首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have analyzed five Y-specific microsatellite loci (DYS388, DYS390, DYS391, DYS394, DYS395) in 17 Asian and Pacific populations representing a broad geographical area and different linguistic families, with an emphasis on populations from mainland and insular Southeast Asia. Analysis of gene diversity indicates that several of the studied populations have experienced substantial genetic isolation, and a reduction in male effective sizes (viz. the Northeast Indian populations Nishi, Adi and the Taiwanese aboriginals). The average values of the FST and (ST statistics indicate a high degree of genetic differentiation among these populations at the five Y-specific markers (FST =0.21 and (ST = 0.33, based on individual loci; FST = 0.09 and (ST = 0.36, based on haplotypes), which conform to the expectation of a fourfold smaller effective size of the Y-linked loci compared with the autosomal loci. Dendrogram and principal coordinates analysis, with few exceptions, show a major separation between mainland and insular populations. Among the mainland populations, the Tibeto-Burman speakers from Northeast India cluster in a well-defined group, supported by high bootstrap values. The Southern Chinese, Northern Thai, So, and Cambodian also are integral to this cluster. The other major cluster is rather heterogeneous and includes, among others, the Austronesian-speaking populations. The Samoans of the Pacific, with a distinctive pattern of allelic distributions, stand as an outlier in the tree and PC representations. Although trends of genetic affinities among ethnically and geographically related populations are evident from the Y-specific microsatellite data, microsatellites are not optimal for deciphering complex migratory patterns of human populations, which could possibly be clarified by using additional and more stable genetic markers. Am J Phys Anthropol 110: 1–16, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

2.
We have analyzed the extent of genetic variation at nine autosomal short tandem repeat loci (D3S1358, VWA, FGA, TH01, TPOX, CSF1PO, D5S818, D13S317, D7S820) among six populations from Croatia: five distributed in the islands of the eastern Adriatic coast and one from the mainland. The purpose is to investigate the usefulness of these loci in detecting regional genetic differentiation in the studied populations. Significant heterogeneity among the island and mainland populations is revealed in the distributions of allele frequencies; however, the absolute magnitude of the coefficient of gene differentiation is small but significant. The summary measures of genetic variation, namely, heterozygosity, number of alleles, and allele size variance, do not indicate reduced genetic variation in the island populations compared to the mainland population. In contrast to the two measures of genetic variation, allele size variance and within-locus heterozygosity, the imbalance index (beta) indicates evidence of recent expansion of population sizes in all islands and in the mainland. High mutation rates of the studied loci together with local drift effects are likely explanations for interisland genetic variation and the observed lack of reduced genetic diversity among the island populations.  相似文献   

3.
We investigated the genetic structure of Sorex unguiculatus and Sorex caecutiens populations in Hokkaido, Japan, using hypervariable microsatellite DNA markers. We used five microsatellite loci to type 475 S. unguiculatus individuals from 20 localities on the Hokkaido mainland and four localities from each of four offshore islands (and 11 shrews from one locality in southern Sakhalin for a particular analysis). We used six microsatellite loci to type 240 S. caecutiens individuals from 13 localities on the Hokkaido mainland. Genetic variation was high in mainland populations of both species and low in the island populations of S. unguiculatus. Allelic richness and island size were positively correlated for S. unguiculatus, suggesting that genetic drift occurred on those islands due to small population size. In addition, four insular populations of S. unguiculatus were genetically differentiated from the mainland populations, although clear phylogeographic clustering was not confirmed among populations on the Hokkaido mainland for either S. unguiculatus or S. caecutiens. Heterozygosity excess was observed in more than half of the populations including the mainland populations of the two species, suggesting recent bottleneck events in these populations. Population dynamics of the shrews might be explained by a metapopulation scheme. According to autocorrelation analysis, the extent of non-random spatial genetic structure was approximately 100 km. Isolation by distance was observed in S. unguiculatus, but not in S. caecutiens although there is a positive trend. The lack of correlation for S. caecutiens might have been due to small sample size. Thus, no obvious differences in population genetic structure were found between the two species on the Hokkaido mainland in the present study, while previous investigations using mitochondrial DNA sequences inferred that these two species might have rather different biogeographic histories.  相似文献   

