首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The distribution of protein gene product (PGP) 9.5 was analyzed in the human fetal cochlea using the indirect immunofluorescence method. In the 12- and 14-week-old human fetuses, the cells of the greater epithelial ridge and the lesser epithelial ridge were overall labelled with PGP 9.5, while the stria vascularis and the Reissner's membrane did not exhibit any staining. Spiral ganglion cells and cochlear nerve fibers were labelled with PGP 9.5 and PGP 9.5-positive nerve fibers made contact with the basement membrane of the Corti primordium in the 12-week-old human fetus. These results suggest that PGP 9.5 might be used as a histological marker of maturation and innervation in the human cochlea.  相似文献   

2.
Using antibodies to the neuronal cytoplasmic protein, protein gene product 9.5 (PGP 9.5) the cutaneous innervation in man was investigated. The distribution of PGP 9.5 immunoreactive nerve fibers was compared with the distribution of nerve fibers immunoreactive to neuron specific enolase, neurofilament proteins, calcitonin gene related peptide, vasoactive intestinal polypeptide and neuropeptide Y. PGP 9.5 immunoreactive nerve fibers were found in the epidermis, dermis, in Meissner's corpuscles, innervating Merkel cells, around blood vessels, sweat glands and hair follicles. Merkel cells were also PGP 9.5 positive. The labelled nerve fibers included sensory and autonomic fibers, visualizing the whole innervation of the human skin. The number of positive fibers and the intensity of the fluorescence was greater with PGP 9.5 antibodies than with any of the other markers included. Thus, PGP 9.5 antibodies may serve as a tool for investigations of cutaneous innervation, reinnervation and nerve regeneration in different clinical conditions.  相似文献   

3.
Summary Using antibodies to the neuronal cytoplasmic protein, protein gene product 9.5 (PGP 9.5) the cutaneous innervation in man was investigated. The distribution of PGP 9.5 immunoreactive nerve fibers was compared with the distribution of nerve fibers immunoreactive to neuron specific enolase, neurofilament proteins, calcitonin gene related peptide, vasoactive intestinal polypeptide and neuropeptide Y. PGP 9.5 immunoreactive nerve fibers were found in the epidermis, dermis, in Meissner's corpuscles, innervating Merkel cells, around blood vessels, sweat glands and hair follicles. Merkel cells were also PGP 9.5 positive. The labelled nerve fibers included sensory and autonomic fibers, visualizing the whole innervation of the human skin. The number of positive fibers and the intensity of the fluorescence was greater with PGP 9.5 antibodies than with any of the other markers included. Thus, PGP 9.5 antibodies may serve as a tool for investigations of cutaneous innervation, reinnervation and nerve regeneration in different clinical conditions.  相似文献   

4.
In this immunocytochemical study we investigated the distribution of nervous structures in the lower lip of adult rats. The region is characterized by a rich cutaneous and mucosal sensory innervation originating from terminal branches of the trigeminal system. Lower lip innervation was investigated by detection of the general neuronal marker protein gene product 9.5 (PGP 9.5) and the growth-associated protein 43 (GAP-43), a neurochemical marker of neuronal plasticity. The entire neural network of both cutaneous and mucosal aspects was stained by the antibody to PGP 9.5. In particular, nerve fibers were observed in the submucosal and the subepithelial plexuses. Thin immunoreactive fibers were observed within the epithelial layers ending as free fibers or as fibers associated with immunopositive Merkel cells. Well-identified anatomical structures receiving sensory or autonomic innervation were also surrounded by PGP 9.5-ir nerve fibers, in particular, hair follicles, vibrissae, glands, and blood vessels. GAP-43-immunostained nerve fibers were observed in all these structures; however, they were generally less numerous than the PGP 9.5-immunoreactive elements. An equal amount of PGP 9.5 and GAP-43 immunoreactivity occurred, in contrast, in the subepidermal and the submucosal plexuses, or in the epidermis and the mucosal epithelium. The present results show that GAP-43 is normally expressed in the mature trigeminal sensory system of the rat. Skin and oral mucosa are characterized by continuous remodeling that may also involve the sensory nervous apparatus. Continuous neural remodeling, regeneration and sprouting may be the reason for the observed expression of GAP-43.  相似文献   

