首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two trials were conducted to study the effects of intrauterine infusions of prostaglandin E(2) (PGE(2)) on luteal function in nonpregnant gilts. Cannulae were surgically implanted on day 9 postestrus into the lumen of each horn with a cephalic vein cannula inserted for collection of peripheral blood. Intrauterine infusions of 0, 25, 75 or 200 mug of PGE(2) were initiated at 0900 h on day 12 and administered thereafter every 12 hr until estrus or day 22 in the first trial. The second trial protocol included an increase in the dose of PGE(2) administered as well as the frequency of infusion. Infusion of 0, 200, 300 or 400 mug PGE(2) was begun at 0300 h on day 12 and continued every 6 hr until estrus or day 22. Cephalic plasma samples for progesterone analysis were collected every six hours from 0300 h on day 11 to 2100 h on day 26 in both trials. In Trial 1 mean plasma progesterone concentrations for all treatments were not different (P>0.05) from the controls on any given day of the estrous cycle. Interestrous interval was unaffected by intrauterine infusion of PGE(2). The mean plasma progesterone concentrations for all treatments were not different (P>0.05) from the controls on days 11-18 of the estrous cycle in Trial 2. However, plasma progesterone concentrations for the 200-mug and 300-mug PGE(2) groups appeared to be greater than the controls on days 14 and 15, indicating a possible delay in the decline of progesterone for these groups. The mean plasma progesterone concentrations for the treatment groups were lower (P<0.05) than the controls on days 20-26 of the cycle. treatment cycle length did not differ (P>0.05) from previous cycle length; thus treatment with PGE(2) had no effect on interestrous interval. PGE(2) may have retarded the decline of progesterone secretion by the corpus luteum in some cases, but at these dosages and frequencies of administration PGE(2) was ineffective in prolonging luteal maintenance.  相似文献   

2.
LH regulates luteal progesterone secretion during the estrous cycle in ewes and cows. However, PGE, not LH, stimulated ovine luteal progesterone secretion in vitro at day 90 of pregnancy and at day 200 in cows. The hypophysis is not obligatory after day 50 nor the ovaries after day 55 to maintain pregnancy in ewes. LH has been reported to regulate ovine placental PGE secretion up to day 50 of pregnancy and by pregnancy-specific protein B (PSPB) after day 50 of pregnancy. The objective of this experiment was to determine if and when a switch from LH to PGE occurred as the luteotropin regulating luteal progesterone secretion during pregnancy in ewes. Ovine luteal tissue slices of the estrous cycle (days 8, 11, 13, and 15) or pregnancy (days 8, 11, 13, 15, 20, 30, 40, 50, 60, and 90) were incubated in vitro with vehicle, LH, AA (precursor to PGE(2) and PGF(2alpha) synthesis), or PSPB in M199 for 4 h and 8 h. Concentrations of progesterone in jugular venous plasma of bred ewes increased (P< or =0.05) after day 50 and continued to increase through day 90. Secretion of progesterone by luteal tissue of non-bred ewes on days 8, 11, 13 and 15 and by bred ewes on days 8, 11, 13, 15, 20, 30, 40, and 50 was increased (P< or =0.05) by LH, but not by luteal tissue from pregnant ewes after day 50 (P> or =0.05). LH-stimulated progesterone secretion by luteal tissue from day 15 bred ewes was greater (P< or =0.05) than day 15 luteal tissue from non-bred ewes. Concentrations of progesterone in media were increased (P< or =0.05) when luteal tissue from pregnant ewes on day 50, 60, or 90 were incubated with AA or PSPB. Concentrations of PGE in media of non-bred ewes on days 8, 11, 13, or 15 and bred ewes on days 8 and 11 did not differ (P> or =0.05). Concentrations of PGE were increased (P< or =0.05) in media by luteal slices from bred ewes on days 13, 15, 20, 30, 40, 50, 60, and 90 of vehicle, LH, AA or PSPB-treated ewes. In addition, PSPB increased (P< or =0.05) PGE in media by luteal slices from pregnant ewes only on days 40, 50, 60, and 90. Concentrations of PGF(2alpha) were increased in media (P<0.05) of vehicle, AA, LH, or PSPB-treated luteal tissue from non-bred ewes and bred ewes on day 15 and by luteal tissue from bred ewes on days 20 and 30 after which concentrations of PGF(2alpha) in media declined (P< or =0.05) and did not differ (P> or =0.05) from non-bred or bred ewes on days 8, 11, or 13. It is concluded that LH regulates luteal progesterone secretion during the estrous cycle of non-bred ewes and up to day 50 of pregnancy, while only PGE regulates luteal progresterone secretion by ovine corpora lutea from days 50 to 90 of pregnancy. In addition, PSPB appears to regulate luteal secretion of progesterone from days 50 to 90 of pregnancy through stimulation of PGE secretion by ovine luteal tissue.  相似文献   