4.
The paper presents the results of analysis of the gene pools of several North Eurasian ethnic groups (Buryats, Evenks, Altaians, Russians, Kyrgyzes, Tuvinians, Tatars, and Ukrainians) examined using a panel of autosomal microsatellite markers (D4S397, D5S393, D7S640, D8S514, D9S161, D10S197, D11S1358, D12S364, and D13S173) mapped on different chromosomes and represented by the (CA)n dinucleotide repeats. In the group of populations examined the proportion of genetic variability at microsatellite loci explained by interpopulation differences was about 2.5%, while genetic differences between the individuals within a population accounted for 97.5% of this variability. Analysis of genetic relationships among the populations revealed substantial differences between the populations belonging to the Indo-European and Altaic linguistic families in gene diversity at microsatellite loci.  相似文献   

5.
Data from three published studies of genetic variation at 18 microsatellite loci in water buffalo populations in China (18 swamp type, two river type), Nepal (one wild, one domestic river, one hybrid) and south-east Asia (eight swamp, three river) were combined so as to gain a broader understanding of genetic relationships among the populations and their demographic history. Mean numbers of alleles and expected heterozygosities were significantly different among populations. Estimates of θ (a measure of population differentiation) were significant among the swamp populations for all loci and among the river populations for most loci. Differentiation among the Chinese swamp populations (which was due primarily to just one population) was much less than among the south-east Asian. The Nepal wild animals, phenotypically swamp type but genetically like river type, are significantly different from all the domestic river populations and presumably represent the ancestral Bubalus arnee (possibly with some river-type introgression). Relationships among the swamp populations (D(A) genetic distances, principal component analysis and structure analyses) show the south-east Asian populations separated into two groups by the Chinese populations. Given these relationships and the patterns of genetic variability, we postulate that the swamp buffalo was domesticated in the region of the far south of China, northern Thailand and Indochina. Following domestication, it spread south through peninsular Malaysia to Sumatra, Java and Sulawesi, and north through China, and then to Taiwan, the Philippines and Borneo.  相似文献   

6.
The paper presents the results of analysis of the gene pools of several North Eurasian ethnic groups (Buryats, Evenks, Altaians, Russians, Kyrgyzes, Tuvinians, Tatars, and Ukrainians) examined using a panel of autosomal microsatellite markers (D4S397,D5S393, D7S640, D8S514, D9S161, D10S197, D11S1358, D12S364 and D13S173) mapped on different chromosomes and represented by the (CA) n dinucleotide repeats. In the group of populations examined the proportion of genetic variability at microsatellite loci explained by interpopulation differences was about 2.5%, while genetic differences between the individuals within a population accounted for 97.5% of this variability. Analysis of genetic relationships among the populations revealed substantial differences between the populations belonging to the Indo-European and Altaic linguistic families in gene diversity at microsatellite loci.  相似文献   

7.
The autosomal AmpFLSTR markers validated and widely used for forensic applications are used in this study to examine the extent of diversity and genetic relationships among nine Meghalaya populations. Altogether, 932 chromosomes from 9 populations were analyzed using 9 tetrameric AmpFLSTR loci. The included populations were all seven subtribes of the Austro-Asiatic Mon-Khmer-speaking Khasi and the neighboring Tibeto-Burman Garo. The Lyngngam, which are linguistically closer to the Khasi but are culturally intermediate between the Khasi and the Garo, are also included in the study. Although most of the microsatellite loci are highly polymorphic in each of these populations, the allele distributions are fairly uniform across the Meghalaya populations, suggesting relative homogeneity among them. Concurrent with this, the coefficient of gene differentiation (G(ST)) is observed to be low (0.026+/-0.002). This is naturally reflected in the lack of clear differentiation and clustering pattern of the Meghalaya tribes based on either geographic proximity or the historical or current affiliations of these tribes. Analysis of molecular variance (AMOVA) suggests no significant population structure. The structure analysis further suggests that, barring War-Khasi and Pnar, no other population shows any semblance of genetic identity. Even the position of the linguistically distinct Garo is not portrayed as separate from the Khasi. However, when comparable data from other Indian, Southeast Asian, and other continental populations were analyzed, the Meghalaya populations formed a compact cluster clearly separated from other populations, suggesting genetic identity of the Meghalaya populations as a whole. These results are concurrent with the hypothesis of a common and recent origin of these Meghalaya populations, whose genetic differentiation is overwhelmed by the homogenizing effect of continuous gene flow.  相似文献   

