoplankton), and zooplankton showed a clear seasonal change in 15N with high values in spring and fall, but the surface bottom mud did not. A year to year variation as well as seasonal change in 15N was found in the mysid. The annual averages of 15N of each material collected in 1984/85 are as follows: surface bottom mud, 6.3 (range: 5.7–6.9); POM, 7.9 (5.8–11.8); large sized mysid, 11.6 (7.7–14.3); zooplankton, 12.5 (10.0–16.4); prawn, 13.2 (9.9–15.4); goby, 15.1 (13.8–16.7). The degree of15N enrichment by the mysid was determined as 3.2 by the laboratory rearing experiments. The apparent parallel relationship between the POM and the mysid in the temporal patterns of 15N with about 3 difference suggests the POM (mostly phytoplankton) as a possible food source ofN. intermedia in this lake through the year.  相似文献   

5.
This study assessed if mature leaves of Laguncularia racemosa were able to demonstrate salt secretion, and if the magnitude of secretion was a function of soil salinity. Thus, salinity influence on the osmolality of leaf tissue, xylem sap and leaf secretion was assessed in field and glasshouse experiments. As salinity increased, solutes were accumulated in sufficient quantity to decrease osmotic potential over the whole range of water potential. In the field, xylem osmolality (mol m–3) increased with salinity from 32.4±2.9 at 17 to 38.2±0.6 at 28. Similarly, in the glasshouse, xylem sap osmolality (mol m–3) increased from 33.4±1.8 (15) to 40.6±1.5 (30). Changes in Na+ concentration explained about 51–58% of increase in xylem osmolality. Rates of secretion (mmol m–2 day–1) in the field increased from 0.80±0.12 (17) to 1.16±0.14 (28), and in the glasshouse the secretion increased from 0.73±0.07 (15) to 1.25±0.07 (30). The Na+ accounted for 40–53% of total secretion. This study presented evidence of the capability of mature leaves of L. racemosa to secrete salt for the first time, and that the rates of secretion were enhanced as soil salinity increased.  相似文献   

6.
Summary The ratio of deuterium to hydrogen (expressed as D) in hydrogen released as water during the combustion of dried plant material was examined. The D value (metabolic hydrogen) determined on plant materials grown under controlled conditions is correlated with pathways of photosynthetic carbon metabolism. C3 plants show mean D values of-132 for shoots and -117 for roots; C4 plants show mean D values of -91 for shoots and-77 for roots and CAM plants a D value of-75 for roots and shoots. The difference between the D value of shoot material from C3 and C4 plants was confirmed in species growing under a range of glasshouse conditions. This difference in D value between C3 and C4 species does not appear to be due to differences in the D value (tissue water) in the plants as a result of physical fractionation of hydrogen isotopes during transpiration. In C3 and C4 plants the hydrogen isotope discrimination is in the same direction as the carbon isotope discrimination and factors contributing to the difference in D values are discussed. In CAM plants grown in the laboratory or collected from the field D values range from-75 to +50 and are correlated with 13C values. When deprived of water, the D value (metabolic hydrogen) in both soluble and insoluble material in leaves of Kalanchoe daigremontiana Hamet et Perr., becomes less negative. These changes may reflect the deuterium enrichment of tissue water during transpiration, or in field conditions, may reflect the different D value of available water in areas of increasing aridity. Whatever the origin of the variable D value in CAM plants, this parameter may be a useful index of the water relations of these plants under natural conditions.  相似文献   

7.
The reactions of the starfish Asterias amurensis and Patiria pectinifera that live in Vostok Bay at the salinity of 32–33 to a salinity decrease were studied under laboratory conditions. The lower limits of the desalination tolerance range of A. amurensis and P. pectinifera were, respectively, 24 and 20. A. amurensis proved to be less resistant to desalination. Under experimental conditions, all specimens of this species survived the salinity of 22, while those of P. pectinifera tolerated 18. At the same time, A. amurensis responded more actively than P. pectinifera to unfavorable changes in the environment. Turned to their dorsal side and exposed to a salinity of 16 to 32, the former reverted to the normal position within a shorter time than the latter. Being a more euryhaline species, P. pectinifera endured a salinity decrease to 6 or 8 over, respectively, 21 or 28 h. However, only 30–40% of all specimens could recover locomotory activity 12 or 8.5 h after being placed into water of normal salinity.  相似文献   