5.
The ontogeny of the innervation of human lymphoid organs has not been studied in detail. Our aim was to assess the nature and distribution of parenchymal nerves in human fetal thymus and spleen. We used the peroxidase immunohistochemical technique with antibodies specific to neuron-specific enolase (NSE), neurofilaments (NF), PGP9.5, S100 protein, and tyrosine hydroxylase (TH) and evaluated our results with image analysis. In human fetal thymus, NSE-, NF-, S100-, PGP9.5-, and TH-positive nerves were identified associated with large blood vessels from 18 gestational weeks (gw) onwards, increasing in density during development. Their branches penetrated the septal areas at 20 gw, reaching the cortex and the corticomedullary junction between 20 and 23 gw. Few nerve fibers were seen in the medulla in close association with Hassall's corpuscles. In human fetal spleen, NSE-, NF-, S100-, PGP9.5-, and TH-positive nerve fibers were localized in the connective tissue surrounding the splenic artery at 18 gw. Perivascular NSE-, NF-, S100-, PGP9.5-, and TH-positive nerve fibers were seen extending into the white pulp, mainly in association with the central artery and its branches, increasing in density during gestation. Scattered NSE-, NF-, S100-, PGP9.5-, and TH-positive nerve fibers and endings were localized in the red pulp from 18 gw onward. The predominant perivascular distribution of most parenchymal nerves implies that thymic and splenic innervation may play an important functional role during intrauterine life.  相似文献   

6.
7.
This study was performed to compare GAP-43, PGP 9.5, synaptophysin, and NSE as neuronal markers in the human intestine. GAP-43-immunoreactive nerve fibers were abundant in all layers of the ileum and colon. GAP-43 partially co-localized partially with every neuropeptide (VIP, substance P, galanin, enkephalin) studied. All neuropeptide-immunoreactive fibers also showed GAP-43 reactivity. By blind visual estimation, the numbers of GAP-43-immunoreactive fibers in the lamina propria were greater than those of PGP 9.5, synaptophysin, or NSE. In the muscle layer, visual estimation indicated that the density of GAP-43-immunoreactive fiber profiles was slightly greater than that of the others. The number and intensity of GAP-43-, PGP 9.5-, and NSE-immunoreactive fibers were estimated in sections of normal human colon and ileum using computerized morphometry. In the colon, the numbers of GAP-43-immunoreactive nerve profiles per unit area and their size and intensity were significantly greater than the values for PGP and NSE. A similar trend was observed in the ileum. Neuronal somata lacked or showed only weak GAP-43 immunoreactivity, variable PGP 9.5 immunoreactivity, no synaptophysin immunoreactivity, and moderate to strong NSE immunoreactivity. We conclude that GAP-43 is the superior marker of nerve fibers in the human intestine, whereas NSE is the marker of choice for neuronal somata. (J Histochem Cytochem 47:1405-1415, 1999)  相似文献   

8.
The pseudocapsule surrounding fibroids consists of compressed myometrium containing nerves and blood vessels that continue into adjacent myometrium. Oxytocin (OXT) is thought to affect wound healing after myomectomy. We determined the presence of OXT and protein gene product 9.5 (PGP9.5) immunoreactive nerve fibers in pseudocapsule compared to adjacent myometrium. Samples (N=106) of pseudocapsule and adjacent myometrium were collected from 57 women with uterine fibroids undergoing myomectomy, and stained with anti-OXT and PGP 9.5 antibodies to demonstrate the presence of nerve fibers. Nerve fibers in the pseudocapsule stained positively with OXT (89/106, 84.0%) and PGP 9.5 (94/106, 88.7%). The densities of nerve fibers staining with PGP 9.5 and OXT in the pseudocapsule were highest in the isthmus (23.68±22.45/mm2 and 43.35±40.74/mm2, respectively). There were no significant differences in the density of nerve fibers, stained with either OXT or PGP 9.5, between the pseudocapsule, and adjacent normal myometrium regardless of the fibroid location in the uterus (P>0.05). These results suggest that the pseudocapsule should avoid to be damaged during the myomectomy procedure.Key words: fibroid pseudocapsule, nerve fibers, oxytocin, myomectomy, protein gene product 9.5, immunohistochemistry  相似文献   