8.
Krithika S  Maji S  Vasulu TS 《PloS one》2008,3(7):e2549
Tibeto-Burman populations of India provide an insight into the peopling of India and aid in understanding their genetic relationship with populations of East, South and Southeast Asia. The study investigates the genetic status of one such Tibeto-Burman group, Adi of Arunachal Pradesh based on 15 autosomal microsatellite markers. Further the study examines, based on 9 common microsatellite loci, the genetic relationship of Adi with 16 other Tibeto-Burman speakers of India and 28 neighboring populations of East and Southeast Asia. Overall, the results support the recent formation of the Adi sub-tribes from a putative ancestral group and reveal that geographic contiguity is a major influencing factor of the genetic affinity among the Tibeto-Burman populations of India.  相似文献   

9.
Genomic diversity of the Qatari population was investigated by screening 15 autosomal short tandem repeats (STRs). Significant departures from genetic equilibrium were detected at the D13S317, D19S433 and VWA loci, which persisted after applying Bonferroni-type corrections. Gene diversity (GD) values ranged from 0.6851 (TPOX) to 0.8813 (D2S1338), while observed heterozygosity (Ho) oscillated between 0.3388 (D19S433) and 0.8397 (D2S1338). Interestingly, Ho was lower than expected (He) for 14 of the loci analyzed. The information provided by these microsatellite markers was analyzed by means of genetic distances, multidimensional scaling, hierarchical analyses of the molecular variance (AMOVA) and admixture estimations to assess the genetic relationships of Qatar with European, Asian, African and other Middle Eastern populations. The main findings of the study were the genetic uniqueness of the Qatari population, its strong similarity to the United Arab Emirates (UAE) group, a slight genetic differentiation with respect to other Arab populations (Syria and Egypt) and Turkey, and a certain genetic affinity with sub-Saharan African populations. These results are discussed in light of two major issues: the high consanguinity rates characterizing the Qatari population and its strategic geographic position in the Arabian Peninsula close to major migratory routes, an important pivotal contact zone for bidirectional dispersals between Eurasia and Africa.  相似文献   

10.
Humans reached present-day Island Southeast Asia (ISEA) in one of the first major human migrations out of Africa. Population movements in the millennia following this initial settlement are thought to have greatly influenced the genetic makeup of current inhabitants, yet the extent attributed to different events is not clear. Recent studies suggest that south-to-north gene flow largely influenced present-day patterns of genetic variation in Southeast Asian populations and that late Pleistocene and early Holocene migrations from Southeast Asia are responsible for a substantial proportion of ISEA ancestry. Archaeological and linguistic evidence suggests that the ancestors of present-day inhabitants came mainly from north-to-south migrations from Taiwan and throughout ISEA approximately 4,000 years ago. We report a large-scale genetic analysis of human variation in the Iban population from the Malaysian state of Sarawak in northwestern Borneo, located in the center of ISEA. Genome-wide single-nucleotide polymorphism (SNP) markers analyzed here suggest that the Iban exhibit greatest genetic similarity to Indonesian and mainland Southeast Asian populations. The most common non-recombining Y (NRY) and mitochondrial (mt) DNA haplogroups present in the Iban are associated with populations of Southeast Asia. We conclude that migrations from Southeast Asia made a large contribution to Iban ancestry, although evidence of potential gene flow from Taiwan is also seen in uniparentally inherited marker data.  相似文献   