8.
The study deals with a comparative analysis of the relative abundances of the carbon isotopes 12C and 13C in the metabolites and biomass of the Burkholderia sp. BS3702 and Pseudomonas putida BS202-p strains capable of utilizing aliphatic (n-hexadecane) and aromatic (naphthalene) hydrocarbons as sources of carbon and energy. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of Burkholderia sp. BS3702 on n-hexadecane (13C = –44.6 ± 0.2) were characterized by the values of 13CCO 2 = –50.2 ± 0.4, 13Cbiom = –46.6 ± 0.4, and 13Cexo = –41.5 ± 0.4, respectively. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of the same bacterial strain on naphthalene (13C = –21 ± 0.4) were characterized by the isotope effects 13CCO 2 = –24.1 ± 0.4, 13Cbiom = –19.2 ± 0.4, and 13Cexo = –19.1 ± 0.4, respectively. The possibility of using the isotope composition of metabolic carbon dioxide for the rapid monitoring of the microbial degradation of petroleum hydrocarbons in the environment is discussed.  相似文献   

9.
Van der Velde  G.  Hüsken  F.  Van Welie  L. 《Hydrobiologia》1986,132(1):279-286
The tolerance of adult specimens of Dugesia lugubris and D. polychroa for 13 different chlorinities ranging from 15.0–3.8 and for two temperatures, viz. 4 and 23 °C, was tested.At chlorinities of 7.5 and lower, the survival time of both species was considerably longer than at higher chlorinities (a few hours at 7.5, one to several days at 6.6 and lower concentrations). It is assumed that this is determined by the osmoregulatory capacity of the planarians.It was found that at low chlorinities combined with a high temperature D. polychroa survived longer than D. lugubris, while at the same chlorinities the opposite was true for a low temperature. The effect of temperature on survival at low chlorinities was more drastic for D. lugubris than for D. polychroa.The results correlate with data on the distribution of both species in The Netherlands. Outside areas with an average chlorinity below 2 the two species were rarely found.  相似文献   

10.
Summary The temperature dependence of the oxygen isotope fractionation factor during respiration has been examined for two different microorganisms, namelyTorulopsis utilis andEscherichia coli K12 representing a yeast and a bacterium, respectively. The investigation covered a temperature range of 18° C, that is from 16° C to 34° C forT. utilis and from 19° C to 37° C forE. coli K12. Within this temperature range the fractionation factor ofT. utilis increases by 0.18; an insignificant change ( 10° C = 0.063;r = 0.067), whereas withE. coli K 12 an increase of 1.12; has been observed ( 10° C = 0.6;r = 0.55).  相似文献   

11.
Zusammenfassung Enchytraeus albidus aus dem Anwurf mariner Algen an der Kieler Förde (Ostsee) erträgt als Nahrung die folgenden dort vorkommenden Pflanzen (Reihenfolge mit abnehmender Verträglichkeit): Fucus — Grünalgen —Seegras (Zostera) — Rotalgen (Delesseria). Diese Reihenfolge gilt für Nahrungsaufnahme, Fortpflanzungsrate und Überlebensdauer.Mit zunehmender Fäulnis des Nahrungssubstrates steigt die Zahl der Tiere, die aus ihm fliehen. Ihre Anzahl wird außerdem bestimmt durch den Salzgehalt des Substrates: Von 15–45 ist sie proportional der Substratsalinität. Bei 60 ist die Aktivität der Tiere bereits stark eingeschränkt.Bei Fucus-Nahrung ertragen auf Sand gehaltene Tiere eine Salinität von 60–70 länger als 4 Wochen, auf Filtrierpapier dagegen nur 50 für durchschnittlich 1 Woche. Die obere Fortpflanzungsgrenze liegt bei 40 Salzgehalt im Substrat. Bei 5 werden die meisten Kokons abgelegt. Die Sterblichkeit im Kokon ist bei 15 am geringsten. Auf den Substratsalinitäten 0–15 ist die Entwicklungsdauer im Kokon signifikant kürzer als auf Substraten von 30 und 40. Enchytraeus hat sich als Rückwanderer zum Meer mit einer sekundär erweiterten Poikilosmotie an den neuen Lebensraum angepaßt. Er kann eine Binnenkonzentration entsprechend etwa 72 längere Zeit ertragen. Auf niedrigen Salzgehalten besitzt er eine ausgeprägte Hypertonieregulation.
Summary Enchytraeus albidus was fed with Fucus, green algae, Zostera marina and Delesseria. Judging from absorption of food, rate of reproduction and duration of life, the animals preferred the plants in the sequence given above.As the putrefaction of a Fucus substrate advances, more and more enchytraeids leave it. A changing salinity of the substrate also influences the number of emigrating worms, increasing it from 15–45, but decreasing it towards 60. Fed with Fucus E. albidus tolerates a salinity of 60–70 on sand for more than 4 weeks, on filter paper only 50 for about one week.Reproduction is possible at salinities up to 40. Cocoon production is most frequent at 5. The mortality of young worms within the cocoons is lowest at 15. The incubation period is significantly shorter at salinities of 0–15 than at 30 and 40.As a terrestrial immigrant to the seashore Enchytraeus albidus secondarily enlarged its range of poikilosmosis, tolerating a concentration of 72 in its coelomic fluid for some time. At low salinities it maintains a remarkable degree of hyperosmosis.
  相似文献   