3.
The role of prostaglandin E2 (PGE2) in basal and noradrenaline (NA)-stimulated utilization of high density lipoprotein (HDL) as a source of cholesterol for progesterone synthesis was examined. In Experiment 1, a cannula was inserted into the aorta abdominalis through the coccygeal artery (cranial to the origin of the ovarian artery) in mature heifers, to facilitate infusion of NA (4 mg/30 min; n = 3) on day 10 of the estrous cycle. Three other heifers were similarly cannulated to serve as control. Before, during, and after NA or saline infusion, blood samples from the vena cava were collected every 5-15 min for analysis of PGE2, progesterone, and cholesterol. Each NA infusion stimulated (P < 0.01) secretion of both hormones in heifers. Short-duration increases (P < 0.05) in progesterone were observed due to the infusion of NA while cholesterol was not altered significantly. In addition, increases in PGE2 concentrations (P < 0.05) compared to controls were seen after NA infusion. Therefore, we used an in vitro model to verify the effect of PGE2 on HDL utilization by luteal cells from day 5 to 10 of the estrous cycle. In the preliminary experiment, 10(-6) M of PGE2 out of four different doses examined was selected for further studies, since it evoked the highest release of progesterone. In the next experiment, it was found that HDL increases progesterone secretion by luteal cells and both PGE2 and LH increased (P < 0.05) the response to HDL while NA did not. In the last in vitro experiment, progesterone stimulated PGE2 secretion by luteal cells. In conclusion, PGE2 may be directly involved in the utilization of cholesterol from HDL for progesterone synthesis. Furthermore, PGE2 may influence NA-stimulated progesterone secretion by the corpus luteum (CL). It is concluded that there is a positive feedback loop between progesterone and luteal PGE2 during days 5-10 of the estrous cycle.  相似文献   

4.
Twelve crossbred gilts, 8 to 9 months of age, were used to study the effects of prostaglandin E2 (PGE2) on luteal function during the estrous cycle. Intrauterine and jugular vein catheters were surgically placed before day 7 of the treatment estrous cycle and gilts were randomly assigned to 1 of 3 treatment groups. Groups I and II received constant intrauterine infusion of vehicle (6.0 ml/24 hr) or PGE2 (2400 micrograms/day; 6.0 ml/24 hr) respectively; while group III was given intrauterine infusions of 400 micrograms PGE2 every 4 hr. All infusions were initiated on day 7 and continued until estrus or through day 23. Jugular blood samples were collected twice daily from days 7 to 30 for progesterone analysis. Intrauterine infusion of PGE2 at the dose and frequencies given in this study delayed the decline in jugular plasma progesterone and resulted in prolongation of the estrous cycle length. The results of this study have shown that PGE2 at the dosage and frequency of administration used was capable of extending corpus luteum function.  相似文献   