11.
Delphinium variegatum is subdivided into three subspecies: D. v. variegatum is widespread in central and northern California, while D. v. kinkiense (an endangered taxon) and D. v. thornei are endemic to San Clemente Island off the coast of southern California. Electrophoretic data for 19 loci were collected from 7 populations of the mainland subspecies and all 24 known populations of the two insular endemic subspecies. Populations of the widespread mainland subspecies have more polymorphic loci (33.6% vs. 24.5%) and more alleles per polymorphic locus (2.61 vs. 2.15) than the insular endemic subspecies. However, observed heterozygosities are lower in the mainland subspecies (0.041 vs. 0.071), presumably due to lower levels of outcrossing (t = 0.464 vs. 0.895). Expected heterozygosities are similar (0.064 vs. 0.074) due to lower alternative allele frequencies in populations of the mainland subspecies (mean q = 0.075 vs. 0.190). Populations of the two insular subspecies are almost equivalent genetically (mean I = 0.997) regardless of taxonomic designation or geographic location. In contrast, one of the mainland populations is genetically well differentiated from the others. If this exceptional population is excluded, the mainland subspecies partitions genetic diversity similarly to the island subspecies, with most variation being found within populations (G(ST) = 0.073 vs. 0.030).  相似文献   

12.
The genetic structure of seven mainland and island Asian populations of Bombus ignitus was investigated using nine microsatellite markers and the sequences of part of the mitochondrial cytochrome b (cytb) gene. While microsatellite markers showed high genetic variability, no sequence variation was found in the cytb gene fragment analyzed. The number of microsatellite alleles ranged from 9 to 24. Gene diversities per locus per population ranged from 0.378 to 0.992. Analysis of molecular variance (AMOVA) and most pairwise F(ST) values showed significant genetic differentiation between mainland and island populations. Cytb sequences data and microsatellite bottleneck tests indicated that almost all populations were subjected to recent bottlenecks. Our results suggest that B. ignitus populations diverged due to recent bottlenecks and geographic isolation.  相似文献   

13.
Elm breeding programs worldwide have relied heavily on Asian elm germplasm, particularly Ulmus pumila, for the breeding of Dutch elm disease tolerant cultivars. However, the extent and patterning of genetic variation in Asian elm species is unknown. Therefore, the objective of this research was to determine the extent of genetic diversity among 53 U. pumila accessions collected throughout the People's Republic of China. Using 23 microsatellite loci recently developed in the genus Ulmus, a total of 94 alleles were identified in 15 polymorphic and 4 monomorphic loci. The average number of alleles per locus was 4.9, with a range of 1-11 alleles. Gene diversity estimates per locus ranged from 0.08 to 0.87, and the non-exclusion probability for the 15 polymorphic loci combined was 0.7 x 10(-9). Nineteen region-specific alleles were identified, and regional gene diversity estimates were moderately high (0.48-0.57). The genetic relationships among accessions and regions were estimated by UPGMA and principal coordinate analysis. Both techniques discriminated all accessions and regions. Two microsatellite markers (UR175 + UR123 or Ulm-3) were sufficient to discriminate up to 99.7% of the accessions studied. This research provides useful information for DNA-based fingerprinting, breeding, ecological studies, and diversity assessment of elm germplasm.  相似文献   

14.
Aim Genetically differentiated insular populations are candidates for independent units for conservation. However, occasional immigration to reduced island populations may occur and potentially have important consequences in their future viability and evolutionary potential. In this study, we investigate the conservation implications of population structure and connectivity of insular and continental populations of a migratory raptor as determined using genetic tools and satellite tracking. Location Western European populations in the Iberian Peninsula and two insular populations in the Mediterranean Sea (Balearic Islands) and Atlantic Ocean (Canary Islands). Methods We genotyped 22 microsatellite loci in 96 Egyptian vultures (Neophron percnopterus) from the Iberian Peninsula, 36 from Menorca (Balearic archipelago) and 242 (85% of the current population) from Fuerteventura (Canary Islands). We analysed genetic variation to estimate structure, gene flow, genetic diversity, effective size and recent demographic history of the populations. Additionally, 19 vultures were marked with satellite transmitters to track their migration routes. Results Insular populations were genetically differentiated from those of the mainland. We detected immigration in the insular populations and within the continental counterpart. We found similar levels of genetic variability between the continent and the islands, and a bottleneck analysis indicated recent sharp population declines in both archipelagos but not on the continent. Main conclusions Our study provides evidence that, in spite of significant differentiation, insular populations of highly mobile species may remain connected with the mainland. Conservation programmes should take into account population connectivity and integrate differentiated units of management within complex units of conservation that can best maintain processes and potential for evolutionary change.  相似文献   