9.
 Morphological changes in developing human gustatory papillae during the 6th to the 23rd postovulatory week have been studied. The general innervation pattern of taste papillae and taste bud primordia was revealed immunohistochemically using antibodies against protein gene product 9.5 (PGP9.5), neurofilament H (NFH), neurofilament L (NFL), neurone-specific enolase (NSE), and tubulin. The autonomic and somatosensory nerve supply has been investigated using antibodies against substance P (SP), calcitonin gene-related peptide (CGRP), tyrosine hydroxylase (TH), neuropeptide Y (NPY), the neuronal form of nitric oxide synthase (n-NOS), and, enzyme histochemically, NADPH-diaphorase. Nerve fibers approach the basal membrane of the lingual epithelium around the 7th postovulatory week and invade the epithelium of papilla-like structures at the 8th week, but some also penetrate the basal membrane of the non-papillary epithelium. They are in close contact with slender epithelial cells that are considered to be the taste bud’s progenitor cells. Early human taste buds situated at the anterior part of the tongue do not necessarily require a dermal (later fungiform) papilla. The NADPH-diaphorase reaction revealed positive results in dermal nerve fibers, but the immunohistochemical reaction against n-NOS was negative. Immunohistochemical detection of neuropeptides and vasoactive substances rendered negative results for developmental stages of 7–18 postovulatory weeks. By the 18th week, only SP was detected in dermal papillae, but not in the vicinity of taste buds’ primordia. Thus, autonomic and somatosensory nerves seem not to play a key role in formation and maintenance of early human taste buds. Accepted: 31 July 1997  相似文献   

10.
Dodson  H.C. 《Brain Cell Biology》1997,26(8):541-556
Loss of cochlear hair cells results in a loss of ganglion cells and further neurodegenerative changes throughout the auditory pathway. Understanding more about the early stages of ganglion cell loss in vivo may lead to ways of ameliorating or preventing the loss of these neurons. To examine these stages, the effects of intracochlear perfusion with aminoglycoside antibiotics on the organ of Corti and spiral ganglion cells were evaluated in young adult guinea pigs at survival periods ranging from 1 hour to 12 weeks, using immunocytochemical and ultrastructural techniques. At 1 hour survival a base-to-apex gradient of damage was indicated in the cochlea by the appearance of severely damaged hair cells and injured ganglion cells in the basal coil while in the apical coil, hair cells were damaged but intact and ganglion cells appeared normal. By 4 hours the appearance of severely disrupted hair cells and damaged ganglion cells had extended throughout the cochlea. The ultrastructural appearance of many injured ganglion cells demonstrated features characteristic of cell death including condensed cytoplasm, non-marginal clumping of nuclear chromatin, and wrinkled nuclear membrane. Despite the loss of many ganglion cells, a population of these cells remained at 12 weeks survival. These contained large amounts of rough endoplasmic reticulum, were unmyelinated apart from the central process and were surrounded by satellite cells. These features are typical of ganglion cells during development, before the onset of hearing. Immunolabelling of cochlear whole mounts after hair cell destruction with protein gene product 9.5 (PGP 9.5) revealed the presence of neural elements in the organ of Corti at up to 12 weeks survival. These may associated with the remaining ganglion cells. In these surviving ganglion cells, the intense labelling with PGP 9.5 together with the increase in rough endoplasmic reticulum, indicates the presence of active protein synthesis which may be connected with their survival.  相似文献   

11.
Pericytes are contractile cells that surround blood vessels. When contracting, they change the diameter of the vessel and therefore influence blood flow homeostasis; however, mechanisms controlling pericyte action are less well understood. Since blood flow regulation per se is controlled by the autonomic nervous system, the latter might also be involved in pericyte action. Hence, rat choroidal pericytes were analyzed for such a connection by using appropriate markers. Rat choroidal wholemounts and sections were prepared for immunohistochemistry of the pericyte marker chondroitin-sulfate-proteoglycan (NG2) and the pan-neuronal marker PGP9.5 or of tyrosine hydroxylase (TH), vasoactive intestinal polypeptide (VIP) and choline acetyl transferase (ChAT). Additionally, PGP9.5 and TH were analyzed in the choroid of DCX-dsRed2 transgenic rats, displaying red-fluorescent perivascular cells and serving as a putative model for studying pericyte function in vivo. Confocal laser-scanning microscopy revealed NG2-immunoreactive cells and processes surrounding the blood vessels. These NG2-positive cells were not co-localized with PGP9.5 but received close appositions of PGP9.5-, TH-, VIP- and ChAT-immunoreactive boutons and fibers. In the DCX-dsRed2 transgenic rat, PGP9.5 and TH were also densely apposed on the dsRed-positive cells adjacent to blood vessels. These cells were likewise immunoreactive for NG2, suggesting their pericyte identity. In addition to the innervation of vascular smooth muscle cells, the close relationship of PGP9.5 and further sympathetic (TH) and parasympathetic (VIP, ChAT) nerve fibers on NG2-positive pericytes indicated an additional target of the autonomic nervous system for choroidal blood flow regulation. Similar findings in the DCX-dsRed transgenic rat indicate the potential use of this animal model for in vivo experiments revealing the role of pericytes in blood flow regulation.  相似文献   