5.
Thirty to forty percent of ruminant pregnancies are lost during the first third of gestation due to inadequate progesterone secretion. During the estrous cycle, luteinizing hormone (LH) regulates progesterone secretion by small luteal cells (SLC). Loss of luteal progesterone secretion during the estrous cycle is increased via uterine secretion of prostaglandin F(2α) (PGF(2α)) starting on days 12-13 post-estrus in ewes with up to 4-6 pulses per day. Prostaglandin F(2α) is synthesized from arachidonic acid, which is released from phospholipids by phospholipase A2. Endocannabinoids are also derived from phospholipids and are associated with infertility. Endocannabinoid-induced infertility has been postulated to occur primarily via negative effects on implantation. Cannabinoid (CB) type 1 (CB1) or type 2 (CB2) receptor agonists and an inhibitor of the enzyme fatty acid amide hydrolase, which catabolizes endocannabinoids, decreased luteal progesterone, prostaglandin E (PGE), and prostaglandin F(2α) (PGF(2α)) secretion by the bovine corpus luteum in vitro by 30 percent. The objective of the experiment described herein was to determine whether CB1 or CB2 receptor agonists given in vivo affect circulating progesterone, luteal weights, luteal mRNA for LH receptors, and luteal occupied and unoccupied LH receptors during the estrous cycle of ewes. Treatments were: Vehicle, Methanandamide (CB1 agonist; METH), or 1-(4-chlorobenzoyl)-5-methoxy-1H-indole-3-acetic acid morpholineamide (CB2 agonist; IMMA). Ewes received randomized treatments on day 10 post-estrus. A single treatment (500 μg; N=5/treatment group) in a volume of 1 ml was given into the interstitial tissue of the ovarian vascular pedicle adjacent to the luteal-containing ovary. Jugular venous blood was collected at 0 h and every 6-48 h for the analysis of progesterone by radioimmunoassay (RIA). Corpora lutea were collected at 48 h, weighed, bisected, and frozen in liquid nitrogen until analysis of unoccupied and occupied LH receptors and mRNA for LH receptors. Profiles of jugular venous progesterone, luteal weights, luteal mRNA for LH receptors, and luteal occupied and unoccupied LH receptors were decreased (P≤0.05) by CB1 or CB2 receptor agonists when compared to Vehicle controls. Progesterone in 80 percent of CB1 or CB2 receptor agonist-treated ewes was decreased (P≤0.05) below 1 ng/ml by 48 h post-treatment. It is concluded that the stimulation of either CB1 or CB2 receptors in vivo affected negatively luteal progesterone secretion by decreasing luteal mRNA for LH receptors and also decreasing occupied and unoccupied receptors for LH on luteal membranes. The corpus luteum may be an important site for endocannabinoids to decrease fertility as well as negatively affect implantation, since progesterone is required for implantation.  相似文献   

6.
The objective was to evaluate the effect of intrauterine infusion of prostaglandin E2 (PGE2) on luteal function in cattle. Heifers and cows were randomly assigned after two normal estrous cycles to either PGE2 or control treatment groups. Females in Treatment A were infused with 1 mg of PGE2 once daily into the uterine horn ipsilateral to the corpus luteum between days 7-10 of the estrous cycle with a 0.25 ml plastic semen straw and an artificial insemination pipette. Females in Treatment B were similarly infused with 1 mg of PGE2 once daily in 20 ml of a carrier vehicle via a catheter on days 10 and 11 of the estrous cycle. Control animals were infused with the carrier vehicle using either a semen straw (Treatment C) or via a catheter (Treatment D) on the same days of the estrous cycle. Blood samples were collected daily to monitor plasma progesterone concentrations during the treatment period. Females infused with PGE2 on days 7-10 of the estrous cycle returned to estrus in a mean of 23.5 days (range 22-25 days) and were similar (P > 0.05) to those infused on days 10 and 11 which returned to estrus in 23.5 days (range 22-25 days). Animals similarly infused with carrier vehicle on the same days of the estrous cycle returned to standing estrus in 20.2 days (range 17-23 days). Plasma progesterone concentrations indicated an extended period of elevated progesterone concentrations in PGE2-treated animals compared with control animals. These results indicate that short term administration of PGE2 early in the estrous cycle may result in extended luteal maintenance.  相似文献   

7.
We studied the effects of the frequently used glucogenic dietary supplementation in dairy herds and the hormonal changes occurring during the normal estrous cycle on the composition and concentration of milk lipid components. Holstein dairy cows were synchronized with two injections of prostaglandin F2α (estrus=day 0). Animals were held as controls or drenched for 11 days (day −3 to day 8 of the cycle) with 850 ml/day liquid propylene glycol (treatment, n=13 per group). Blood and milk samples were collected on day 1 and 8 of the cycle. In both groups, plasma progesterone concentration increased ∼10-fold between 1 and 8 days post-estrus. Milk fatty acid composition was associated primarily with estrous-cycle day: polyunsaturated fatty acids increased by 16%, n-6 by 15% and n-3 by 1% from day 1 to 8 post-estrus. Polar lipid composition was also altered by cycle day: phosphatidylethanolamine concentration was 2-fold and 1.5-fold higher on day 1 v. day 8 post-estrus in the control and treatment groups, respectively. Phosphatidylserine concentration in milk was also affected by cycle day by treatment interaction (P=0.04). A progesterone level by treatment interaction influenced the triglyceride-to-phospholipid ratio in the milk (P=0.02). The results suggest that progesterone plays a role in modulating milk lipid composition and structure. Therefore, strategies designed to alter milk lipid composition should consider the cow’s reproductive status.  相似文献   