15.
The genetic profiles based on 15 autosomal microsatellite markers were analyzed among three socially distinct endogamous Dravidian populations: Tanjore Kallar, Vanniyar, and Pallar of Tamil Nadu, southern India, in order to understand their origin and the extent of genetic affinity and diversity among them. All loci were highly polymorphic and followed Hardy-Weinberg expectations except for loci D13S317 in Tanjore Kallars and D7S820 in Vanniyars. The SK2 criterion test showed no evidence of association among the 15 loci in the studied populations. The extent of gene differentiation among the three populations was low (G(ST) = 0.012), suggesting proximity between them. The phylogenetic dendrogram based on allele frequencies places them in a separate cluster, away from other compared Indo-European populations. The fit of the Harpending and Ward model of regression was found to be good and consistent with the extent of endogamy followed by the respective populations. These findings support a separate origin of the Dravidians and reveal an overall genetic unity among the studied Tamil populations belonging to different strata of the social hierarchy. The extent of diversity found among them probably resulted from the strict endogamous practices that they follow.  相似文献   

16.
The emerging availability of microsatellite markers from mammalian sex chromosomes provides opportunities to investigate both male- and female-mediated gene flow in wild populations, identifying patterns not apparent from the analysis of autosomal markers alone. Tammar wallabies (Macropus eugenii), once spread over the southern mainland, have been isolated on several islands off the Western Australian and South Australian coastlines for between 10 000 and 13 000 years. Here, we combine analyses of autosomal, Y-linked and X-linked microsatellite loci to investigate genetic variation in populations of this species on two islands (Kangaroo Island, South Australia and Garden Island, Western Australia). All measures of diversity were higher for the larger Kangaroo Island population, in which genetic variation was lowest at Y-linked markers and highest at autosomal markers (θ=3.291, 1.208 and 0.627 for autosomal, X-linked and Y-linked data, respectively). Greater relatedness among females than males provides evidence for male-biased dispersal in this population, while sex-linked markers identified genetic lineages not apparent from autosomal data alone. Overall genetic diversity in the Garden Island population was low, especially on the Y chromosome where most males shared a common haplotype, and we observed high levels of inbreeding and relatedness among individuals. Our findings highlight the utility of this approach for management actions, such as the selection of animals for translocation or captive breeding, and the ecological insights that may be gained by combining analyses of microsatellite markers on sex chromosomes with those derived from autosomes.  相似文献   

17.
Microsatellite variation was studied at 48 microsatellite loci in 10 Drosophila melanogaster populations to investigate the population structure on the Australian east coast. Low, but statistically significant population differentiation was observed among most populations. The populations on the Australian mainland did not show evidence for isolation by distance. We conclude that the population structure of D. melanogaster on the Australian mainland is probably the result of a shared history (recent colonization). The observed differences between local D. melanogaster populations probably reflect variation in effective population sizes rather than patterns of gene flow. Two populations from Tasmania were more differentiated from the Australian mainland than a population from Israel, raising the question whether they are derived from the Australian mainland or colonized from a different source population.  相似文献   