12.
Pain-free normal Achilles tendons and chronic painful Achilles tendons were examined by the use of antibodies against a general nerve marker (protein gene-product 9.5, PGP9.5), sensory markers (substance P, SP; calcitonin gene-related peptide, CGRP), and immunohistochemistry. In the normal tendons, immunoreactions against PGP9.5 and against SP/CGRP were encountered in the paratendinous loose connective tissue, being confined to nerve fascicles and to nerve fibers located in the vicinity of blood vessels. To some extent, these immunoreactions also occurred in the tendon tissue proper. Immunoreaction against PGP9.5 and against SP/CGRP was also observed in the tendinosis samples and included immunoreactive nerve fibers that were intimately associated with small blood vessels. In conclusion, Mechanoreceptors (sensory corpuscles) were occasionally observed, nerve-related components are present in association with blood vessels in both the normal and the tendinosis tendon.  相似文献   

13.
The distribution and development of growth-associated protein 43 (GAP-43)-like immunoreactivity (-LI) in the rat circumvallate papilla (CVP) were compared to those of protein gene product 9.5 (PGP 9.5)-LI. In the adult, thick GAP-43-like immunoreactive (-IR) structures gathered densely in the subgemmal region. Some of these further penetrated the apical epithelium and trench wall epithelium. At least two types of GAP-43-IR structures were recognized; taste bud-related and non-gustatory GAP-43-IR neural elements. Immunoelectron microscopy revealed that GAP-43-LI was localized predominantly in the Schwann cells, and a few axons displayed GAP-43-LI in the lamina propria. In the trench epithelium, GAP-43-LI was detected in the cytoplasmic side of the axonal membrane. Some intragemmal GAP-43-IR axons made synaptic-like contacts with taste bud cells. At least four developmental stages were defined on the basis of the changes in distribution of GAP-43-LI. In stage I [embryonic day (E) 16–17] GAP-43-IR structures accumulated at the lamina propria just beneath the newly-formed circumvallate papilla. In stage II (E18–19) GAP-43-IR nerve fibers began to penetrate the apical epithelium. In stage III [E20-postnatal day (P) 0] GAP-43-IR nerve fibers first appeared in the trench wall epithelium. Penetration of GAP-IR nerve fibers occurred in the inner trench wall epithelium first, and then in the outer trench wall epithelium. In stage IV (P1-) the distribution of GAP-43-LI was similar to that observed in the adult; but the density of GAP-43-LI was much higher than in adults. PGP 9.5-LI showed a similar distribution pattern to that of GAP-43-LI, except for round-shaped cells in the apical epithelium at the late embryonic stages, and in taste bud cells and intralingual ganglionic cells which lacked GAP-43-LI. The similarities in distribution patterns of GAP-43-LI and PGP 9.5-LI during the development and mature circumvallate papilla suggest that GAP-43 may be a key neuronal molecule for induction and maintenance of the taste buds.  相似文献   

14.
 The anatomical relationships between immunocytochemically identified nerve fibers and MHC class II-expressing antigen presenting dendritic cells were investigated in the rat hepatobiliary system using immunocytochemistry, confocal laser scanning, and electron microscopy. Close proximity of nerve fiber varicosities immunostained for PGP 9.5 and MHC class II-expressing dendritic cells was frequently observed in the wall of extrahepatic bile ducts, in Glisson’s area, around central and hepatic veins, and in the liver capsule. Contacts between nerve fibers staining for substance P, calcitonin gene-related peptide, calretinin, and vasoactive intestinal polypeptide and dendritic cells were more often observed around extrahepatic bile ducts than in Glisson’s area. Nerve fibers immunostaining for tyrosine hydroxylase and neuropeptide Y were numerous both in the wall of extrahepatic bile ducts and in Glisson’s area and frequently contacted dendritic cells there. At the ultrastructural level, close membrane contacts between bare axolemmal areas of unmyelinated nerve fibers and processes of MHC class II-expressing cells were observed. These results demonstrate close anatomical relationships of nerve fibers from various sources with antigen presenting dendritic cells in the visceral domain and suggest modulation of antigen presentation by the autonomic nervous system. Accepted: 29 September 1997  相似文献   