8.
In this study, features of progesterone profiles were examined in relation to the outcome of insemination. Three groups of estrous cycles were analyzed: resulting in pregnancy, not resulting in pregnancy and resulting in lost pregnancy. The aim of the study was to identify a complex of progesterone profile features associated with successful insemination. The features used were (1) from the estrous cycle preceding the artificial insemination: estrus progesterone concentration, post-estrus maximum rate of increase in progesterone, luteal phase peak, pre-estrus maximum rate of decline in progesterone and the length of follicular and luteal phase and (2) from the estrous cycle following insemination: estrus progesterone concentration, post-estrus maximum rate of increase in progesterone and days from estrus to post-estrus maximum rate of increase in progesterone. A discriminant analysis did not reveal clear differences between the groups. However, the analysis correctly classified 75% of true pregnant cows. Conversely, only 60% of not pregnant animals were classified as such by the discriminate analysis. Individual analysis of progesterone profile features in pregnant and not pregnant groups of estrous cycles showed that a shorter follicular phase preceding insemination is associated with proper timing of post-ovulatory luteinisation and therefore is more likely to result in pregnancy.  相似文献   

9.
Twenty pluriparous, spring-calving Brahman cows were used to determine luteal competency, as measured by serum progesterone concentrations, during the first and the second postpartum estrous cycles. Prior to and after calving, all cows were maintained in good body condition on Coastal bermudagrass pasture (IFN 1-00-703). The calves were allowed to suckle ad libitum, and sterile marker bulls were maintained with the cow herd as an aid in estrus detection throughout the trial. Cow weight and body condition score were recorded within 24 hours after calving and again at the first behavioral estrus observed. From day 1 through day 14 (day 0 = estrus) of both the first and the second postpartum estrous cycles, blood samples were collected from each cow, processed to yield serum and analyzed by radioimmunoassay for progesterone concentrations. There was a higher incidence of abnormal estrous cycles following the first postpartum estrus (35%) than following the second (5%) postpartum estrus (P<0.05). The abnormal first estrous cycles were characterized by either a short luteal phase (four cows) or by standing estrus behavior without luteal tissue formation (three cows). When serum progesterone concentrations were compared for all cows during the first estrous cycle with those during the second estrous cycle, there was less progesterone released during the cycle (P<0.05) and lower peak progesterone concentrations (P<0.10) during the first estrous cycle. However, if the abnormal cows were excluded from the analyses, there was no difference (P>0.10) in either progesterone concentrations through the 14 days measured or in peak progesterone concentrations between the first and the second postpartum estrous cycles. It can be concluded from this study that the higher incidence of abnormal luteal function following the first postpartum estrus may contribute to the decreased conception rates observed when cows are bred at their first postpartum estrus.  相似文献   

10.
This study examined the affinities and concentrations of prostaglandin E (PGE) receptors on porcine luteal cells during the estrous cycle and early pregnancy. Corpora lutea (CL) were obtained from nonpregnant gilts at days 9 (n = 4), 12 (n = 3), and 14 (n = 6); three gilts possessed red, vascular CL and three gilts had white nonvascular CL) of the estrous cycle, and days 9 (n = 4), 12 (n = 3), 14 (n = 5), and 30 (n = 5) of pregnancy. The CL were dissociated enzymatically to disperse single cells and the red blood cells were removed by elutriation. The luteal cells were assayed for specific PGE binding by displacement analysis with use of [3H] PGE2 and varying concentrations of unlabeled PGE2. The specific binding of [3H] PGE2 to luteal cells decreased (p < 0.05) from days 9 to 14 of the estrous cycle, but only decreased (p < 0.05) from days 9 to 12 of pregnancy. Specific binding was higher (p < 0.05) on day 14 of pregnancy than the comparable stage of the estrous cycle. The affinities of PGE receptors decreased (p < 0.05) only on the luteal cells dissociated from red, vascular CL of day 14 nonpregnant gilts compared with those of other days of the estrous cycle and pregnancy. The number of PGE receptors on porcine luteal cells was similar (p > 0.05) in pregnant and nonpregnant gilts, but decreased (p < 0.05) on days 12-14 postestrus. During early pregnancy, it was evident that high affinity PGE receptors are sustained on porcine luteal cells; however, the role of the PGE receptors in maternal recognition of pregnancy remains speculative.  相似文献   