12.
Time-series 18O and 13C records from cohabiting massive coralPorites australiensis and giant clamTridacna gigas from the Great Barrier Reed of Australia, and from calcareous green algae in a core through modernHalimeda bioherm accreting in the eastern Java Sea, provide insights into the complex links between environmental factors and stable isotopes imprinted in these reef skeletal materials. The aragonitic coral and giant clam offer 20 years and 15 years of growth history, respectively. The giant clam yields mean 18O and 13C values of-0.5±0.5 and 2.2±0.2 (n=67), which agree well with the predicted equilibrium values. The coral yields mean 18O and 13C values of-5.6±0.5 and-1.8±0.7 (n=84), offering a striking example of kinetic and metabolic fractionation effects. Although both the coral and giant clam harbor symbionts and were exposed to a uniform ambient environment during their growth histories, their distinct isotopic compositions demonstrate dissimilar calcification pathways. The 18O records contain periodicities corresponding to the alternating annual density bands revealed by X-radiography and optical transmitted light. Attenuation of the 18O seasonal amplitudes occurring in the giant clam record 8 years after skeletal growth commenced is attributed to a changeover from fast to slow growth rates. Extreme seasonal 18O amplitudes of up to 2.2 discerned in both the coral and giant clam records exceed the equivalent seasonal temperature contrast in the reef environment, and are caused by the combined effect of rainfall and evaporation during the monsoon and dry seasons, respectively. Thus in addition of being useful temperature recorders, reef skeletal material of sufficient longevity, such asPorites andTridacna, may also indicate rainfall variations. Changing growth rates, determined from the annual growth bands, may exert a primary control on the coral 13C record which shows a remarkable negative shift of 1.7 over its growth history, by comparison with only 0.15 negative shift in the contemporaneous giant clam record. Use of coral 13C records as proxies of fossil fuel CO2 uptake by the ocean must be regarded with caution. The 18O and 13C records fromHalimeda are remarkably uniform over 1000 years of bioherm accretion history (18O=-1.7±0.2; 13C=3.9±0.1,n=28), in spite of variable Mg-calcite cements present in the utricles. Most of the cement infilling is probably syndepositional, and both theHalimeda aragonite and the Mg-calcite cements containign 12.3 mole % MgCO3 are deposited in isotopic equilibrium. Therefore, in favorable circumstances these algal skeletal remains may act as the shallow water analogs of benthic foraminifera in deep sea sediments in recording ambient sea water isotopic composition and temperature.  相似文献   

13.
Summary Foliar samples were obtained from symbiotic nitrogen-fixers and control plants (non-fixers) along elevational and primary successional gradients in volcanic sites in Hawai'i. Most control plants had negative 15N values (range-10.1 to +0.7), while most nitrogen-fixers were near 0. Foliar 15N in the native tree Metrosideros polymorpha did not vary with elevation (from sea level to tree-line), but it did increase substantially towards 0 on older soils. The soil in an 197-yr-old site had a 15N value of approximately-2, while in a 67000-yr-old site it was +3.6. We suggest that inputs of 15N-depleted nitrogen from precipitation coupled with very low nitrogen outputs cause the strongly negative 15N values in non-nitrogen-fixing plants on early successional sites.  相似文献   

14.
Kurz  E.  Schmid  V. 《Hydrobiologia》1991,212(1):11-17
Artemia sp (Tuticorin strain) was cultured at a density of 250 individuals 1–1 at 35, 45, 60, 75 salinity using five combinations of groundnut oil cake, decayed cabbage leaves, single superphosphate and Baker's yeast as feed. Effects on survival, growth, and fecundity were noted.  相似文献   