15.
This light-microscopic (LM) immunohistochemical study has evaluated the presence and distribution of the pan-neural and neuroendocrine marker protein gene product (PGP) 9.5 in pinealocytes and nerve fibres of guinea-pig pineal gland. The pattern of PGP 9.5-immunoreactive (ir) nerve fibres has been compared with that of fibres staining for tyrosine hydroxylase (TH) or neuropeptide Y (NPY). The vast majority of pinealocytes stained for PGP 9.5, although with variable intensity. PGP 9.5 immunoreactivity was localized in pinealocytic cell bodies and processes. Double-immunofluorescence revealed that PGP 9.5 immunoreactivity was absent from glial cells identified with a monoclonal antibody against glial fibrillary acidic protein (GFAP), PGP 9.5 immunoreactivity was also present in a large number of nerve fibres and varicosities distributed throughout the pineal gland. The number of TH-ir and NPY-ir nerve fibres was lower compared with those containing PGP 9.5 immunoreactivity. All fibres staining for NPY also stained for TH. NPY-ir nerve fibres were found to be much more numerous than previously reported for this species. The double-immunofluorescence analysis indicated that almost all TH-ir nerve fibres of the pineal gland contained PGP 9.5 immunoreactivity. However, few PGP 9.5-ir nerve fibres, located in the periphery and the central part of the gland, were TH-negative. A large number of PGP 9.5-ir fibres was concentrated in the pineal stalk. In contrast, TH-ir and NPY-ir nerve fibres were rare in this part of the pineal gland. Our data provide evidence that immunohistochemistry for PGP 9.5 may be a useful tool further to differentiate central and peripheral origins of pineal innervation. Furthermore, the staining of pinealocytes for PGP 9.5 may be exploited to study the three-dimensional morphology and the architecture of pinealocytes and their processes under various experimental conditions.  相似文献   

16.
There is increasing evidence for an intimate interaction of the skin and the nervous system. As known from animal studies, nerve growth factor (NGF) is essential for the innervation density and functional properties of sensory neurons of the skin during embryogenesis and in adulthood, and possibly during cutaneous inflammation. This study examined NGF content and sprouting of nerves during the elicitation phase of contact allergy in human skin. Skin biopsies from patients (n=14) undergoing patch-testing were taken from positive test sites and control back skin 96 h after antigen application. NGF content was measured by enzyme-linked immunofluorescence assay. Immunohistochemistry was performed for protein gene product 9.5 (PGP9.5), a marker that stains all neuronal elements, and growth-associated protein 43 (GAP43), a marker for axonal growth cones. The NGF content was significantly increased in lesional skin in comparison with normal skin (4.2+/-0.6 pg to 2.9+/-0.5 pg NGF per mg wet weight). The length of epidermal PGP9.5-immunoreactive (ir) fibers in lesional skin significantly increased from 3.4+/-0.9 mm in normal skin to 5.3+/-1.0 mm in contact eczema, whereas dermal fibers were unaltered (11.1+/-2.7 mm vs 9.5+/-2.1 mm, respectively). GAP43-ir nerve endings were significantly increased in both epidermis (1.6+/-0.3 mm to 2.6+/-0.4 mm) and dermis (0.5+/-0.1 mm to 1.8+/-0.2 mm) in contact eczema. Thus, we have provided evidence for an NGF-mediated nerve-fiber sprouting in human contact eczema. This may have a functional impact on skin-associated immune cells, in particular mast cells and Langerhans cells.  相似文献   