11.
Luteal function of induced corpora lutea in the bitch   总被引:1,自引:0,他引:1  
Nineteen anestrous bitches with a mean of 22 kg body weight and ranging from 2 to 4 years of age were induced to exhibit estrus and ovulate using PMSG and HCG. Twelve days after the first day of estrus, bitches were assigned to four treatment groups. Group (A) consisted of six bitches, Group (B) of five bitches and Groups (C) and (D) of four bitches each. At this time, bitches in Groups (A), (B) and (C) were laparotomized and those assigned to Groups (A) and (B) were bilaterally hysterectomized leaving the cervix and oviducts intact. Although bitches in Group (C) were laparotomized, they were not hysterectomized. Group (D) bitches were not subjected to any surgical procedures. Homologous uterine extract was prepared from each bitch in Group (A) and administered intramuscularly beginning on day 25 (day 0 = first day of estrus) and continued every other day for 61 days post-estrus. Bitches in Group (B) were similarly injected with equal volumes of 0.9% saline. Blood samples, obtained prior to laparotomy and every other day for 85 days thereafter, were assayed for plasma progesterone concentrations using radioimmunoassay. One bitch in each of Groups (A) and (D) did not form luteal tissue following treatment with PMSG and HCG although both bitches exhibited estrus following treatment. All other bitches showed an increase in progesterone levels (4 to 19 ng/ml) between the first day of estrus and 10 days post-estrus. Thereafter, progesterone levels progressively declined in all groups with levels below 1 ng/ml between 38 to 40 days post-estrus. Results of this study suggested that CL formed in the bitch following PMSG and HCG treatment have a reduced function compared to non-induced CL of a normal, non-fertile estrous cycle. Such premature CL regression appears to be independent of the presence or absence of the uterus.  相似文献   

12.
Nitric oxide (NO) has been reported to be luteolytic in vitro and in vivo in cows. However, an NO donor reversed PGF2alpha-induced inhibition of rat luteal progesterone secretion in vitro and an NO donor or endothelin-1 stimulated bovine luteal tissue secretion of prostaglandins E (PGE; PGE1, PGE2) in vitro without affecting progesterone or PGF2alpha secretion. In addition, chronic infusion of an NO donor into the interstitial tissue of the ovarian vascular pedicle adjacent the luteal-containing ovary prevented the decline in circulating progesterone, while a nitric oxide synthase (NOS) inhibitor did not affect luteolysis. The objective of this experiment was to determine whether an NO donor or NOS inhibitor infused chronically intrauterine adjacent to the luteal-containing ovary during the ovine estrous cycle was luteolytic or antiluteolytic. Ewes were treated either with vehicle (N=5), diethylenetriamine (DETA-control for DETANONOate; N=5), (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETANONOate-long acting NO donor; N=6), l-arginine (N=5), l-nitro-arginine methyl ester (l-NAME-NOS inhibitor; N=6), or NG-monomethyl-l-arginine acetate (l-NMMA; NOS inhibitor; N=5) every 6h from 2400h (0h) on day 8 through 1800h on day 18 of the estrous cycle. Jugular venous blood and inferior vena cava plasma via a saphenous vein cathether 5cm anterior to the juncture of the ovarian vein and inferior vena cava were collected every 6h for analysis for progesterone and PGF2alpha and PGE, respectively, by RIA. Corpora lutea were collected at 1800h on day 18 and weighed. Weights of corpora lutea were heavier (P< or =0.05) in DETANONOate-treated ewes when compared to vehicle, DETA, l-arginine, l-NAME, or l-NMMA-treated ewes, l-arginine luteal weights were heavier than vehicle, DETA, l-arginine, l-NAME, or l-NMMA-treated ewes, and luteal weights of vehicle, DETA, l-NAME, or l-NMMA-treated ewes did not differ amongst each other (P> or =0.05). Profiles of progesterone in jugular venous blood on days 8-18 differed (P< or =0.05) in DETANONOate-treated ewes when compared to vehicle, DETA, l-arginine, l-NMMA or l-NAME-treated ewes, which did not differ (P> or =0.05) amongst each other. The PGE:PGF2alpha ratio profile in inferior vena cava plasma of DETANONOate-treated ewes was increased (P< or =0.05) when compared to all other treatment groups. In a second experiment, conversion of [3H PGE2] to [3H PGF2alpha] by day 15 ovine caruncular endometrium in vitro was determined in vehicle, DETA, or DETANONOate-treatment groups. Conversion of [3H PGE2] to [3H PGF2alpha] was decreased (P< or =0.05) only by DETANONOate. It is concluded that NO is not luteolytic during the ovine estrous cycle, but may instead be antiluteolytic and prevent luteolysis by altering the PGE:PGF2alpha ratio secreted by the uterus.  相似文献   