15.
We studied the effects of reduced water salinity on early ontogenesis in the sea urchin Scapechinus mirabilis. It is shown that the lower limit of salinity tolerance for the embryos and larvae is the salinity of 28. Under the mutual effects of desalination and sodium dodecylsulphate (SDS), an addition of 0.1 mg/l of the detergent to water with a salinity of 28 caused disturbances in the development of the larvae, starting from the stage of blastula. Desalination of the water down to 22 with the presence of SDS exerts significant effects already at the stage of fertilization. The mass death of embryos (73%) was observed at the stage of the first cleavage. The increase in the concentration of SDS up to 1 mg/l in water with a salinity of 28 to 22 caused an increase in the percentage of abnormal embryos and larvae from 40 up to 100%.  相似文献   

16.
Summary Monhystera denticulata Timm, a free-living nematode present in the aufwuchs assemblages of several marine macrophytes located in North Sea Harbor, Southampton, New York, was isolated from Zostera marina and established in laboratory culture in order to study the influences of temperature and salinity on its life history. Under experimental conditions, M. denticulata has a generation time (Measured as the time elapsing between the first egg depositions of consecutive generations) of 10–12 days at 25° C and 26 S, which represent optimal growth conditions in the laboratory. The organism has a generation time of 20 days at 25° C and 13, 17 days at 25° C and 39, 18 days at 15° C and 26, 36 days at 15° C and 13 and 34 days at 15° C and 39. As conditions vary from the optimum of 25° C and 26 S, a decrease in temperature of 10° C and an increase or decrease in salinity of 13 results in a doubling of the generation time. At 5° C the generation time is about 180–197 days.Assuming optimum conditions and average generation time, about 15 generations of M. denticulata could occur in North Sea Harbor during the year. The number of generations occurring in reality is probably less, however, due to the fact that the females deposit their eggs over a period of several days.This work was supported by National Science Foundation Grant GB-19245.Contribution No. 04 from the Institute of Oceanography, City University of New York.  相似文献   

17.
The effect of salinity variation (0, 7, 14, 21, 28 and 35S) on survival, moulting and respiratory metabolism of the early zoeal stages of the shrimps Palaemon pandaliformis and P. northropi from the northern coast of the State of São Paulo, Brazil is investigated. Freshly hatched larvae were maintained at 20 °C, in each salinity for a maximum of seven days. Oxygen consumption measurements were made at 20 °C for each salinity using Cartesian diver microrespirometers. In 0S, all P. northropi zoeae died after 24 h while 24% of the P. pandaliformis zoeae survived until 4 days. Zoeae of both species survived poorly in 7S, the best survival for the two species (90%) being registered in 28%.S. Palaemon northropi zoeae did not survive 35S while 45% survival was recorded for P. pandaliformis zoeae in this medium after seven days. Moulting did not occur in zoeae of either species in 0%.S, nor in P. northropi in 7S. The metabolism-salinity curve for P. pandaliformis zoea I is very stable over the range 0–21S while that for P. northropi exhibits complete salinity independence from 21–35 S. Thus, while the early zoeal stages, at least, are conspecific, both developing in the same environment as part of the coastal zooplankton community, they clearly maintain distinct physiological characteristics. The data presented possibly reflect genetic adaptations to the adult biotope already manifested in the first zoeae.  相似文献   

18.
Three species of microalgae commonly used in mariculture —Isochrysis sp. (clone T.ISO) Parke,Pavlova lutheri (Droop) Green andNannochloropsis oculata (Droop) Green — were grown in batch and semicontinuous modes to compare their biochemical composition and production rates.In batch mode, logarithmic-phase cultures of all species had high levels of protein (25.2 to 41.1) and low levels of carbohydrate (7.1 to 10.3) and lipid (8.8 to 14.9). At stationary phase, cultures ofIsochrysis sp. (clone T.ISO) andN. oculata contained significantly less protein (21.8 and 20.3, respectively), all species contained more carbohydrate (14.8 to 30.6), andP. lutheri contained more lipid (16.6). In semi-continuous mode, cultures maintained at late logarithmic-phase contained more carbohydrate,Isochrysis sp. (clone T.ISO) contained less protein, andP. lutheri more lipid than logarithmic-phase batch cultures of the same species. Neither growth phase nor harvest regime affected the amino acid composition of the microalgae significantly. However, the concentration of proline inN. oculata was higher in batch cultures in logarithmic phase (9.4), than in either semi-continuous cultures in logarithmic phase (5.8 to 7.9) or batch cultures in stationary phase (5.6 to 5.9).The production rates from batch and semi-continuous logarithmic-phase cultures were not significantly different for any of the species, and there were only minor differences in the production rates of the species (range 12.4 to 17.1 mg algae dry weight 1–1 d–1). The different culture and harvest regimes produced significant differences in the proportions of protein and carbohydrate in the microalgae. Which regime is chosen for culturing these microalgae as food will depend on the nutritional requirements of the animal species being fed.  相似文献   