18.
The genetic diversity of Bhutanese chickens needs to be understood in order to develop a suitable conservation strategy for these birds in Bhutan. In this, work, we used microsatellite markers to examine the genetic diversity of Bhutanese chickens. Four Bhutanese chicken varieties (Black plumage, Frizzle, Naked neck and Red Junglefowl-like, corresponding to Yuebjha Narp, Phulom, Khuilay and Seim, respectively), two subspecies of Red Junglefowl (Gallus gallus gallus and Gallus gallus spadecieus), two varieties of Thai native chickens (Pradhu Hang Dam and Chee; Gallus gallus domesticus) representing the Southeast Asian domestic chicken, and two commercial lines (Broiler and Single Comb White Leghorn) were genotyped with 18 microsatellites that included 16 loci recommended by the FAO/ISAG for investigations of genetic variability in chickens. All loci were polymorphic, with the number of alleles ranging from six (MCW0111) to 23 (MCW0183). Substantial genetic variation was observed in all populations, with the Bhutanese native chicken Yuebjha Narp (Black plumage chicken) showing the lowest genetic variability. Despite extensive intrapopulation variation, the genetic differentiation among 10 populations was moderate. A neighbor-joining tree revealed the genetic relationships involved while principal component analysis showed that Bhutanese native chickens should be given priority in conservation efforts because of their genetic distinctiveness. Chee chickens are especially valuable as a reservoir of predomestic diversity, as indicated by their greater genetic variation and their position in the phylogenetic tree.  相似文献   

19.
We investigated genetic variation at six microsatellite (simple sequence repeat) loci in yellow baboons (Papio hamadryas cynocephalus) at two localities: the Tana River Primate Reserve in eastern Kenya and Mikumi National Park, central Tanzania. The six loci (D1S158, D2S144, D4S243, D5S1466, D16S508, and D17S804) were all originally cloned from and characterized in the human genome. These microsatellites are polymorphic in both baboon populations, with the average heterozygosity across loci equal to 0.731 in the Tana River sample and 0.787 in the Mikumi sample. The genetic differentiation between the two populations is substantial. Kolmogornov–Smirnov tests indicate that five of the six loci are significantly different in allele frequencies in the two populations. The mean F ST across loci is 0.069, and Shriver's measure of genetic distance, which was developed for microsatellite loci (Shriver et al., 1995), is 0.255. This genetic distance is larger than corresponding distances among human populations residing in different continents. We conclude that (a) the arrays of alleles present at these six microsatellite loci in two geographically separated populations of yellow baboons are quite similar, but (b) the two populations exhibit significant differences in allele frequencies. This study illustrates the potential value of human microsatellite loci for analyses of population genetic structure in baboons and suggests that this approach will be useful in studies of other Old World monkeys.  相似文献   

20.
Refugia are expected to preserve genetic variation of relict taxa, especially in polyploids, because high gene dosages could prevent genetic erosion in small isolated populations. However, other attributes linked to polyploidy, such as asexual reproduction, may strongly limit the levels of genetic variability in relict populations. Here, ploidy levels and patterns of genetic variation at nuclear microsatellite loci were analysed in Prunus lusitanica, a polyploid species with clonal reproduction that is considered a paradigmatic example of a Tertiary relict. Sampling in this study considered a total of 20 populations of three subspecies: mainland lusitanica (Iberian Peninsula and Morocco), and island azorica (Azores) and hixa (Canary Islands and Madeira). Flow cytometry results supported an octoploid genome for lusitanica and hixa, whereas a 16‐ploid level was inferred for azorica. Fixed heterozygosity of a few allele variants at most microsatellite loci resulted in levels of allelic diversity much lower than those expected for a high‐order polyploid. Islands as a whole did not contain higher levels of genetic variation (allelic or genotypic) than mainland refuges, but island populations displayed more private alleles and higher genotypic diversity in old volcanic areas. Patterns of microsatellite variation were compatible with the occurrence of clonal individuals in all but two island populations, and the incidence of clonality within populations negatively correlated with the estimated timing of colonization. Our results also suggest that gene flow has been very rare among populations, and thus population growth following founder events was apparently mediated by clonality rather than seed recruitment, especially in mainland areas. This study extends to clonal taxa the idea of oceanic islands as important refugia for biodiversity, since the conditions for generation and maintenance of clonal diversity (i.e. occasional events of sexual reproduction, mutation and/or seed immigration) appear to have been more frequent in these enclaves than in mainland areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号