13.
Twenty crossbred gilts with at least 2 consecutive estrous cycles of 18 to 21 days in length were used to study the effects of prostaglandins E2 and F2 alpha (PGE2 and PGF2 alpha) on luteal function in indomethacin (INDO) treated cycling gilts. Intrauterine and jugular vein catheters were surgically placed before day 7 of the treatment estrous cycle and gilts were randomly assigned to 1 of 5 treatment groups (4/group). With exception of the controls (Group I) all gilts received 3.3 mg/kg INDO every 8 h, Groups III, IV and V received 2.5 mg PGF2; 2.5 mg PGF2 alpha + 400 micrograms PGE2 every 4 hr, or 400 micrograms PGE2 every 4 h, respectively. All treatments were initiated on day 7 and continued until estrus or day 23. Jugular blood for progesterone analysis was collected twice daily from day 7 to 30. Estradiol-17 beta (E2-17 beta) concentrations were determined in samples collected twice daily, from 2 d before until 2 d following the day of estrus onset. When compared to pretreatment values, estrous cycle length was unaffected (P greater than 0.05) in Group I, prolonged (P less than 0.05) in Groups II, IV and V; and shortened (P less than 0.05) in Group III. The decline in plasma progesterone concentration that normally occurs around day 15 was unaffected (P greater than .05) in Group I; delayed (P less than 0.05) in Groups II, IV and V; and occurred early (P less than 0.05) in Group III. Mean E2-17 beta remained high (31.2 +/- 4.9 to 49.3 +/- 3.1 pg/ml) in Groups III and IV, while the mean concentrations in Groups III and V varied considerably (17.0 +/- 2.0 to 52.2 +/- 3.5 pg/ml). The results of this study have shown that PGE2 will counteract the effects of PGF2 alpha in INDO treated cycling gilts. The inclusion of PGF2 alpha appeared to either stimulate E2-17 beta secretion or maintain it at a higher level than other treatments.  相似文献   

14.
15.
The effect of intrauterine iodine infusion on estrous cycle length was studied in four cows. The infusions were performed at various times of the estrous cycle: early, middle, late, and during luteolysis. Blood samples were drawn every third hour from the jugular vein. Progesterone and 15-keto-13,14-dihydroprostaglandin F2α (the main metabolite of PGF2α) were measured to monitor luteal activity and prostaglandin release. No release of prostaglandins was observed immediately following intrauterine infusion. Infusion in two cows on day 5 of the estrous cycle resulted in prostaglandin release after 54 and 69 hrs., respectively, followed by luteal regression and the occurrence of estrus at approx. five days after infusion. Infusions performed on days 11 or 12 resulted in prostaglandin release after 147 and 120 hrs., respectively, followed by luteolysis and heat after a 19 day estrous cycle. Infusion in two cows at days 16 and 17 resulted in prostaglandin release after 117 hrs. in both animals. One cycle was prolonged whereas the other cycle was normal in duration. One cow infused on day 20 following the occurrence of the first prostaglandin surge had a cycle length of 26 days, whereas another cow infused on day 20 was not affected because luteolysis was essentially complete by the time of infusion. One animal infused on day 5 did not respond to the iodine infusion. In this animal, however, the corpus luteum was not completely developed prior to the infusion. From this study it can be concluded: 1) intrauterine iodine infusions performed after the development of a progesterone secreting corpus luteum result in prostaglandin release within three to six days with the subsequent occurrence of luteolysis; 2) luteolysis wras in all cases observed in connection with prostaglandin F2α release of the same order of magnitude and duration as during normal luteolysis. kw|Keywords|k]prostaglandin release; k]progesterone; k]cow; k]es trous cycle; k]iodine infusion  相似文献   