19.
Zusammenfassung 1. Es wurde untersucht, welchen Einfluß kurzfristige und langfristige Salzgehaltsveränderungen auf verschiedene Standortformen der RotalgeDelesseria sanguinea und der BraunalgeFucus serratus haben. Als Kriterium des Lebenszustandes wurde die photosynthetische Leistung gewählt. Die Algen wurden folgenden Salzgehaltskonzentrationen ausgesetzt: 0, 5, 10, 15, 20, 30, 40, 50 S.2. Die Versuche ergaben, daß kurzfristige Konzentrationsveränderungen (30 min) — sowohl Erniedrigung als auch Erhöhung des Salzgehaltes — die photosynthetische Leistung stimulieren. Ein langfristiger Aufenthalt (24 Std) unter den veränderten Bedingungen bewirkt, sofern diese innerhalb der Toleranzgrenzen der Algen liegen, einen Ausgleich der anfänglichen Stimulation. Außerhalb der Toleranzgrenzen liegende Konzentrationen rufen nach der Stimulation eine Leistungsdepression hervor. Bei Rückübertragung in den Ausgangssalzgehalt sind die Depressionen teilweise reversibel.3. Im hypotonischen Milieu verhalten sich die Delesserien der verschiedenen Standorte (Helgoland, Kattegat, Kieler Bucht) gleich: in 5 S treten starke Depressionen auf. Nordsee-Delesserien sind im hypertonischen Milieu weniger empfindlich, sie zeigen noch bei 50 S eine gesteigerte photosynthetische Leistung. In diesem Bereich sind die Ostseeformen schon schwer geschädigt. Am empfindlichsten gegenüber allen Konzentrationsänderungen ist die BrackwasserformDelesseria sanguinea formalanceolata aus der Kieler Bucht.4.Fucus serratus aus dem Litoral von Helgoland zeichnet sich im Gegensatz zu der submers lebenden Form der Ostsee, die sich ähnlich wieDelesseria verhält, in allen untersuchten Konzentrationsbereichen durch eine unveränderte photosynthetische Leistung aus. Die beiden Standortformen vonFucus entsprechen gemäß der Einteilung vonMontfort (1931) dem resistenten Typ und dem Stimulations-Depressionstyp.
On the influence of salinity on photosynthetic performance of various ecotypes ofDelesseria sanguinea andFucus serratus
The phaeophyceanF. serratus and the rhodophyceanD. sanguinea came from the North Sea (30 S) and the Baltic Sea (15 S). The activity of photosynthesis was taken as a criterion of algae vitality. Experiments were made in salinity concentrations of 0, 5, 10, 15, 20, 30, 40 and 50 S. Thirty-minute exposures to sub- or supranormal salinities stimulate photosynthesis. Within their physiological salinity ranges the algae assume normal photosynthetic rates within 24 hours. Extreme salinities cause a reduction in photosynthetic activity; this reduction mostly disappears, however, after re-transfer into normal salinity conditions. At 5 S all test individuals ofDelesseria from different locations exhibit a reduction of photosynthetic rates. At 50 SDelesseria from the North Sea still show increased activity, whileDelesseria from the Baltic are already severely damaged. The brackish-water formD. sanguinea (formalanceolata) is most sensitive to salinity variations. The photosynthetic activity ofF. serratus from Helgoland does not vary in all salinities employed. The range of test salinities corresponds to that of the habitat in the littoral zone, where high salinities occur during air exposure, and low salinities, during rainfall. By contrast, inF. serratus from the Baltic Sea occurring only in the sublittoral zone, photosynthetic rates are similarly affected by salinity as inDelesseria.
  相似文献   

20.
Summary Measurements of leaf thickness and 13C value were obtained for twenty species and three intergeneric hybrids of the Crassulaceae. The data include plants growing in their native habitats and also in greenhouse cultivation. There is a strong relationship between leaf thickness and leaf 13C values. The plants with the thickest leaves of ca. 7 to 11 mm had 13C values ranging from -11.5 to -13.8. Plants with leaves that were thinner than 2.0 mm all had 13C values that were more negative than -23. Plants having intermediate leaf thickness possessed intermediate 13C values. The leaf tissue of four genotypes spanning the range of leaf thicknesses all exhibited a two-fold or greater nocturnal increase in titratable acidity. It appears that the differences in leaf thickness and 13C values among the tested species are genetically determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号