17.
To clarify the role of neurotrophin receptors in the development of Ruffini endings, periodontal ligaments and trigeminal ganglia of trkA, trkB, and trkC knockout mice were immunostained for protein gene product 9.5 (PGP 9.5), calcitonin gene-related peptide (CGRP), parvalbumin (PV), and calretinin (CR). Innervation patterns of PGP 9.5- and CGRP-immunoreactive fibers were examined in the periodontal ligament of the knockout mice. PGP 9.5-positive fibers in the incisal periodontal ligaments of trkA and trkC knockout mice form Ruffini endings distinguished by dendritic ramifications and branches. However, Ruffini endings were not present in the periodontal ligament of trkB knockout mice. Only free nerve endings were observed in tissue of trkB knockout mice. Compared with trkA and trkC knockouts, the proportion of CR-positive neurons in mandibular and maxillary regions of the trigeminal ganglion of trkB knockout mice is decreased. These findings indicate that the development of periodontal Ruffini endings is regulated by trkB-dependent and CR-coexpressing neurons.  相似文献   

18.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is known to regulate gastric acid secretion and intestinal motility. In the present study, the pattern of distribution of PACAP and PACAP type 1 receptor (PAC1) immunoreactivities were examined in the rat stomach and distal colon using a specific polyclonal antibody raised against rat/human PAC1. Western blot of the membrane preparations of NIH/3T3 cells transfected with the human PAC1 obtained by using rabbit polyclonal anti-PAC1 antibody showed a protein band with a molecular mass of approximately 50 kDa. NIH/3T3 cells transfected with the human PAC1 and incubated with the anti-PAC1 antibody displayed surface cell-type immunoreactivity, which was internalized following ligand exposure. In gastric or colonic longitudinal muscle/myenteric plexus (LMMP) whole mount preparations as well as cryostat sections, PACAP immunoreactivity was observed in cell bodies within the myenteric ganglia and nerve fibers in the muscle layers and mucosa. PAC1 immunoreactivity was confined mainly on the surface of the nerve cells. PACAP and PAC1 immunoreactivities showed a similar pattern of distribution in gastric and colonic tissues. Adjacent sections or LMMP whole mount preparations labeled with protein gene product 9.5 (PGP 9.5) revealed the neuronal identity of myenteric cells bearing PAC1. The neuronal localization of PACAP and PAC1 receptors supports their role in the neural regulation of gastric acid secretion and gastrointestinal motor function.  相似文献   

19.
Summary Sections of human skin were processed according to the indirect immunofluorescence technique with a rabbit antiserum against human protein gene product 9.5 (PGP 9.5). Immunoreactivity was detected in intraepidermal and dermal nerve fibres and cells. The intraepidermal nerves were varicose or smooth with different diameters, running as single processes or branched, straight or bent, projecting in various directions and terminating in the stratum basale, spinosum or granulosum. The density of the intraepidermal nerves varied between the different skin areas investigated. PGP 9.5-containing axons of the lower dermis were found in large bundles. They separated into smaller axon bundles within the upper dermis, entering this portion of the skin perpendicular to the surface. Then they branched into fibres mainly arranged parallel to the epidermal-dermal junctional zone. However, the fibres en route to the epidermis traversed the upper dermis more or less perpendicularly. Furthermore, immunoreactive dermal nerve fibres were found in the Meissner corpuscles, the arrector pili muscles, hair follicles, around the eccrine and apocrine sweat glands and around certain blood vessels. Such fibres were also observed around most subcutaneous blood vessels, sometimes heavily innervating these structures. Numerous weakly-to-strongly PGP 9.5-immunoreactive cells were found both in the epidermis and in the dermis.  相似文献   

20.
Very little is known about esophageal innervation in the hamster. In the present study, we used protein gene product 9.5 (PGP 9.5) to determine immunohistochemically the architectural features of the enteric nervous system in the hamster esophagus. The myenteric plexus consisted of a loose and irregular network of ganglia and interganglionic nerve bundles. The density of the neurons in the myenteric plexus was relatively low (479 +/- 75/cm(2), n = 5), with a preferentially higher density in the upper cervical portion than other parts of the esophagus. Regional differences in the number of PGP 9.5-positive neurons and ganglia were observed. PGP 9.5-immunoreactive fibers in the ganglia often branched, giving rise to expanding nerve endings of laminar morphology resembling intraganglionic laminar endings described in rats and cats. Fine varicose fibers originating from the secondary plexus were occasionally observed near the motor endplates, suggested a dual innervation of the striated muscle. The submucosal plexus was free from ganglionated plexus. A regional difference in the submucosal nervous network was observed. The number of motor endplates in the inner muscle layer was higher than that in the outer muscle layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号