16.
Thirty-two lactating Holstein cows were assigned to 1 of 4 groups in a randomized block design using a 2 X 2 factorial arrangement of treatments. Recombinant bovine growth hormone (rbSt; 25 mg/day) or placebo was administered beginning at Day 35 or 70 postpartum. All cows began treatment approximately 3 days post-estrus. Blood samples were collected at least once daily for a 70-day period to determine the concentration of progesterone and the duration of the luteal and follicular phases. During estrous cycles 1 and 3, frequent blood samples were taken (every 10 min for 8 h) 24 and 60 h after the onset of luteal regression. These samples were assayed for luteinizing hormone (LH), and samples coincident with the second LH pulse detected were assayed for estradiol. Ultrasonography was used to determine the size of the largest ovarian follicle from Day 17 until ovulation in estrous cycles 1 and 3. Luteal life span, length of the follicular phase, and diameter of the largest follicle were not affected by treatment with rbSt. Administration of rbSt increased the concentration of progesterone in plasma during the first two luteal phases (p less than 0.01). Progesterone was elevated during the mid-luteal phase of cycle 3 in rbSt-treated cows that began treatment about Day 35 postpartum but not in cows that began treatment on Day 70 postpartum (Treatment X Stage X Day, p less than 0.01). During the first follicular phase studied, LH pulse frequency was higher (p = 0.06) in rbSt-treated cows than in cows receiving the placebo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Two experiments were conducted to determine the luteotropin of pregnancy in sheep and to examine autocrine and paracrine roles of progesterone and estradiol-17 beta on progesterone secretion by the ovine corpus luteum (CL). Secretion of progesterone per unit mass by day-8 or day-11 CL of the estrous cycle was similar to day-90 CL of pregnancy (P > or = 0.05). In experiment 1, secretion of progesterone in vitro by slices of CL from ewes on day-8 of the estrous cycle was increased (P < or = 0.05) by LH or PGE2. Secretion of progesterone in vitro by CL slices from day-90 pregnant ewes was not affected by LH (P > or = 0.05) while PGE2 increased (P < or = 0.05) secretion of progesterone. Day 8 ovine CL of the estrous cycle did not secrete (P > or = 0.05) detectable quantities of PGF2alpha or PGE while day-90 ovine CL of pregnancy secreted PGE (P < or = 0.05) but not PGF2alpha. Secretion of progesterone and PGE in vitro by day-90 CL of pregnancy was decreased (P < or = 0.05) by indomethacin. The addition of PGE2, but not LH, in combination with indomethacin overcame the decreases in progesterone by indomethacin (P < or = 0.05). In experiment 2, secretion of progesterone in vitro by day-11 CL of the estrous cycle was increased at 4-h (P < or = 0.05) in the absence of treatments. Both day-11 CL of the estrous cycle and day-90 CL of pregnancy secreted detectable quantities of PGE and PGF2alpha (P < or = 0.05). In experiment 1, PGF2alpha secretion by day-8 CL of the estrous cycle and day-90 ovine CL of pregnancy was undetectable, but was detectable in experiment 2 by day-90 CL. Day 90 ovine CL of pregnancy also secreted more PGE than day-11 CL of the estrous cycle (P < or = 0.05), whereas day-8 CL of the estrous cycle did not secrete detectable quantities of PGE (P > or = 0.05). Trilostane, mifepristone, or MER-25 did not affect secretion of progesterone, PGE, or PGF2alpha by day- 11 CL of the estrous cycle or day-90 CL of pregnancy (P > or = 0.05). It is concluded that PGE2, not LH, is the luteotropin at day-90 of pregnancy in sheep and that progesterone does not modify the response to luteotropins. Thus, we found no evidence for an autocrine or paracrine role for progesterone or estradiol-17 36 on luteal secretion of progesterone, PGE or PGF2alpha.  相似文献   

18.
To determine the physiological significance of tumor necrosis factor-alpha (TNFalpha) in the regulation of endometrial prostaglandin (PG) release in cattle, we investigated the effects of TNFalpha on the secretion of PGE2 and PGF2alpha by bovine endometrium during the estrous cycle. Bovine uteri were classified into six stages (estrus: Day 0, early luteal 1: Days 2 to 3, early luteal 11: Days 5 to 6, mid-luteal: Days 8 to 12, late luteal: Days 15 to 17 and follicular: Days 19 to 21). After 1 h of pre-incubation, endometrial tissues (20 to 30 mg) were exposed to 0 or 0.6 nM TNFalpha for 4 h. The PGE2 concentrations in the medium were higher in the luteal stages than in the follicular stage and in estrus. In contrast, PGF2alpha concentrations were higher in the follicular stage and in estrus than in the luteal stages. The ratio of the basal concentrations of PGE2 and PGF2alpha (PGE2/PGF2alpha ratio) was higher in the luteal stages than in the follicular stage and in estrus. Although TNFalpha stimulated both PGE2 and PGF2alpha secretion during the entire period of the estrous cycle, the level of stimulation of TNFalpha on PGE2 output by the bovine endometrium does not show the same cyclical changes as that shown on PGF2alpha output. The stimulation of TNFalpha resulted in a decrease in the PGE2/PGF2alpha ratio only in the late luteal stage. Furthermore, TNFalpha stimulated PGE2 secretion in stromal, but not epithelial cells. The overall results suggest that TNFalpha is a potent regulator of endometrial PGE2 secretion as well as PGF2alpha secretion during the entire period of estrous cycle, and that TNFalpha plays different roles in the regulation of secretory function of bovine endometrium at different phases of the estrous cycle.  相似文献   

19.
Two experiments were conducted to determine the luteotropin of pregnancy in sheep and to examine autocrine and paracrine roles of progesterone and estradiol-17 beta on progesterone secretion by the ovine corpus luteum (CL). Secretion of progesterone per unit mass by day-8 or day-11 CL of the estrous cycle was similar to day-90 CL of pregnancy (P >/= 0.05). In experiment 1, secretion of progesterone in vitro by slices of CL from ewes on day-8 of the estrous cycle was increased (P /= 0.05) while PGE(2) increased (P /= 0.05) detectable quantities of PGF(2alpha) or PGE while day-90 ovine CL of pregnancy secreted PGE (P /= 0.05). Trilostane, mifepristone, or MER-25 did not affect secretion of progesterone, PGE, or PGF(2alpha) by day-11 CL of the estrous cycle or day-90 CL of pregnancy (P >/= 0.05). It is concluded that PGE(2), not LH, is the luteotropin at day-90 of pregnancy in sheep and that progesterone does not modify the response to luteotropins. Thus, we found no evidence for an autocrine or paracrine role for progesterone or estradiol-17 36 on luteal secretion of progesterone, PGE or PGF(2alpha).  相似文献   

20.
Each of 24 pasture-reared crossbred beef heifers were herded from a large pasture on day 14 of the estrous cycle and assigned randomly to one of four treatment groups as follows: Field Control (FC), Field ACTH (FA), Pen Control (PC) and Pen ACTH (PA). Field groups were maintained in a small field, and pen groups were confined in a pen in a pole barn. ACTH groups received 200 IU of ACTH IM daily for days 17 through 21 of the cycle and control groups received only the gelatin carrier IM on the same cycle days. Average cycle lengths for FA and PA heifers were 25 and 24.3 days with an average period from plasma progesterone decline below 1 ng/ml to estrus of 5.5 days. During the ACTH injection period, follicular growth was suppressed and the proestrus plasma estrogen rise was delayed. Average cycle lengths for FC and PC heifers were 20.8 and 22.8 days respectively. All control group heifers exhibited estrus within 2 days of the plasma progesterone decline below 1 ng/ml. In addition, pen confinement heifers showed a trend for extended luteal function and consequent extended estrous cycle length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号